Upload folder using huggingface_hub
Browse files- __init__.py +12 -0
- config.json +29 -0
- configuration_powercoder.py +196 -0
- generation_config.json +6 -0
- kvg_dynamic_cache.py +752 -0
- kvgs_dynamic_cache.py +869 -0
- merges.txt +0 -0
- model.safetensors.index.json +552 -0
- modeling_powercoder.py +543 -0
- special_tokens_map.json +64 -0
- tokenizer.json +0 -0
- tokenizer_config.json +358 -0
- vocab.json +0 -0
__init__.py
ADDED
|
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from transformers import AutoConfig, AutoModelForCausalLM, AutoTokenizer
|
| 2 |
+
from transformers import GPT2Tokenizer, GPT2TokenizerFast
|
| 3 |
+
from .configuration_powercoder import PowerCoderConfig
|
| 4 |
+
from .modeling_powercoder import PowerCoderForCausalLM
|
| 5 |
+
|
| 6 |
+
# make HF aware of the new model
|
| 7 |
+
AutoConfig.register("powercoder", PowerCoderConfig)
|
| 8 |
+
AutoModelForCausalLM.register(PowerCoderConfig, PowerCoderForCausalLM)
|
| 9 |
+
|
| 10 |
+
AutoTokenizer.register(PowerCoderConfig, GPT2Tokenizer, GPT2TokenizerFast)
|
| 11 |
+
|
| 12 |
+
__all__ = ["PowerCoderConfig", "PowerCoderForCausalLM"]
|
config.json
ADDED
|
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"architectures": [
|
| 3 |
+
"PowerCoderForCausalLM"
|
| 4 |
+
],
|
| 5 |
+
"attention_dropout": 0.0,
|
| 6 |
+
"bos_token_id": 50256,
|
| 7 |
+
"dtype": "float32",
|
| 8 |
+
"embedding_dropout": 0.0,
|
| 9 |
+
"eos_token_id": 50256,
|
| 10 |
+
"hidden_act": "gelu_pytorch_tanh",
|
| 11 |
+
"hidden_size": 3072,
|
| 12 |
+
"hybrid_exp": "none",
|
| 13 |
+
"initializer_range": 0.018042,
|
| 14 |
+
"intermediate_size": 12288,
|
| 15 |
+
"max_position_embeddings": 4096,
|
| 16 |
+
"model_type": "powercoder",
|
| 17 |
+
"norm_epsilon": 1e-05,
|
| 18 |
+
"num_attention_heads": 24,
|
| 19 |
+
"num_hidden_layers": 30,
|
| 20 |
+
"num_key_value_heads": 2,
|
| 21 |
+
"residual_dropout": 0.0,
|
| 22 |
+
"rope_scaling": null,
|
| 23 |
+
"rope_theta": 10000.0,
|
| 24 |
+
"sliding_window": null,
|
| 25 |
+
"transformers_version": "4.57.0.dev0",
|
| 26 |
+
"use_bias": true,
|
| 27 |
+
"use_cache": true,
|
| 28 |
+
"vocab_size": 49152
|
| 29 |
+
}
|
configuration_powercoder.py
ADDED
|
@@ -0,0 +1,196 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""PowerCoder model configuration"""
|
| 2 |
+
|
| 3 |
+
from transformers.configuration_utils import PretrainedConfig
|
| 4 |
+
from transformers.modeling_rope_utils import rope_config_validation
|
| 5 |
+
from transformers.utils import logging
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
logger = logging.get_logger(__name__)
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
class PowerCoderConfig(PretrainedConfig):
|
| 12 |
+
r"""
|
| 13 |
+
This is the configuration class to store the configuration of a [`PowerCoderModel`]. It is used to instantiate a
|
| 14 |
+
PowerCoder model according to the specified arguments, defining the model architecture. Instantiating a configuration
|
| 15 |
+
with the defaults will yield a similar configuration to that of the [bigcode/starcoder2-7b](https://huggingface.co/bigcode/starcoder2-7b) model.
|
| 16 |
+
|
| 17 |
+
|
| 18 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
| 19 |
+
documentation from [`PretrainedConfig`] for more information.
|
| 20 |
+
|
| 21 |
+
|
| 22 |
+
Args:
|
| 23 |
+
vocab_size (`int`, *optional*, defaults to 49152):
|
| 24 |
+
Vocabulary size of the PowerCoder model. Defines the number of different tokens that can be represented by the
|
| 25 |
+
`inputs_ids` passed when calling [`PowerCoderModel`]
|
| 26 |
+
hidden_size (`int`, *optional*, defaults to 3072):
|
| 27 |
+
Dimension of the hidden representations.
|
| 28 |
+
intermediate_size (`int`, *optional*, defaults to 12288):
|
| 29 |
+
Dimension of the MLP representations.
|
| 30 |
+
num_hidden_layers (`int`, *optional*, defaults to 30):
|
| 31 |
+
Number of hidden layers in the Transformer encoder.
|
| 32 |
+
num_attention_heads (`int`, *optional*, defaults to 24):
|
| 33 |
+
Number of attention heads for each attention layer in the Transformer encoder.
|
| 34 |
+
num_key_value_heads (`int`, *optional*, defaults to 2):
|
| 35 |
+
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
|
| 36 |
+
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
|
| 37 |
+
`num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When
|
| 38 |
+
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
|
| 39 |
+
by meanpooling all the original heads within that group. For more details, check out [this
|
| 40 |
+
paper](https://huggingface.co/papers/2305.13245). If it is not specified, will default to `8`.
|
| 41 |
+
hidden_act (`str` or `function`, *optional*, defaults to `"gelu_pytorch_tanh"`):
|
| 42 |
+
The non-linear activation function (function or string) in the decoder.
|
| 43 |
+
max_position_embeddings (`int`, *optional*, defaults to 16384):
|
| 44 |
+
The maximum sequence length that this model might ever be used with.
|
| 45 |
+
initializer_range (`float`, *optional*, defaults to 0.02):
|
| 46 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
| 47 |
+
norm_epsilon (`float`, *optional*, defaults to 1e-05):
|
| 48 |
+
Epsilon value for the layer norm
|
| 49 |
+
use_cache (`bool`, *optional*, defaults to `True`):
|
| 50 |
+
Whether or not the model should return the last key/values attentions (not used by all models). Only
|
| 51 |
+
relevant if `config.is_decoder=True`.
|
| 52 |
+
bos_token_id (`int`, *optional*, defaults to 50256):
|
| 53 |
+
The id of the "beginning-of-sequence" token.
|
| 54 |
+
eos_token_id (`int`, *optional*, defaults to 50256):
|
| 55 |
+
The id of the "end-of-sequence" token.
|
| 56 |
+
rope_theta (`float`, *optional*, defaults to 10000.0):
|
| 57 |
+
The base period of the RoPE embeddings.
|
| 58 |
+
rope_scaling (`Dict`, *optional*):
|
| 59 |
+
Dictionary containing the scaling configuration for the RoPE embeddings. NOTE: if you apply new rope type
|
| 60 |
+
and you expect the model to work on longer `max_position_embeddings`, we recommend you to update this value
|
| 61 |
+
accordingly.
|
| 62 |
+
Expected contents:
|
| 63 |
+
`rope_type` (`str`):
|
| 64 |
+
The sub-variant of RoPE to use. Can be one of ['default', 'linear', 'dynamic', 'yarn', 'longrope',
|
| 65 |
+
'llama3'], with 'default' being the original RoPE implementation.
|
| 66 |
+
`factor` (`float`, *optional*):
|
| 67 |
+
Used with all rope types except 'default'. The scaling factor to apply to the RoPE embeddings. In
|
| 68 |
+
most scaling types, a `factor` of x will enable the model to handle sequences of length x *
|
| 69 |
+
original maximum pre-trained length.
|
| 70 |
+
`original_max_position_embeddings` (`int`, *optional*):
|
| 71 |
+
Used with 'dynamic', 'longrope' and 'llama3'. The original max position embeddings used during
|
| 72 |
+
pretraining.
|
| 73 |
+
`attention_factor` (`float`, *optional*):
|
| 74 |
+
Used with 'yarn' and 'longrope'. The scaling factor to be applied on the attention
|
| 75 |
+
computation. If unspecified, it defaults to value recommended by the implementation, using the
|
| 76 |
+
`factor` field to infer the suggested value.
|
| 77 |
+
`beta_fast` (`float`, *optional*):
|
| 78 |
+
Only used with 'yarn'. Parameter to set the boundary for extrapolation (only) in the linear
|
| 79 |
+
ramp function. If unspecified, it defaults to 32.
|
| 80 |
+
`beta_slow` (`float`, *optional*):
|
| 81 |
+
Only used with 'yarn'. Parameter to set the boundary for interpolation (only) in the linear
|
| 82 |
+
ramp function. If unspecified, it defaults to 1.
|
| 83 |
+
`short_factor` (`list[float]`, *optional*):
|
| 84 |
+
Only used with 'longrope'. The scaling factor to be applied to short contexts (<
|
| 85 |
+
`original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
|
| 86 |
+
size divided by the number of attention heads divided by 2
|
| 87 |
+
`long_factor` (`list[float]`, *optional*):
|
| 88 |
+
Only used with 'longrope'. The scaling factor to be applied to long contexts (<
|
| 89 |
+
`original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
|
| 90 |
+
size divided by the number of attention heads divided by 2
|
| 91 |
+
`low_freq_factor` (`float`, *optional*):
|
| 92 |
+
Only used with 'llama3'. Scaling factor applied to low frequency components of the RoPE
|
| 93 |
+
`high_freq_factor` (`float`, *optional*):
|
| 94 |
+
Only used with 'llama3'. Scaling factor applied to high frequency components of the RoPE
|
| 95 |
+
sliding_window (`int`, *optional*):
|
| 96 |
+
Sliding window attention window size. If not specified, will default to `None` (no sliding window).
|
| 97 |
+
attention_dropout (`float`, *optional*, defaults to 0.0):
|
| 98 |
+
The dropout ratio for the attention probabilities.
|
| 99 |
+
residual_dropout (`float`, *optional*, defaults to 0.0):
|
| 100 |
+
Residual connection dropout value.
|
| 101 |
+
embedding_dropout (`float`, *optional*, defaults to 0.0):
|
| 102 |
+
Embedding dropout.
|
| 103 |
+
use_bias (`bool`, *optional*, defaults to `True`):
|
| 104 |
+
Whether to use bias term on linear layers of the model.
|
| 105 |
+
|
| 106 |
+
|
| 107 |
+
```python
|
| 108 |
+
>>> from transformers import PowerCoderModel, PowerCoderConfig
|
| 109 |
+
|
| 110 |
+
>>> # Initializing a PowerCoder 7B style configuration
|
| 111 |
+
>>> configuration = PowerCoderConfig()
|
| 112 |
+
|
| 113 |
+
>>> # Initializing a model from the PowerCoder 7B style configuration
|
| 114 |
+
>>> model = PowerCoderModel(configuration)
|
| 115 |
+
|
| 116 |
+
>>> # Accessing the model configuration
|
| 117 |
+
>>> configuration = model.config
|
| 118 |
+
```"""
|
| 119 |
+
|
| 120 |
+
model_type = "powercoder"
|
| 121 |
+
keys_to_ignore_at_inference = ["past_key_values"]
|
| 122 |
+
# Default tensor parallel plan for base model `PowerCoder`
|
| 123 |
+
base_model_tp_plan = {
|
| 124 |
+
"layers.*.self_attn.q_proj": "colwise",
|
| 125 |
+
"layers.*.self_attn.k_proj": "colwise",
|
| 126 |
+
"layers.*.self_attn.v_proj": "colwise",
|
| 127 |
+
"layers.*.self_attn.o_proj": "rowwise",
|
| 128 |
+
"layers.*.mlp.c_fc": "colwise",
|
| 129 |
+
"layers.*.mlp.c_proj": "colwise",
|
| 130 |
+
}
|
| 131 |
+
base_model_pp_plan = {
|
| 132 |
+
"embed_tokens": (["input_ids"], ["inputs_embeds"]),
|
| 133 |
+
"layers": (["hidden_states", "attention_mask"], ["hidden_states"]),
|
| 134 |
+
"norm": (["hidden_states"], ["hidden_states"]),
|
| 135 |
+
}
|
| 136 |
+
|
| 137 |
+
def __init__(
|
| 138 |
+
self,
|
| 139 |
+
vocab_size=49152,
|
| 140 |
+
hidden_size=3072,
|
| 141 |
+
intermediate_size=12288,
|
| 142 |
+
num_hidden_layers=30,
|
| 143 |
+
num_attention_heads=24,
|
| 144 |
+
num_key_value_heads=2,
|
| 145 |
+
hidden_act="gelu_pytorch_tanh",
|
| 146 |
+
max_position_embeddings=4096,
|
| 147 |
+
initializer_range=0.018042,
|
| 148 |
+
norm_epsilon=1e-5,
|
| 149 |
+
use_cache=True,
|
| 150 |
+
bos_token_id=50256,
|
| 151 |
+
eos_token_id=50256,
|
| 152 |
+
rope_theta=10000.0,
|
| 153 |
+
rope_scaling=None,
|
| 154 |
+
sliding_window=None,
|
| 155 |
+
attention_dropout=0.0,
|
| 156 |
+
residual_dropout=0.0,
|
| 157 |
+
embedding_dropout=0.0,
|
| 158 |
+
use_bias=True,
|
| 159 |
+
chunk_size=None,
|
| 160 |
+
switch_over_seq_len=None,
|
| 161 |
+
**kwargs,
|
| 162 |
+
):
|
| 163 |
+
self.vocab_size = vocab_size
|
| 164 |
+
self.max_position_embeddings = max_position_embeddings
|
| 165 |
+
self.hidden_size = hidden_size
|
| 166 |
+
self.intermediate_size = intermediate_size
|
| 167 |
+
self.num_hidden_layers = num_hidden_layers
|
| 168 |
+
self.num_attention_heads = num_attention_heads
|
| 169 |
+
self.sliding_window = sliding_window
|
| 170 |
+
self.use_bias = use_bias
|
| 171 |
+
self.num_key_value_heads = num_key_value_heads
|
| 172 |
+
self.hidden_act = hidden_act
|
| 173 |
+
self.initializer_range = initializer_range
|
| 174 |
+
self.norm_epsilon = norm_epsilon
|
| 175 |
+
self.use_cache = use_cache
|
| 176 |
+
self.rope_theta = rope_theta
|
| 177 |
+
self.rope_scaling = rope_scaling
|
| 178 |
+
self.attention_dropout = attention_dropout
|
| 179 |
+
self.residual_dropout = residual_dropout
|
| 180 |
+
self.embedding_dropout = embedding_dropout
|
| 181 |
+
self.chunk_size = chunk_size
|
| 182 |
+
self.switch_over_seq_len = switch_over_seq_len
|
| 183 |
+
# Validate the correctness of rotary position embeddings parameters
|
| 184 |
+
# BC: if there is a 'type' field, move it to 'rope_type'.
|
| 185 |
+
if self.rope_scaling is not None and "type" in self.rope_scaling:
|
| 186 |
+
self.rope_scaling["rope_type"] = self.rope_scaling["type"]
|
| 187 |
+
rope_config_validation(self)
|
| 188 |
+
|
| 189 |
+
super().__init__(
|
| 190 |
+
bos_token_id=bos_token_id,
|
| 191 |
+
eos_token_id=eos_token_id,
|
| 192 |
+
**kwargs,
|
| 193 |
+
)
|
| 194 |
+
|
| 195 |
+
|
| 196 |
+
__all__ = ["PowerCoderConfig"]
|
generation_config.json
ADDED
|
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"_from_model_config": true,
|
| 3 |
+
"bos_token_id": 50256,
|
| 4 |
+
"eos_token_id": 50256,
|
| 5 |
+
"transformers_version": "4.57.0.dev0"
|
| 6 |
+
}
|
kvg_dynamic_cache.py
ADDED
|
@@ -0,0 +1,752 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import copy
|
| 2 |
+
import json
|
| 3 |
+
import os
|
| 4 |
+
from abc import ABC, abstractmethod
|
| 5 |
+
from collections.abc import Iterable
|
| 6 |
+
from dataclasses import dataclass
|
| 7 |
+
from typing import Any, Optional, Union
|
| 8 |
+
|
| 9 |
+
import torch
|
| 10 |
+
|
| 11 |
+
from transformers.pytorch_utils import is_torch_greater_or_equal_than_2_6
|
| 12 |
+
|
| 13 |
+
from transformers.configuration_utils import PretrainedConfig
|
| 14 |
+
from transformers.utils import (
|
| 15 |
+
is_torch_greater_or_equal,
|
| 16 |
+
is_torchdynamo_compiling,
|
| 17 |
+
logging,
|
| 18 |
+
)
|
| 19 |
+
|
| 20 |
+
_is_torch_greater_or_equal_than_2_7 = is_torch_greater_or_equal("2.7", accept_dev=True)
|
| 21 |
+
|
| 22 |
+
|
| 23 |
+
logger = logging.get_logger(__name__)
|
| 24 |
+
|
| 25 |
+
|
| 26 |
+
class CacheLayerMixin(ABC):
|
| 27 |
+
"""Base, abstract class for a single layer's cache."""
|
| 28 |
+
|
| 29 |
+
is_compileable = False
|
| 30 |
+
|
| 31 |
+
def __init__(self):
|
| 32 |
+
self.keys, self.values, self.gatings = None, None, None
|
| 33 |
+
|
| 34 |
+
@abstractmethod
|
| 35 |
+
def update(
|
| 36 |
+
self, key_states: torch.Tensor, value_states: torch.Tensor, cache_kwargs: Optional[dict[str, Any]] = None
|
| 37 |
+
) -> tuple[torch.Tensor, torch.Tensor]: ...
|
| 38 |
+
|
| 39 |
+
@abstractmethod
|
| 40 |
+
def lazy_initialization(self, key_states: torch.Tensor): ...
|
| 41 |
+
|
| 42 |
+
@abstractmethod
|
| 43 |
+
def get_seq_length(self, cache_position=None) -> int: ...
|
| 44 |
+
|
| 45 |
+
@abstractmethod
|
| 46 |
+
def get_max_cache_shape(self) -> int: ...
|
| 47 |
+
|
| 48 |
+
@abstractmethod
|
| 49 |
+
def get_mask_sizes(self, cache_position: torch.Tensor) -> tuple[int, int]: ...
|
| 50 |
+
|
| 51 |
+
def offload(self):
|
| 52 |
+
"""Offload this layer's data to CPU device."""
|
| 53 |
+
if self.keys is not None:
|
| 54 |
+
self.keys = self.keys.to("cpu", non_blocking=True)
|
| 55 |
+
self.values = self.values.to("cpu", non_blocking=True)
|
| 56 |
+
self.gatings = self.gatings.to("cpu", non_blocking=True)
|
| 57 |
+
|
| 58 |
+
def prefetch(self):
|
| 59 |
+
"""In case of layer offloading, this allows to move the data back to the layer's device ahead of time."""
|
| 60 |
+
if self.keys is not None and self.keys.device != self.device:
|
| 61 |
+
self.keys = self.keys.to(self.device, non_blocking=True)
|
| 62 |
+
self.values = self.values.to(self.device, non_blocking=True)
|
| 63 |
+
self.gatings = self.gatings.to(self.device, non_blocking=True)
|
| 64 |
+
|
| 65 |
+
def reset(self) -> None:
|
| 66 |
+
"""Resets the cache values while preserving the objects"""
|
| 67 |
+
if self.keys is not None:
|
| 68 |
+
self.keys.zero_()
|
| 69 |
+
self.values.zero_()
|
| 70 |
+
self.gatings.zero_()
|
| 71 |
+
|
| 72 |
+
def reorder_cache(self, beam_idx: torch.LongTensor) -> tuple[torch.Tensor, torch.Tensor]:
|
| 73 |
+
"""Reorders this layer's cache for beam search."""
|
| 74 |
+
if self.keys.numel():
|
| 75 |
+
device = self.keys.device
|
| 76 |
+
self.keys = self.keys.index_select(0, beam_idx.to(device))
|
| 77 |
+
if self.values.numel():
|
| 78 |
+
device = self.values.device
|
| 79 |
+
self.values = self.values.index_select(0, beam_idx.to(device))
|
| 80 |
+
if self.gatings.numel():
|
| 81 |
+
device = self.gatings.device
|
| 82 |
+
self.gatings = self.gatings.index_select(0, beam_idx.to(device))
|
| 83 |
+
|
| 84 |
+
|
| 85 |
+
class DynamicLayer(CacheLayerMixin):
|
| 86 |
+
"""
|
| 87 |
+
A cache layer that grows dynamically as more tokens are generated. This is the default for generative models.
|
| 88 |
+
It stores the Key and Value states as tensors with shape `[batch_size, num_heads, seq_len, head_dim]`.
|
| 89 |
+
|
| 90 |
+
See `CacheLayerMixin` for details on common methods that are implemented by all cache layers.
|
| 91 |
+
"""
|
| 92 |
+
|
| 93 |
+
is_sliding = False
|
| 94 |
+
|
| 95 |
+
def lazy_initialization(self, key_states: torch.Tensor):
|
| 96 |
+
self.dtype, self.device = key_states.dtype, key_states.device
|
| 97 |
+
self.keys = torch.tensor([], dtype=self.dtype, device=self.device)
|
| 98 |
+
self.values = torch.tensor([], dtype=self.dtype, device=self.device)
|
| 99 |
+
self.gatings = torch.tensor([], dtype=torch.float32, device=self.device)
|
| 100 |
+
|
| 101 |
+
def update(
|
| 102 |
+
self,
|
| 103 |
+
key_states: torch.Tensor,
|
| 104 |
+
value_states: torch.Tensor,
|
| 105 |
+
gate_states: torch.Tensor,
|
| 106 |
+
cache_kwargs: Optional[dict[str, Any]] = None,
|
| 107 |
+
) -> tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
|
| 108 |
+
"""
|
| 109 |
+
Updates the cache with the new `key_states` and `value_states`.
|
| 110 |
+
|
| 111 |
+
Parameters:
|
| 112 |
+
key_states (`torch.Tensor`):
|
| 113 |
+
The new key states to cache.
|
| 114 |
+
value_states (`torch.Tensor`):
|
| 115 |
+
The new value states to cache.
|
| 116 |
+
cache_kwargs (`dict[str, Any]`, *optional*):
|
| 117 |
+
Additional arguments for the cache subclass. No additional arguments are used in `DynamicLayer`.
|
| 118 |
+
|
| 119 |
+
Return:
|
| 120 |
+
A tuple containing the updated key and value states.
|
| 121 |
+
"""
|
| 122 |
+
# Lazy initialization
|
| 123 |
+
if self.keys is None:
|
| 124 |
+
self.lazy_initialization(key_states)
|
| 125 |
+
|
| 126 |
+
self.keys = torch.cat([self.keys, key_states], dim=-2)
|
| 127 |
+
self.values = torch.cat([self.values, value_states], dim=-2)
|
| 128 |
+
self.gatings = torch.cat([self.gatings, gate_states], dim=-1)
|
| 129 |
+
return self.keys, self.values, self.gatings
|
| 130 |
+
|
| 131 |
+
def get_seq_length(self, cache_position=None) -> int:
|
| 132 |
+
"""Returns the sequence length of the cached states."""
|
| 133 |
+
if self.keys is None or self.keys.numel() == 0:
|
| 134 |
+
return 0
|
| 135 |
+
return self.keys.shape[-2]
|
| 136 |
+
|
| 137 |
+
def get_max_cache_shape(self) -> int:
|
| 138 |
+
"""Returns the maximum sequence length of the cache object. DynamicLayer does not have a maximum length."""
|
| 139 |
+
return -1
|
| 140 |
+
|
| 141 |
+
def reorder_cache(self, beam_idx: torch.LongTensor) -> None:
|
| 142 |
+
"""Reorders the cache for beam search, given the selected beam indices."""
|
| 143 |
+
if self.keys is not None and self.keys.numel():
|
| 144 |
+
self.keys = self.keys.index_select(0, beam_idx.to(self.keys.device))
|
| 145 |
+
self.values = self.values.index_select(0, beam_idx.to(self.values.device))
|
| 146 |
+
self.gatings = self.gatings.index_select(0, beam_idx.to(self.gatings.device))
|
| 147 |
+
|
| 148 |
+
def crop(self, max_length: int) -> None:
|
| 149 |
+
"""
|
| 150 |
+
Crop the past key values up to a new `max_length` in terms of tokens. `max_length` can also be
|
| 151 |
+
negative to remove `max_length` tokens.
|
| 152 |
+
"""
|
| 153 |
+
if max_length < 0:
|
| 154 |
+
max_length = self.get_seq_length() - abs(max_length)
|
| 155 |
+
|
| 156 |
+
if self.get_seq_length() <= max_length:
|
| 157 |
+
return
|
| 158 |
+
|
| 159 |
+
if self.keys is not None and self.keys.numel():
|
| 160 |
+
self.keys = self.keys[..., :max_length, :]
|
| 161 |
+
self.values = self.values[..., :max_length, :]
|
| 162 |
+
self.gatings = self.gatings[..., :max_length]
|
| 163 |
+
|
| 164 |
+
def batch_repeat_interleave(self, repeats: int) -> None:
|
| 165 |
+
"""Repeat the cache `repeats` times in the batch dimension."""
|
| 166 |
+
if self.keys is not None and self.keys.numel():
|
| 167 |
+
self.keys = self.keys.repeat_interleave(repeats, dim=0)
|
| 168 |
+
self.values = self.values.repeat_interleave(repeats, dim=0)
|
| 169 |
+
self.gatings = self.gatings.repeat_interleave(repeats, dim=0)
|
| 170 |
+
|
| 171 |
+
def batch_select_indices(self, indices: torch.Tensor) -> None:
|
| 172 |
+
"""Only keep the `indices` in the batch dimension of the cache."""
|
| 173 |
+
if self.keys is not None and self.keys.numel():
|
| 174 |
+
self.keys = self.keys[indices, ...]
|
| 175 |
+
self.values = self.values[indices, ...]
|
| 176 |
+
self.gatings = self.gatings[indices, ...]
|
| 177 |
+
|
| 178 |
+
def get_mask_sizes(self, cache_position: torch.Tensor) -> tuple[int, int]:
|
| 179 |
+
"""Return the length and offset of the cache, used to generate the mask"""
|
| 180 |
+
kv_offset = 0
|
| 181 |
+
query_length = cache_position.shape[0]
|
| 182 |
+
past_seen_tokens = self.get_seq_length()
|
| 183 |
+
kv_length = query_length + past_seen_tokens
|
| 184 |
+
return kv_length, kv_offset
|
| 185 |
+
|
| 186 |
+
@classmethod
|
| 187 |
+
def from_tensors(cls, keys: torch.Tensor, values: torch.Tensor, gatings: torch.Tensor) -> "DynamicLayer":
|
| 188 |
+
"""
|
| 189 |
+
Build a `DynamicLayer` instance from pre-existing key/value tensors.
|
| 190 |
+
|
| 191 |
+
Args:
|
| 192 |
+
keys (`torch.Tensor`):
|
| 193 |
+
Key cache tensor of shape ``[batch_size, num_heads, seq_len, head_dim]``.
|
| 194 |
+
values (`torch.Tensor`):
|
| 195 |
+
Value cache tensor of shape ``[batch_size, num_heads, seq_len, head_dim]``.
|
| 196 |
+
gatings (`torch.Tensor`):
|
| 197 |
+
Gating cache tensor of shape ``[batch_size, num_heads, seq_len]``.
|
| 198 |
+
|
| 199 |
+
Returns:
|
| 200 |
+
`DynamicLayer`: The newly constructed layer whose internal cache directly references
|
| 201 |
+
the supplied tensors.
|
| 202 |
+
"""
|
| 203 |
+
layer = cls()
|
| 204 |
+
layer.dtype, layer.device = keys.dtype, keys.device
|
| 205 |
+
layer.keys = keys
|
| 206 |
+
layer.values = values
|
| 207 |
+
layer.gatings = gatings
|
| 208 |
+
return layer
|
| 209 |
+
|
| 210 |
+
|
| 211 |
+
class StaticLayer(CacheLayerMixin):
|
| 212 |
+
"""
|
| 213 |
+
A static cache layer that stores the Key and Value states as static tensors with shape `[batch_size, num_heads, seq_len, head_dim]`.
|
| 214 |
+
It allocates its full backing tensors up-front and mutates them in-place. Built for `torch.compile` support.
|
| 215 |
+
|
| 216 |
+
See `CacheLayerMixin` for details on common methods that are implemented by all cache layers.
|
| 217 |
+
"""
|
| 218 |
+
|
| 219 |
+
is_compileable = True
|
| 220 |
+
is_sliding = False
|
| 221 |
+
|
| 222 |
+
def __init__(self, max_cache_len: int):
|
| 223 |
+
"""
|
| 224 |
+
Args:
|
| 225 |
+
max_cache_len (`int`):
|
| 226 |
+
Maximum number of tokens that can be stored, used for tensor preallocation.
|
| 227 |
+
"""
|
| 228 |
+
super().__init__()
|
| 229 |
+
self.max_cache_len = max_cache_len
|
| 230 |
+
|
| 231 |
+
def lazy_initialization(self, key_states: torch.Tensor):
|
| 232 |
+
"""
|
| 233 |
+
Lazy initialization of the keys and values tensors. This allows to get all properties (dtype, device,
|
| 234 |
+
num_heads in case of TP etc...) at runtime directly, which is extremely practical as it avoids moving
|
| 235 |
+
devices, dtypes etc later on for each `update` (which could break the static dynamo addresses as well).
|
| 236 |
+
|
| 237 |
+
If this is unwanted, one can call `early_initialization(...)` on the Cache directly, which will call this
|
| 238 |
+
function ahead-of-time (this is required for `torch.export` for example). Note that for `compile`, as we
|
| 239 |
+
internally don't compile the prefill, this is guaranteed to have been called already when compiling.
|
| 240 |
+
If compiling the prefill as well, e.g. calling `model.compile(...)` before `generate` with a static cache,
|
| 241 |
+
it is still supported in general, but without guarantees depending on the compilation options (e.g. cuda graphs,
|
| 242 |
+
i.e. `mode="reduce-overhead"` is known to fail). But it will in general work correctly, and prefill should
|
| 243 |
+
not be compiled anyway for performances!
|
| 244 |
+
"""
|
| 245 |
+
self.max_batch_size, self.num_heads, _, self.head_dim = key_states.shape
|
| 246 |
+
self.dtype, self.device = key_states.dtype, key_states.device
|
| 247 |
+
|
| 248 |
+
self.keys = torch.zeros(
|
| 249 |
+
(self.max_batch_size, self.num_heads, self.max_cache_len, self.head_dim),
|
| 250 |
+
dtype=self.dtype,
|
| 251 |
+
device=self.device,
|
| 252 |
+
)
|
| 253 |
+
self.values = torch.zeros(
|
| 254 |
+
(self.max_batch_size, self.num_heads, self.max_cache_len, self.head_dim),
|
| 255 |
+
dtype=self.dtype,
|
| 256 |
+
device=self.device,
|
| 257 |
+
)
|
| 258 |
+
self.gatings = torch.zeros(
|
| 259 |
+
(self.max_batch_size, self.num_heads, self.max_cache_len),
|
| 260 |
+
dtype=torch.float32,
|
| 261 |
+
device=self.device,
|
| 262 |
+
)
|
| 263 |
+
# Note: `mark_static_address` is used to tag the cache as a fixed data pointer, preventing compiled graph
|
| 264 |
+
# breaks when updating the cache. However, it is not supported when tracing the graph, so we skip it in this case.
|
| 265 |
+
# As prefill should never be compiled, this is not an issue and it will still be run (except when users compile
|
| 266 |
+
# prefill explicitly, but this should be avoided!)
|
| 267 |
+
if not is_torchdynamo_compiling():
|
| 268 |
+
torch._dynamo.mark_static_address(self.keys)
|
| 269 |
+
torch._dynamo.mark_static_address(self.values)
|
| 270 |
+
|
| 271 |
+
def update(
|
| 272 |
+
self,
|
| 273 |
+
key_states: torch.Tensor,
|
| 274 |
+
value_states: torch.Tensor,
|
| 275 |
+
gate_states: torch.Tensor,
|
| 276 |
+
cache_kwargs: Optional[dict[str, Any]] = None,
|
| 277 |
+
) -> tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
|
| 278 |
+
"""
|
| 279 |
+
Update the static cache tensors in place.
|
| 280 |
+
|
| 281 |
+
Args:
|
| 282 |
+
key_states (`torch.Tensor`): The new key states to cache.
|
| 283 |
+
value_states (`torch.Tensor`): The new value states to cache.
|
| 284 |
+
gate_states (`torch.Tensor`): The new gate states to cache.
|
| 285 |
+
cache_kwargs (`dict[str, Any]`, *optional*): Additional arguments for the cache.
|
| 286 |
+
|
| 287 |
+
Returns:
|
| 288 |
+
tuple[`torch.Tensor`, `torch.Tensor`, `torch.Tensor`]: The updated key, value, and gate states.
|
| 289 |
+
"""
|
| 290 |
+
# Lazy initialization
|
| 291 |
+
if self.keys is None:
|
| 292 |
+
self.lazy_initialization(key_states)
|
| 293 |
+
|
| 294 |
+
# Some old models give None for `cache_position` or even omit passing `cache_kwargs` when used as cross-attention,
|
| 295 |
+
# in which case we should copy the whole Layer (key_states.shape[-2] == self.max_cache_len)
|
| 296 |
+
cache_position = cache_kwargs.get("cache_position") if cache_kwargs is not None else None
|
| 297 |
+
cache_position = (
|
| 298 |
+
cache_position if cache_position is not None else torch.arange(key_states.shape[-2], device=self.device)
|
| 299 |
+
)
|
| 300 |
+
|
| 301 |
+
# Update the cache
|
| 302 |
+
try:
|
| 303 |
+
self.keys.index_copy_(2, cache_position, key_states)
|
| 304 |
+
self.values.index_copy_(2, cache_position, value_states)
|
| 305 |
+
self.gatings.index_copy_(2, cache_position, gate_states)
|
| 306 |
+
except NotImplementedError:
|
| 307 |
+
# Fallback for devices like MPS where index_copy_ might not be supported.
|
| 308 |
+
self.keys[:, :, cache_position] = key_states
|
| 309 |
+
self.values[:, :, cache_position] = value_states
|
| 310 |
+
self.gatings[:, :, cache_position] = gate_states
|
| 311 |
+
return self.keys, self.values, self.gatings
|
| 312 |
+
|
| 313 |
+
def get_max_cache_shape(self) -> int:
|
| 314 |
+
"""Return the maximum cache shape of the cache"""
|
| 315 |
+
return self.max_cache_len
|
| 316 |
+
|
| 317 |
+
def get_seq_length(self, cache_position=None) -> int:
|
| 318 |
+
"""Returns the sequence length of the cached states."""
|
| 319 |
+
if cache_position is not None:
|
| 320 |
+
return int(cache_position[-1] + 1)
|
| 321 |
+
# Occupied cache == any slot in the 3rd dim (sequence length) holds a non-zero value. To save on compute, let's
|
| 322 |
+
# limit the check to the first batch member and head dimension.
|
| 323 |
+
seq_length = (self.keys[0, 0].any(dim=-1)).sum() if self.keys is not None else 0
|
| 324 |
+
return seq_length
|
| 325 |
+
|
| 326 |
+
def reorder_cache(self, beam_idx: torch.LongTensor) -> None:
|
| 327 |
+
"""Reorders the cache for beam search, given the selected beam indices."""
|
| 328 |
+
dev = self.keys.device
|
| 329 |
+
beam_idx_dev = beam_idx.to(dev)
|
| 330 |
+
self.keys = self.keys.index_select(0, beam_idx_dev)
|
| 331 |
+
self.values = self.values.index_select(0, beam_idx_dev)
|
| 332 |
+
self.gatings = self.gatings.index_select(0, beam_idx_dev)
|
| 333 |
+
|
| 334 |
+
def get_mask_sizes(self, cache_position: torch.Tensor) -> tuple[int, int]:
|
| 335 |
+
"""Return the length and offset of the cache, used to generate the attention mask"""
|
| 336 |
+
kv_offset = 0
|
| 337 |
+
kv_length = self.max_cache_len
|
| 338 |
+
return kv_length, kv_offset
|
| 339 |
+
|
| 340 |
+
|
| 341 |
+
|
| 342 |
+
class KeyValuesGatingWrapper:
|
| 343 |
+
"""Helper class for Cache that simulates layer-indexed key/value lists from a layered cache.
|
| 344 |
+
This allows for BC access and writing, e.g., cache.key_cache[idx] = ...
|
| 345 |
+
Deprecated in favor of Cache.layers[idx].keys/values. TODO: remove in v4.56.0"""
|
| 346 |
+
|
| 347 |
+
def __init__(self, layers, cache_type="keys"):
|
| 348 |
+
self.layers = layers
|
| 349 |
+
self.cache_type = cache_type
|
| 350 |
+
|
| 351 |
+
def __getitem__(self, idx):
|
| 352 |
+
if isinstance(idx, slice):
|
| 353 |
+
return [getattr(layer, self.cache_type) for layer in self.layers[idx]]
|
| 354 |
+
return getattr(self.layers[idx], self.cache_type)
|
| 355 |
+
|
| 356 |
+
def __setitem__(self, idx, value):
|
| 357 |
+
if isinstance(idx, slice):
|
| 358 |
+
for layer, val in zip(self.layers[idx], value):
|
| 359 |
+
setattr(layer, self.cache_type, val)
|
| 360 |
+
else:
|
| 361 |
+
setattr(self.layers[idx], self.cache_type, value)
|
| 362 |
+
|
| 363 |
+
def __len__(self):
|
| 364 |
+
return len(self.layers)
|
| 365 |
+
|
| 366 |
+
def __iter__(self):
|
| 367 |
+
for layer in self.layers:
|
| 368 |
+
yield getattr(layer, self.cache_type)
|
| 369 |
+
|
| 370 |
+
def __bool__(self):
|
| 371 |
+
return bool(self.layers)
|
| 372 |
+
|
| 373 |
+
|
| 374 |
+
class Cache:
|
| 375 |
+
"""
|
| 376 |
+
A `Cache` is mostly a list of `CacheLayerMixin` objects, one per model layer. It serves as a container for
|
| 377 |
+
the Cache of each layer.
|
| 378 |
+
|
| 379 |
+
Parameters:
|
| 380 |
+
layers (`Optional`, *optional*):
|
| 381 |
+
A list of pre-created `CacheLayerMixin`. If omitted (`None`), then `layer_class_to_replicate` will
|
| 382 |
+
be used.
|
| 383 |
+
layer_class_to_replicate (`type[CacheLayerMixin]`, *optional*):
|
| 384 |
+
Only used if `layers` is omitted (`None`), in which case it will be used as the base class for each layer,
|
| 385 |
+
and the layers will be added lazily as soon as `update` is called with a `layer_idx` greater than the current
|
| 386 |
+
list of layers.
|
| 387 |
+
offloading (`bool`, *optional*, defaults to `False`):
|
| 388 |
+
Whether to perform offloading of the layers to `cpu`, to save GPU memory.
|
| 389 |
+
offload_only_non_sliding (`bool`, *optional*, defaults to `True`):
|
| 390 |
+
If `offloading` is `True`, this further decides if only the non-sliding layers will be offloaded (because
|
| 391 |
+
usually the sliding layers are small in size, so there is no need to offload them, and skipping it is faster).
|
| 392 |
+
"""
|
| 393 |
+
|
| 394 |
+
def __init__(
|
| 395 |
+
self,
|
| 396 |
+
layers: Optional[list[CacheLayerMixin]] = None,
|
| 397 |
+
layer_class_to_replicate: Optional[type[CacheLayerMixin]] = None,
|
| 398 |
+
offloading: bool = False,
|
| 399 |
+
offload_only_non_sliding: bool = True,
|
| 400 |
+
):
|
| 401 |
+
if layers is not None and layer_class_to_replicate is not None:
|
| 402 |
+
raise ValueError(
|
| 403 |
+
"You can construct a Cache either from a list `layers` of all the predefined `CacheLayer`, or from a "
|
| 404 |
+
"`layer_class_to_replicate`, in which case the Cache will append a new layer corresponding to "
|
| 405 |
+
"`layer_class_to_replicate` for each new call to `update` with an idx not already in the Cache."
|
| 406 |
+
)
|
| 407 |
+
if layers is None and layer_class_to_replicate is None:
|
| 408 |
+
raise ValueError(
|
| 409 |
+
"You should provide exactly one of `layers` or `layer_class_to_replicate` to initialize a Cache."
|
| 410 |
+
)
|
| 411 |
+
self.layers = layers if layers is not None else []
|
| 412 |
+
self.layer_class_to_replicate = layer_class_to_replicate
|
| 413 |
+
self.offloading = offloading
|
| 414 |
+
if self.offloading:
|
| 415 |
+
self.only_non_sliding = offload_only_non_sliding
|
| 416 |
+
self.prefetch_stream = torch.Stream() if _is_torch_greater_or_equal_than_2_7 else torch.cuda.Stream()
|
| 417 |
+
|
| 418 |
+
def __repr__(self):
|
| 419 |
+
return f"{self.__class__.__name__}(layers={self.layers})"
|
| 420 |
+
|
| 421 |
+
def prefetch(self, layer_idx: int, only_non_sliding: bool = True):
|
| 422 |
+
"""
|
| 423 |
+
Prefetch a given layer on its device. If `only_non_sliding` is True, it will try to prefetch only the layers
|
| 424 |
+
which are non-sliding. If the `layer_idx` is outside the range, this will circle back to the first layers.
|
| 425 |
+
Note that we use a non-default stream for this, to avoid blocking.
|
| 426 |
+
"""
|
| 427 |
+
if only_non_sliding:
|
| 428 |
+
# Try to find next non-sliding, starting at `layer_idx`
|
| 429 |
+
try:
|
| 430 |
+
layer_idx = layer_idx + self.is_sliding[layer_idx:].index(False)
|
| 431 |
+
# In this case, we need to circle back to the begining
|
| 432 |
+
except ValueError:
|
| 433 |
+
layer_idx = self.is_sliding.index(False)
|
| 434 |
+
else:
|
| 435 |
+
layer_idx = layer_idx if layer_idx < len(self.layers) else 0
|
| 436 |
+
|
| 437 |
+
# Prefetch
|
| 438 |
+
with self.prefetch_stream if _is_torch_greater_or_equal_than_2_7 else torch.cuda.stream(self.prefetch_stream):
|
| 439 |
+
self.layers[layer_idx].prefetch()
|
| 440 |
+
|
| 441 |
+
def offload(self, layer_idx: int, only_non_sliding: bool = True):
|
| 442 |
+
"""
|
| 443 |
+
Offload a given `layer_idx`. If `only_non_sliding` is True, it will offload `layer_idx` only if it is a
|
| 444 |
+
non-sliding layer. Note that we do it on the default stream, so that we ensure all earlier
|
| 445 |
+
computation in the layer's `update` methods are finished.
|
| 446 |
+
"""
|
| 447 |
+
if not (only_non_sliding and self.is_sliding[layer_idx]):
|
| 448 |
+
self.layers[layer_idx].offload()
|
| 449 |
+
|
| 450 |
+
def update(
|
| 451 |
+
self,
|
| 452 |
+
key_states: torch.Tensor,
|
| 453 |
+
value_states: torch.Tensor,
|
| 454 |
+
gate_states: torch.Tensor,
|
| 455 |
+
layer_idx: int,
|
| 456 |
+
cache_kwargs: Optional[dict[str, Any]] = None,
|
| 457 |
+
) -> tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
|
| 458 |
+
"""
|
| 459 |
+
Updates the cache with the new `key_states` and `value_states` for the layer `layer_idx`.
|
| 460 |
+
|
| 461 |
+
Parameters:
|
| 462 |
+
key_states (`torch.Tensor`):
|
| 463 |
+
The new key states to cache.
|
| 464 |
+
value_states (`torch.Tensor`):
|
| 465 |
+
The new value states to cache.
|
| 466 |
+
gate_states (`torch.Tensor`):
|
| 467 |
+
The new gate states to cache.
|
| 468 |
+
layer_idx (`int`):
|
| 469 |
+
The index of the layer to cache the states for.
|
| 470 |
+
cache_kwargs (`dict[str, Any]`, *optional*):
|
| 471 |
+
Additional arguments for the cache subclass. These are specific to each subclass and allow new types of
|
| 472 |
+
cache to be created.
|
| 473 |
+
|
| 474 |
+
Return:
|
| 475 |
+
A tuple containing the updated key, value, and gate states.
|
| 476 |
+
"""
|
| 477 |
+
# In this case, the `layers` were not provided, and we must append as much as `layer_idx`
|
| 478 |
+
if self.layer_class_to_replicate is not None:
|
| 479 |
+
while len(self.layers) <= layer_idx:
|
| 480 |
+
self.layers.append(self.layer_class_to_replicate())
|
| 481 |
+
|
| 482 |
+
if self.offloading:
|
| 483 |
+
# Wait for the stream to finish if needed, and start prefetching the next layer
|
| 484 |
+
torch.cuda.default_stream(key_states.device).wait_stream(self.prefetch_stream)
|
| 485 |
+
self.prefetch(layer_idx + 1, self.only_non_sliding)
|
| 486 |
+
|
| 487 |
+
keys, values, gatings = self.layers[layer_idx].update(key_states, value_states, gate_states, cache_kwargs)
|
| 488 |
+
|
| 489 |
+
if self.offloading:
|
| 490 |
+
self.offload(layer_idx, self.only_non_sliding)
|
| 491 |
+
|
| 492 |
+
return keys, values, gatings
|
| 493 |
+
|
| 494 |
+
def early_initialization(
|
| 495 |
+
self, batch_size: int, num_heads: int, head_dim: int, dtype: torch.dtype, device: torch.device
|
| 496 |
+
):
|
| 497 |
+
"""
|
| 498 |
+
Initialize all the layers in advance (it's otherwise lazily initialized on the first `update` call).
|
| 499 |
+
This is useful for our `export` recipes, as `export` needs everything in advance.
|
| 500 |
+
"""
|
| 501 |
+
# Note that the initialization needs all dimensions (except -2), as well as device and dtype, so we use
|
| 502 |
+
# this fake tensor approach. It has size 0 on the -2 dimension, so it does not allocate any data (it only
|
| 503 |
+
# creates an empty tensor with correct shape, dtype and device), which is very efficient and practical
|
| 504 |
+
fake_keys_tensor = torch.zeros((batch_size, num_heads, 0, head_dim), dtype=dtype, device=device)
|
| 505 |
+
# Init all layers
|
| 506 |
+
for layer in self.layers:
|
| 507 |
+
layer.lazy_initialization(fake_keys_tensor)
|
| 508 |
+
|
| 509 |
+
def get_seq_length(self, layer_idx: int = 0, cache_position=None) -> int:
|
| 510 |
+
"""Returns the sequence length of the cache for the given layer."""
|
| 511 |
+
if layer_idx >= len(self.layers):
|
| 512 |
+
return 0
|
| 513 |
+
return self.layers[layer_idx].get_seq_length(cache_position)
|
| 514 |
+
|
| 515 |
+
def get_mask_sizes(self, cache_position: torch.Tensor, layer_idx: int) -> tuple[int, int]:
|
| 516 |
+
"""
|
| 517 |
+
Return a tuple (kv_length, kv_offset) corresponding to the length and offset that will be returned for
|
| 518 |
+
the given layer at `layer_idx`.
|
| 519 |
+
The masks are then prepared according to the given lengths (kv_length, kv_offset) and patterns for each layer.
|
| 520 |
+
"""
|
| 521 |
+
# For DynamicCache, where the layers are created at runtime -> if it was not yet created, the size is
|
| 522 |
+
# simply the shape of `cache_position`
|
| 523 |
+
if layer_idx >= len(self.layers):
|
| 524 |
+
return cache_position.shape[0], 0
|
| 525 |
+
return self.layers[layer_idx].get_mask_sizes(cache_position)
|
| 526 |
+
|
| 527 |
+
def get_max_cache_shape(self, layer_idx: int = 0) -> int:
|
| 528 |
+
"""Returns maximum sequence length of the cache object. Dynamic caches do not have a maximum length."""
|
| 529 |
+
# For DynamicCache, where the layers are created at runtime -> if it was not yet created, return -1
|
| 530 |
+
# as DynamicLayer does
|
| 531 |
+
if layer_idx >= len(self.layers):
|
| 532 |
+
return -1
|
| 533 |
+
return self.layers[layer_idx].get_max_cache_shape()
|
| 534 |
+
|
| 535 |
+
def reset(self):
|
| 536 |
+
"""Recursively reset all layers tensors"""
|
| 537 |
+
for layer_idx in range(len(self.layers)):
|
| 538 |
+
self.layers[layer_idx].reset()
|
| 539 |
+
|
| 540 |
+
def reorder_cache(self, beam_idx: torch.LongTensor):
|
| 541 |
+
"""Reorder the cache for beam search"""
|
| 542 |
+
for layer_idx in range(len(self.layers)):
|
| 543 |
+
self.layers[layer_idx].reorder_cache(beam_idx)
|
| 544 |
+
|
| 545 |
+
def crop(self, max_length: int):
|
| 546 |
+
"""Crop the cache to the given length"""
|
| 547 |
+
for layer_idx in range(len(self.layers)):
|
| 548 |
+
self.layers[layer_idx].crop(max_length)
|
| 549 |
+
|
| 550 |
+
def batch_repeat_interleave(self, repeats: int):
|
| 551 |
+
"""Repeat and interleave the cache"""
|
| 552 |
+
for layer_idx in range(len(self.layers)):
|
| 553 |
+
self.layers[layer_idx].batch_repeat_interleave(repeats)
|
| 554 |
+
|
| 555 |
+
def batch_select_indices(self, indices: torch.Tensor):
|
| 556 |
+
"""Select indices from the cache"""
|
| 557 |
+
for layer_idx in range(len(self.layers)):
|
| 558 |
+
self.layers[layer_idx].batch_select_indices(indices)
|
| 559 |
+
|
| 560 |
+
@property
|
| 561 |
+
def max_batch_size(self) -> int:
|
| 562 |
+
"""Return the maximum batch size of the cache"""
|
| 563 |
+
values = [layer.max_batch_size for layer in self.layers]
|
| 564 |
+
if len(set(values)) > 1:
|
| 565 |
+
raise ValueError(f"Max batch size is not consistent across layers: {values}")
|
| 566 |
+
return values[0]
|
| 567 |
+
|
| 568 |
+
@property
|
| 569 |
+
def max_cache_len(self) -> int:
|
| 570 |
+
"""Return the maximum cache length of the cache"""
|
| 571 |
+
values = [layer.max_cache_len for layer in self.layers]
|
| 572 |
+
return max(values)
|
| 573 |
+
|
| 574 |
+
@property
|
| 575 |
+
def is_compileable(self) -> bool:
|
| 576 |
+
"""Return whether the cache is compileable"""
|
| 577 |
+
# For DynamicCache dispatching the layers lazily (otherwise, all([]) is True)
|
| 578 |
+
if len(self.layers) == 0:
|
| 579 |
+
return False
|
| 580 |
+
return all(layer.is_compileable for layer in self.layers)
|
| 581 |
+
|
| 582 |
+
@property
|
| 583 |
+
def is_sliding(self) -> list[bool]:
|
| 584 |
+
"""Return whether the layers of the cache are sliding window"""
|
| 585 |
+
return [getattr(layer, "is_sliding", False) for layer in self.layers]
|
| 586 |
+
|
| 587 |
+
def __getitem__(self, layer_idx: int) -> tuple[torch.Tensor, torch.Tensor]:
|
| 588 |
+
"""
|
| 589 |
+
Support for backwards-compatible `past_key_values` indexing, e.g. `past_key_values[0][0].shape[2]` to get the
|
| 590 |
+
sequence length.
|
| 591 |
+
"""
|
| 592 |
+
if layer_idx < len(self.layers):
|
| 593 |
+
return self.layers[layer_idx].keys, self.layers[layer_idx].values, self.layers[layer_idx].gatings
|
| 594 |
+
else:
|
| 595 |
+
raise KeyError(
|
| 596 |
+
f"Cache only has {len(self.layers)} layers, attempted to access layer with index {layer_idx}"
|
| 597 |
+
)
|
| 598 |
+
|
| 599 |
+
def __iter__(self):
|
| 600 |
+
"""
|
| 601 |
+
Support for backwards-compatible `past_key_values` iteration, e.g. `for x in past_key_values:` to iterate over
|
| 602 |
+
keys and values
|
| 603 |
+
"""
|
| 604 |
+
for layer_idx in range(len(self)):
|
| 605 |
+
yield (self.layers[layer_idx].keys, self.layers[layer_idx].values, self.layers[layer_idx].gatings)
|
| 606 |
+
|
| 607 |
+
def __len__(self):
|
| 608 |
+
"""
|
| 609 |
+
This value corresponds to the number of layers in the model.
|
| 610 |
+
"""
|
| 611 |
+
# Note: for DynamicCache, layers are initialized lazily, so this will not be accurate before the first
|
| 612 |
+
# forward through all the layers
|
| 613 |
+
return len(self.layers)
|
| 614 |
+
|
| 615 |
+
@property
|
| 616 |
+
def key_cache(self) -> KeyValuesGatingWrapper:
|
| 617 |
+
"""List-like object of key cache tensors indexed by layer. Deprecated in favor of `cache.layers[idx].keys`"""
|
| 618 |
+
logger.warning_once(
|
| 619 |
+
"`cache.key_cache[idx]` is deprecated and will be removed in v4.56.0. Use `cache.layers[idx].keys` instead."
|
| 620 |
+
)
|
| 621 |
+
return KeyValuesGatingWrapper(self.layers, "keys")
|
| 622 |
+
|
| 623 |
+
@property
|
| 624 |
+
def value_cache(self) -> KeyValuesGatingWrapper:
|
| 625 |
+
"""List-like object of value cache tensors indexed by layer. Deprecated in favor of `cache.layers[idx].values`"""
|
| 626 |
+
logger.warning_once(
|
| 627 |
+
"`cache.value_cache[idx]` is deprecated and will be removed in v4.56.0. Use `cache.layers[idx].values` instead."
|
| 628 |
+
)
|
| 629 |
+
return KeyValuesGatingWrapper(self.layers, "values")
|
| 630 |
+
|
| 631 |
+
@property
|
| 632 |
+
def gating_cache(self) -> KeyValuesGatingWrapper:
|
| 633 |
+
"""List-like object of gate cache tensors indexed by layer. Deprecated in favor of `cache.layers[idx].gatings`"""
|
| 634 |
+
logger.warning_once(
|
| 635 |
+
"`cache.gate_cache[idx]` is deprecated and will be removed in v4.56.0. Use `cache.layers[idx].gatings` instead."
|
| 636 |
+
)
|
| 637 |
+
return KeyValuesGatingWrapper(self.layers, "gatings")
|
| 638 |
+
|
| 639 |
+
class DynamicCache(Cache):
|
| 640 |
+
"""
|
| 641 |
+
A cache that grows dynamically as more tokens are generated. This is the default for generative models.
|
| 642 |
+
|
| 643 |
+
It stores the Key, Value, and Gating states as a list of tensors, one for each layer. The expected shape for each tensor is
|
| 644 |
+
`[batch_size, num_heads, seq_len, head_dim]` for Key and Value, and `[batch_size, num_heads, seq_len]` for Gating.
|
| 645 |
+
|
| 646 |
+
See `Cache` for details on common methods that are implemented by all cache classes.
|
| 647 |
+
|
| 648 |
+
Example:
|
| 649 |
+
|
| 650 |
+
```python
|
| 651 |
+
>>> from transformers import AutoTokenizer, AutoModelForCausalLM, DynamicCache
|
| 652 |
+
|
| 653 |
+
>>> model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen2-0.5B-Instruct")
|
| 654 |
+
>>> tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen2-0.5B-Instruct")
|
| 655 |
+
|
| 656 |
+
>>> inputs = tokenizer(text="My name is Qwen2", return_tensors="pt")
|
| 657 |
+
|
| 658 |
+
>>> # Prepare a cache class and pass it to model's forward
|
| 659 |
+
>>> past_key_values = DynamicCache()
|
| 660 |
+
>>> outputs = model(**inputs, past_key_values=past_key_values, use_cache=True)
|
| 661 |
+
>>> outputs.past_key_values # access cache filled with key/values from generation
|
| 662 |
+
DynamicCache()
|
| 663 |
+
```
|
| 664 |
+
"""
|
| 665 |
+
|
| 666 |
+
# Specialized constructor for DDP cache data, needed for BC
|
| 667 |
+
def __init__(self, ddp_cache_data: Optional[Iterable[tuple[torch.Tensor, torch.Tensor, torch.Tensor]]] = None):
|
| 668 |
+
# `ddp_cache_data` was originally added for compatibility with `torch.distributed` (DDP). See #36212
|
| 669 |
+
# and #36373 for more information. In a nutshell, it is `map(gather_map, zip(*caches))`, i.e. each item in the
|
| 670 |
+
# iterable contains the key and value states for a layer gathered across replicas by torch.distributed
|
| 671 |
+
# (shape=[global batch size, num_heads, seq_len, head_dim]).
|
| 672 |
+
if ddp_cache_data is not None:
|
| 673 |
+
layers = []
|
| 674 |
+
for key_states, value_states, gate_states in ddp_cache_data:
|
| 675 |
+
layers.append(DynamicLayer.from_tensors(key_states, value_states, gate_states))
|
| 676 |
+
super().__init__(layers=layers)
|
| 677 |
+
else:
|
| 678 |
+
super().__init__(layer_class_to_replicate=DynamicLayer)
|
| 679 |
+
|
| 680 |
+
def to_legacy_cache(self) -> tuple[tuple[torch.Tensor, torch.Tensor, torch.Tensor], ...]:
|
| 681 |
+
"""
|
| 682 |
+
Converts the `Cache` instance into the its equivalent in the legacy cache format. Used for
|
| 683 |
+
backward compatibility.
|
| 684 |
+
"""
|
| 685 |
+
legacy_cache = ()
|
| 686 |
+
for layer in self.layers:
|
| 687 |
+
legacy_cache += ((layer.keys, layer.values, layer.gatings),)
|
| 688 |
+
return legacy_cache
|
| 689 |
+
|
| 690 |
+
@classmethod
|
| 691 |
+
def from_legacy_cache(cls, past_key_values: tuple[tuple[torch.FloatTensor, torch.FloatTensor], ...]) -> "Cache":
|
| 692 |
+
"""
|
| 693 |
+
Converts a cache in the legacy cache format into an equivalent `Cache`. Used for
|
| 694 |
+
backward compatibility.
|
| 695 |
+
"""
|
| 696 |
+
cache = cls()
|
| 697 |
+
if past_key_values is not None:
|
| 698 |
+
for layer_idx in range(len(past_key_values)):
|
| 699 |
+
key_states, value_states, gate_states = past_key_values[layer_idx]
|
| 700 |
+
cache.update(key_states, value_states, gate_states, layer_idx)
|
| 701 |
+
return cache
|
| 702 |
+
|
| 703 |
+
|
| 704 |
+
# Utilities for `DynamicCache` <> torch.export support
|
| 705 |
+
|
| 706 |
+
if is_torch_greater_or_equal("2.3"):
|
| 707 |
+
|
| 708 |
+
def _get_cache_dict(cache: DynamicCache):
|
| 709 |
+
if any(not isinstance(layer, DynamicLayer) for layer in cache.layers):
|
| 710 |
+
raise RuntimeError("This pytree flattening function should only be applied to DynamicCache")
|
| 711 |
+
|
| 712 |
+
if not is_torch_greater_or_equal_than_2_6:
|
| 713 |
+
logger.warning_once(
|
| 714 |
+
"DynamicCache + torch.export is tested on torch 2.6.0+ and may not work on earlier versions."
|
| 715 |
+
)
|
| 716 |
+
|
| 717 |
+
return {
|
| 718 |
+
"key_cache": [layer.keys for layer in cache.layers if layer.keys is not None],
|
| 719 |
+
"value_cache": [layer.values for layer in cache.layers if layer.values is not None],
|
| 720 |
+
"gating_cache": [layer.gatings for layer in cache.layers if layer.gatings is not None],
|
| 721 |
+
}
|
| 722 |
+
|
| 723 |
+
def _unflatten_dynamic_cache(
|
| 724 |
+
values,
|
| 725 |
+
context: torch.utils._pytree.Context,
|
| 726 |
+
):
|
| 727 |
+
dictionary = torch.utils._pytree._dict_unflatten(values, context)
|
| 728 |
+
cache = DynamicCache()
|
| 729 |
+
# Reconstruct layers from keys and values lists
|
| 730 |
+
key_list = dictionary.get("key_cache", [])
|
| 731 |
+
value_list = dictionary.get("value_cache", [])
|
| 732 |
+
gating_list = dictionary.get("gating_cache", [])
|
| 733 |
+
for idx in range(max(len(key_list), len(value_list), len(gating_list))):
|
| 734 |
+
key = key_list[idx] if idx < len(key_list) else None
|
| 735 |
+
value = value_list[idx] if idx < len(value_list) else None
|
| 736 |
+
gating = gating_list[idx] if idx < len(gating_list) else None
|
| 737 |
+
cache.update(key, value, gating, idx)
|
| 738 |
+
return cache
|
| 739 |
+
|
| 740 |
+
torch.utils._pytree.register_pytree_node(
|
| 741 |
+
DynamicCache,
|
| 742 |
+
lambda dynamic_cache: torch.utils._pytree._dict_flatten(_get_cache_dict(dynamic_cache)),
|
| 743 |
+
_unflatten_dynamic_cache,
|
| 744 |
+
serialized_type_name=f"{DynamicCache.__module__}.{DynamicCache.__name__}",
|
| 745 |
+
flatten_with_keys_fn=lambda dynamic_cache: torch.utils._pytree._dict_flatten_with_keys(
|
| 746 |
+
_get_cache_dict(dynamic_cache)
|
| 747 |
+
),
|
| 748 |
+
)
|
| 749 |
+
# TODO (tmanlaibaatar) This won't be needed in torch 2.7.
|
| 750 |
+
torch.fx._pytree.register_pytree_flatten_spec(
|
| 751 |
+
DynamicCache, lambda cache, spec: torch.fx._pytree._dict_flatten_spec(_get_cache_dict(cache), spec)
|
| 752 |
+
)
|
kvgs_dynamic_cache.py
ADDED
|
@@ -0,0 +1,869 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import copy
|
| 2 |
+
import json
|
| 3 |
+
import os
|
| 4 |
+
from abc import ABC, abstractmethod
|
| 5 |
+
from collections.abc import Iterable
|
| 6 |
+
from dataclasses import dataclass
|
| 7 |
+
from typing import Any, Optional, Union
|
| 8 |
+
|
| 9 |
+
import torch
|
| 10 |
+
|
| 11 |
+
from transformers.pytorch_utils import is_torch_greater_or_equal_than_2_6
|
| 12 |
+
|
| 13 |
+
from transformers.configuration_utils import PretrainedConfig
|
| 14 |
+
from transformers.utils import (
|
| 15 |
+
is_torch_greater_or_equal,
|
| 16 |
+
is_torchdynamo_compiling,
|
| 17 |
+
logging,
|
| 18 |
+
)
|
| 19 |
+
|
| 20 |
+
_is_torch_greater_or_equal_than_2_7 = is_torch_greater_or_equal("2.7", accept_dev=True)
|
| 21 |
+
|
| 22 |
+
|
| 23 |
+
logger = logging.get_logger(__name__)
|
| 24 |
+
|
| 25 |
+
|
| 26 |
+
class CacheLayerMixin(ABC):
|
| 27 |
+
"""Base, abstract class for a single layer's cache."""
|
| 28 |
+
|
| 29 |
+
is_compileable = False
|
| 30 |
+
|
| 31 |
+
def __init__(self):
|
| 32 |
+
self.keys, self.values, self.gatings, self.state, self.sum_of_keys = None, None, None, None, None
|
| 33 |
+
|
| 34 |
+
@abstractmethod
|
| 35 |
+
def update_kv(
|
| 36 |
+
self, key_states: torch.Tensor, value_states: torch.Tensor, gate_states: torch.Tensor, cache_kwargs: Optional[dict[str, Any]] = None
|
| 37 |
+
) -> tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]: ...
|
| 38 |
+
|
| 39 |
+
@abstractmethod
|
| 40 |
+
def update_state(
|
| 41 |
+
self, state: torch.Tensor, sum_of_keys: torch.Tensor, cache_kwargs: Optional[dict[str, Any]] = None
|
| 42 |
+
) -> tuple[torch.Tensor, torch.Tensor]: ...
|
| 43 |
+
|
| 44 |
+
@abstractmethod
|
| 45 |
+
def lazy_initialization(self, key_states: torch.Tensor): ...
|
| 46 |
+
|
| 47 |
+
@abstractmethod
|
| 48 |
+
def lazy_initialization_state(self, state: torch.Tensor): ...
|
| 49 |
+
|
| 50 |
+
@abstractmethod
|
| 51 |
+
def get_seq_length(self, cache_position=None) -> int: ...
|
| 52 |
+
|
| 53 |
+
@abstractmethod
|
| 54 |
+
def get_max_cache_shape(self) -> int: ...
|
| 55 |
+
|
| 56 |
+
@abstractmethod
|
| 57 |
+
def get_mask_sizes(self, cache_position: torch.Tensor) -> tuple[int, int]: ...
|
| 58 |
+
|
| 59 |
+
def offload(self):
|
| 60 |
+
"""Offload this layer's data to CPU device."""
|
| 61 |
+
if self.keys is not None:
|
| 62 |
+
self.keys = self.keys.to("cpu", non_blocking=True)
|
| 63 |
+
self.values = self.values.to("cpu", non_blocking=True)
|
| 64 |
+
self.gatings = self.gatings.to("cpu", non_blocking=True)
|
| 65 |
+
self.state = self.state.to("cpu", non_blocking=True)
|
| 66 |
+
self.sum_of_keys = self.sum_of_keys.to("cpu", non_blocking=True)
|
| 67 |
+
|
| 68 |
+
def prefetch(self):
|
| 69 |
+
"""In case of layer offloading, this allows to move the data back to the layer's device ahead of time."""
|
| 70 |
+
if self.keys is not None and self.keys.device != self.device:
|
| 71 |
+
self.keys = self.keys.to(self.device, non_blocking=True)
|
| 72 |
+
self.values = self.values.to(self.device, non_blocking=True)
|
| 73 |
+
self.gatings = self.gatings.to(self.device, non_blocking=True)
|
| 74 |
+
self.state = self.state.to(self.device, non_blocking=True)
|
| 75 |
+
self.sum_of_keys = self.sum_of_keys.to(self.device, non_blocking=True)
|
| 76 |
+
|
| 77 |
+
def reset(self) -> None:
|
| 78 |
+
"""Resets the cache values while preserving the objects"""
|
| 79 |
+
if self.keys is not None:
|
| 80 |
+
self.keys.zero_()
|
| 81 |
+
self.values.zero_()
|
| 82 |
+
self.gatings.zero_()
|
| 83 |
+
self.state.zero_()
|
| 84 |
+
self.sum_of_keys.zero_()
|
| 85 |
+
|
| 86 |
+
def clean_kv(self) -> None:
|
| 87 |
+
if self.keys is not None:
|
| 88 |
+
self.keys = None
|
| 89 |
+
self.values = None
|
| 90 |
+
self.gatings = None
|
| 91 |
+
|
| 92 |
+
def reorder_cache(self, beam_idx: torch.LongTensor) -> tuple[torch.Tensor, torch.Tensor]:
|
| 93 |
+
"""Reorders this layer's cache for beam search."""
|
| 94 |
+
if self.keys.numel():
|
| 95 |
+
device = self.keys.device
|
| 96 |
+
self.keys = self.keys.index_select(0, beam_idx.to(device))
|
| 97 |
+
if self.values.numel():
|
| 98 |
+
device = self.values.device
|
| 99 |
+
self.values = self.values.index_select(0, beam_idx.to(device))
|
| 100 |
+
if self.gatings.numel():
|
| 101 |
+
device = self.gatings.device
|
| 102 |
+
self.gatings = self.gatings.index_select(0, beam_idx.to(device))
|
| 103 |
+
if self.state.numel():
|
| 104 |
+
device = self.state.device
|
| 105 |
+
self.state = self.state.index_select(0, beam_idx.to(device))
|
| 106 |
+
if self.sum_of_keys.numel():
|
| 107 |
+
device = self.sum_of_keys.device
|
| 108 |
+
self.sum_of_keys = self.sum_of_keys.index_select(0, beam_idx.to(device))
|
| 109 |
+
|
| 110 |
+
|
| 111 |
+
class DynamicLayer(CacheLayerMixin):
|
| 112 |
+
"""
|
| 113 |
+
A cache layer that grows dynamically as more tokens are generated. This is the default for generative models.
|
| 114 |
+
It stores the Key and Value states as tensors with shape `[batch_size, num_heads, seq_len, head_dim]`.
|
| 115 |
+
|
| 116 |
+
See `CacheLayerMixin` for details on common methods that are implemented by all cache layers.
|
| 117 |
+
"""
|
| 118 |
+
|
| 119 |
+
is_sliding = False
|
| 120 |
+
|
| 121 |
+
def lazy_initialization(self, key_states: torch.Tensor):
|
| 122 |
+
self.dtype, self.device = key_states.dtype, key_states.device
|
| 123 |
+
self.keys = torch.tensor([], dtype=self.dtype, device=self.device)
|
| 124 |
+
self.values = torch.tensor([], dtype=self.dtype, device=self.device)
|
| 125 |
+
self.gatings = torch.tensor([], dtype=torch.float32, device=self.device)
|
| 126 |
+
|
| 127 |
+
def lazy_initialization_state(self, state: torch.Tensor):
|
| 128 |
+
self.state = torch.tensor([], dtype=torch.float32, device=self.device)
|
| 129 |
+
self.sum_of_keys = torch.tensor([], dtype=torch.float32, device=self.device)
|
| 130 |
+
|
| 131 |
+
def update_kv(
|
| 132 |
+
self,
|
| 133 |
+
key_states: torch.Tensor,
|
| 134 |
+
value_states: torch.Tensor,
|
| 135 |
+
gate_states: torch.Tensor,
|
| 136 |
+
cache_kwargs: Optional[dict[str, Any]] = None,
|
| 137 |
+
) -> tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
|
| 138 |
+
"""
|
| 139 |
+
Updates the cache with the new `key_states` and `value_states`.
|
| 140 |
+
|
| 141 |
+
Parameters:
|
| 142 |
+
key_states (`torch.Tensor`):
|
| 143 |
+
The new key states to cache.
|
| 144 |
+
value_states (`torch.Tensor`):
|
| 145 |
+
The new value states to cache.
|
| 146 |
+
gate_states (`torch.Tensor`):
|
| 147 |
+
The new gate states to cache.
|
| 148 |
+
cache_kwargs (`dict[str, Any]`, *optional*):
|
| 149 |
+
Additional arguments for the cache subclass. No additional arguments are used in `DynamicLayer`.
|
| 150 |
+
|
| 151 |
+
Return:
|
| 152 |
+
A tuple containing the updated key and value states, and current state and sum of keys.
|
| 153 |
+
"""
|
| 154 |
+
# Lazy initialization
|
| 155 |
+
if self.keys is None:
|
| 156 |
+
self.lazy_initialization(key_states)
|
| 157 |
+
|
| 158 |
+
self.keys = torch.cat([self.keys, key_states], dim=-2)
|
| 159 |
+
self.values = torch.cat([self.values, value_states], dim=-2)
|
| 160 |
+
self.gatings = torch.cat([self.gatings, gate_states], dim=-1)
|
| 161 |
+
return self.keys, self.values, self.gatings, self.state, self.sum_of_keys
|
| 162 |
+
|
| 163 |
+
def update_state(
|
| 164 |
+
self, state: torch.Tensor, sum_of_keys: torch.Tensor, cache_kwargs: Optional[dict[str, Any]] = None
|
| 165 |
+
) -> tuple[torch.Tensor, torch.Tensor]:
|
| 166 |
+
# Lazy initialization
|
| 167 |
+
if self.state is None:
|
| 168 |
+
self.lazy_initialization_state(state)
|
| 169 |
+
|
| 170 |
+
self.state = state
|
| 171 |
+
self.sum_of_keys = sum_of_keys
|
| 172 |
+
return self.state, self.sum_of_keys
|
| 173 |
+
|
| 174 |
+
def get_seq_length(self, cache_position=None) -> int:
|
| 175 |
+
"""Returns the sequence length of the cached states."""
|
| 176 |
+
if self.keys is None or self.keys.numel() == 0:
|
| 177 |
+
return 0
|
| 178 |
+
return self.keys.shape[-2]
|
| 179 |
+
|
| 180 |
+
def get_max_cache_shape(self) -> int:
|
| 181 |
+
"""Returns the maximum sequence length of the cache object. DynamicLayer does not have a maximum length."""
|
| 182 |
+
return -1
|
| 183 |
+
|
| 184 |
+
def reorder_cache(self, beam_idx: torch.LongTensor) -> None:
|
| 185 |
+
"""Reorders the cache for beam search, given the selected beam indices."""
|
| 186 |
+
if self.keys is not None and self.keys.numel():
|
| 187 |
+
self.keys = self.keys.index_select(0, beam_idx.to(self.keys.device))
|
| 188 |
+
self.values = self.values.index_select(0, beam_idx.to(self.values.device))
|
| 189 |
+
self.gatings = self.gatings.index_select(0, beam_idx.to(self.gatings.device))
|
| 190 |
+
self.state = self.state.index_select(0, beam_idx.to(self.state.device))
|
| 191 |
+
self.sum_of_keys = self.sum_of_keys.index_select(0, beam_idx.to(self.sum_of_keys.device))
|
| 192 |
+
|
| 193 |
+
def crop(self, max_length: int) -> None:
|
| 194 |
+
"""
|
| 195 |
+
Crop the past key values up to a new `max_length` in terms of tokens. `max_length` can also be
|
| 196 |
+
negative to remove `max_length` tokens.
|
| 197 |
+
"""
|
| 198 |
+
if max_length < 0:
|
| 199 |
+
max_length = self.get_seq_length() - abs(max_length)
|
| 200 |
+
|
| 201 |
+
if self.get_seq_length() <= max_length:
|
| 202 |
+
return
|
| 203 |
+
|
| 204 |
+
if self.keys is not None and self.keys.numel():
|
| 205 |
+
self.keys = self.keys[..., :max_length, :]
|
| 206 |
+
self.values = self.values[..., :max_length, :]
|
| 207 |
+
self.gatings = self.gatings[..., :max_length]
|
| 208 |
+
|
| 209 |
+
def batch_repeat_interleave(self, repeats: int) -> None:
|
| 210 |
+
"""Repeat the cache `repeats` times in the batch dimension."""
|
| 211 |
+
if self.keys is not None and self.keys.numel():
|
| 212 |
+
self.keys = self.keys.repeat_interleave(repeats, dim=0)
|
| 213 |
+
self.values = self.values.repeat_interleave(repeats, dim=0)
|
| 214 |
+
self.gatings = self.gatings.repeat_interleave(repeats, dim=0)
|
| 215 |
+
self.state = self.state.repeat_interleave(repeats, dim=0)
|
| 216 |
+
self.sum_of_keys = self.sum_of_keys.repeat_interleave(repeats, dim=0)
|
| 217 |
+
|
| 218 |
+
def batch_select_indices(self, indices: torch.Tensor) -> None:
|
| 219 |
+
"""Only keep the `indices` in the batch dimension of the cache."""
|
| 220 |
+
if self.keys is not None and self.keys.numel():
|
| 221 |
+
self.keys = self.keys[indices, ...]
|
| 222 |
+
self.values = self.values[indices, ...]
|
| 223 |
+
self.gatings = self.gatings[indices, ...]
|
| 224 |
+
self.state = self.state[indices, ...]
|
| 225 |
+
self.sum_of_keys = self.sum_of_keys[indices, ...]
|
| 226 |
+
|
| 227 |
+
def get_mask_sizes(self, cache_position: torch.Tensor) -> tuple[int, int]:
|
| 228 |
+
"""Return the length and offset of the cache, used to generate the mask"""
|
| 229 |
+
kv_offset = 0
|
| 230 |
+
query_length = cache_position.shape[0]
|
| 231 |
+
past_seen_tokens = self.get_seq_length()
|
| 232 |
+
kv_length = query_length + past_seen_tokens
|
| 233 |
+
return kv_length, kv_offset
|
| 234 |
+
|
| 235 |
+
@classmethod
|
| 236 |
+
def from_tensors(cls, keys: torch.Tensor, values: torch.Tensor, gatings: torch.Tensor, state: torch.Tensor, sum_of_keys: torch.Tensor) -> "DynamicLayer":
|
| 237 |
+
"""
|
| 238 |
+
Build a `DynamicLayer` instance from pre-existing key/value tensors.
|
| 239 |
+
|
| 240 |
+
Args:
|
| 241 |
+
keys (`torch.Tensor`):
|
| 242 |
+
Key cache tensor of shape ``[batch_size, num_heads, seq_len, head_dim]``.
|
| 243 |
+
values (`torch.Tensor`):
|
| 244 |
+
Value cache tensor of shape ``[batch_size, num_heads, seq_len, head_dim]``.
|
| 245 |
+
gatings (`torch.Tensor`):
|
| 246 |
+
Gating cache tensor of shape ``[batch_size, num_heads, seq_len]``.
|
| 247 |
+
|
| 248 |
+
Returns:
|
| 249 |
+
`DynamicLayer`: The newly constructed layer whose internal cache directly references
|
| 250 |
+
the supplied tensors.
|
| 251 |
+
"""
|
| 252 |
+
layer = cls()
|
| 253 |
+
layer.dtype, layer.device = keys.dtype, keys.device
|
| 254 |
+
layer.keys = keys
|
| 255 |
+
layer.values = values
|
| 256 |
+
layer.gatings = gatings
|
| 257 |
+
layer.state = state
|
| 258 |
+
layer.sum_of_keys = sum_of_keys
|
| 259 |
+
return layer
|
| 260 |
+
|
| 261 |
+
|
| 262 |
+
class StaticLayer(CacheLayerMixin):
|
| 263 |
+
"""
|
| 264 |
+
A static cache layer that stores the Key and Value states as static tensors with shape `[batch_size, num_heads, seq_len, head_dim]`.
|
| 265 |
+
It allocates its full backing tensors up-front and mutates them in-place. Built for `torch.compile` support.
|
| 266 |
+
|
| 267 |
+
See `CacheLayerMixin` for details on common methods that are implemented by all cache layers.
|
| 268 |
+
"""
|
| 269 |
+
|
| 270 |
+
is_compileable = True
|
| 271 |
+
is_sliding = False
|
| 272 |
+
|
| 273 |
+
def __init__(self, max_cache_len: int):
|
| 274 |
+
"""
|
| 275 |
+
Args:
|
| 276 |
+
max_cache_len (`int`):
|
| 277 |
+
Maximum number of tokens that can be stored, used for tensor preallocation.
|
| 278 |
+
"""
|
| 279 |
+
super().__init__()
|
| 280 |
+
self.max_cache_len = max_cache_len
|
| 281 |
+
|
| 282 |
+
def lazy_initialization(self, key_states: torch.Tensor):
|
| 283 |
+
"""
|
| 284 |
+
Lazy initialization of the keys and values tensors. This allows to get all properties (dtype, device,
|
| 285 |
+
num_heads in case of TP etc...) at runtime directly, which is extremely practical as it avoids moving
|
| 286 |
+
devices, dtypes etc later on for each `update` (which could break the static dynamo addresses as well).
|
| 287 |
+
|
| 288 |
+
If this is unwanted, one can call `early_initialization(...)` on the Cache directly, which will call this
|
| 289 |
+
function ahead-of-time (this is required for `torch.export` for example). Note that for `compile`, as we
|
| 290 |
+
internally don't compile the prefill, this is guaranteed to have been called already when compiling.
|
| 291 |
+
If compiling the prefill as well, e.g. calling `model.compile(...)` before `generate` with a static cache,
|
| 292 |
+
it is still supported in general, but without guarantees depending on the compilation options (e.g. cuda graphs,
|
| 293 |
+
i.e. `mode="reduce-overhead"` is known to fail). But it will in general work correctly, and prefill should
|
| 294 |
+
not be compiled anyway for performances!
|
| 295 |
+
"""
|
| 296 |
+
self.max_batch_size, self.num_heads, _, self.head_dim = key_states.shape
|
| 297 |
+
self.dtype, self.device = key_states.dtype, key_states.device
|
| 298 |
+
|
| 299 |
+
self.keys = torch.zeros(
|
| 300 |
+
(self.max_batch_size, self.num_heads, self.max_cache_len, self.head_dim),
|
| 301 |
+
dtype=self.dtype,
|
| 302 |
+
device=self.device,
|
| 303 |
+
)
|
| 304 |
+
self.values = torch.zeros(
|
| 305 |
+
(self.max_batch_size, self.num_heads, self.max_cache_len, self.head_dim),
|
| 306 |
+
dtype=self.dtype,
|
| 307 |
+
device=self.device,
|
| 308 |
+
)
|
| 309 |
+
self.gatings = torch.zeros(
|
| 310 |
+
(self.max_batch_size, self.num_heads, self.max_cache_len),
|
| 311 |
+
dtype=torch.float32,
|
| 312 |
+
device=self.device,
|
| 313 |
+
)
|
| 314 |
+
# Note: `mark_static_address` is used to tag the cache as a fixed data pointer, preventing compiled graph
|
| 315 |
+
# breaks when updating the cache. However, it is not supported when tracing the graph, so we skip it in this case.
|
| 316 |
+
# As prefill should never be compiled, this is not an issue and it will still be run (except when users compile
|
| 317 |
+
# prefill explicitly, but this should be avoided!)
|
| 318 |
+
if not is_torchdynamo_compiling():
|
| 319 |
+
torch._dynamo.mark_static_address(self.keys)
|
| 320 |
+
torch._dynamo.mark_static_address(self.values)
|
| 321 |
+
torch._dynamo.mark_static_address(self.gatings)
|
| 322 |
+
|
| 323 |
+
|
| 324 |
+
def lazy_initialization_state(self, state: torch.Tensor):
|
| 325 |
+
self.state = torch.zeros(
|
| 326 |
+
(self.max_batch_size, self.num_heads, self.D, self.head_dim),
|
| 327 |
+
dtype=self.dtype,
|
| 328 |
+
device=self.device,
|
| 329 |
+
)
|
| 330 |
+
self.sum_of_keys = torch.zeros(
|
| 331 |
+
(self.max_batch_size, self.num_heads, self.max_cache_len),
|
| 332 |
+
dtype=torch.float32,
|
| 333 |
+
device=self.device,
|
| 334 |
+
)
|
| 335 |
+
if not is_torchdynamo_compiling():
|
| 336 |
+
torch._dynamo.mark_static_address(self.state)
|
| 337 |
+
torch._dynamo.mark_static_address(self.sum_of_keys)
|
| 338 |
+
|
| 339 |
+
def update(
|
| 340 |
+
self,
|
| 341 |
+
key_states: torch.Tensor,
|
| 342 |
+
value_states: torch.Tensor,
|
| 343 |
+
gate_states: torch.Tensor,
|
| 344 |
+
cache_kwargs: Optional[dict[str, Any]] = None,
|
| 345 |
+
) -> tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
|
| 346 |
+
"""
|
| 347 |
+
Update the static cache tensors in place.
|
| 348 |
+
|
| 349 |
+
Args:
|
| 350 |
+
key_states (`torch.Tensor`): The new key states to cache.
|
| 351 |
+
value_states (`torch.Tensor`): The new value states to cache.
|
| 352 |
+
gate_states (`torch.Tensor`): The new gate states to cache.
|
| 353 |
+
cache_kwargs (`dict[str, Any]`, *optional*): Additional arguments for the cache.
|
| 354 |
+
|
| 355 |
+
Returns:
|
| 356 |
+
tuple[`torch.Tensor`, `torch.Tensor`, `torch.Tensor`, `torch.Tensor`, `torch.Tensor`]: The updated key, value, and gate states, and current state and sum of keys.
|
| 357 |
+
"""
|
| 358 |
+
# Lazy initialization
|
| 359 |
+
if self.keys is None:
|
| 360 |
+
self.lazy_initialization(key_states)
|
| 361 |
+
|
| 362 |
+
# Some old models give None for `cache_position` or even omit passing `cache_kwargs` when used as cross-attention,
|
| 363 |
+
# in which case we should copy the whole Layer (key_states.shape[-2] == self.max_cache_len)
|
| 364 |
+
cache_position = cache_kwargs.get("cache_position") if cache_kwargs is not None else None
|
| 365 |
+
cache_position = (
|
| 366 |
+
cache_position if cache_position is not None else torch.arange(key_states.shape[-2], device=self.device)
|
| 367 |
+
)
|
| 368 |
+
|
| 369 |
+
# Update the cache
|
| 370 |
+
try:
|
| 371 |
+
self.keys.index_copy_(2, cache_position, key_states)
|
| 372 |
+
self.values.index_copy_(2, cache_position, value_states)
|
| 373 |
+
self.gatings.index_copy_(2, cache_position, gate_states)
|
| 374 |
+
except NotImplementedError:
|
| 375 |
+
# Fallback for devices like MPS where index_copy_ might not be supported.
|
| 376 |
+
self.keys[:, :, cache_position] = key_states
|
| 377 |
+
self.values[:, :, cache_position] = value_states
|
| 378 |
+
self.gatings[:, :, cache_position] = gate_states
|
| 379 |
+
return self.keys, self.values, self.gatings, self.state, self.sum_of_keys
|
| 380 |
+
|
| 381 |
+
def update_state(
|
| 382 |
+
self, state: torch.Tensor, sum_of_keys: torch.Tensor, cache_kwargs: Optional[dict[str, Any]] = None
|
| 383 |
+
) -> tuple[torch.Tensor, torch.Tensor]:
|
| 384 |
+
# Lazy initialization
|
| 385 |
+
if self.state is None:
|
| 386 |
+
self.lazy_initialization_state(state)
|
| 387 |
+
|
| 388 |
+
self.state = state
|
| 389 |
+
self.sum_of_keys = sum_of_keys
|
| 390 |
+
return self.state, self.sum_of_keys
|
| 391 |
+
|
| 392 |
+
def get_max_cache_shape(self) -> int:
|
| 393 |
+
"""Return the maximum cache shape of the cache"""
|
| 394 |
+
return self.max_cache_len
|
| 395 |
+
|
| 396 |
+
def get_seq_length(self, cache_position=None) -> int:
|
| 397 |
+
"""Returns the sequence length of the cached states."""
|
| 398 |
+
if cache_position is not None:
|
| 399 |
+
return int(cache_position[-1] + 1)
|
| 400 |
+
# Occupied cache == any slot in the 3rd dim (sequence length) holds a non-zero value. To save on compute, let's
|
| 401 |
+
# limit the check to the first batch member and head dimension.
|
| 402 |
+
seq_length = (self.keys[0, 0].any(dim=-1)).sum() if self.keys is not None else 0
|
| 403 |
+
return seq_length
|
| 404 |
+
|
| 405 |
+
def reorder_cache(self, beam_idx: torch.LongTensor) -> None:
|
| 406 |
+
"""Reorders the cache for beam search, given the selected beam indices."""
|
| 407 |
+
dev = self.keys.device
|
| 408 |
+
beam_idx_dev = beam_idx.to(dev)
|
| 409 |
+
self.keys = self.keys.index_select(0, beam_idx_dev)
|
| 410 |
+
self.values = self.values.index_select(0, beam_idx_dev)
|
| 411 |
+
self.gatings = self.gatings.index_select(0, beam_idx_dev)
|
| 412 |
+
self.state = self.state.index_select(0, beam_idx_dev)
|
| 413 |
+
self.sum_of_keys = self.sum_of_keys.index_select(0, beam_idx_dev)
|
| 414 |
+
|
| 415 |
+
def get_mask_sizes(self, cache_position: torch.Tensor) -> tuple[int, int]:
|
| 416 |
+
"""Return the length and offset of the cache, used to generate the attention mask"""
|
| 417 |
+
kv_offset = 0
|
| 418 |
+
kv_length = self.max_cache_len
|
| 419 |
+
return kv_length, kv_offset
|
| 420 |
+
|
| 421 |
+
|
| 422 |
+
|
| 423 |
+
class KeyValuesGatingStateWrapper:
|
| 424 |
+
"""Helper class for Cache that simulates layer-indexed key/value lists from a layered cache.
|
| 425 |
+
This allows for BC access and writing, e.g., cache.key_cache[idx] = ...
|
| 426 |
+
Deprecated in favor of Cache.layers[idx].keys/values. TODO: remove in v4.56.0"""
|
| 427 |
+
|
| 428 |
+
def __init__(self, layers, cache_type="keys"):
|
| 429 |
+
self.layers = layers
|
| 430 |
+
self.cache_type = cache_type
|
| 431 |
+
|
| 432 |
+
def __getitem__(self, idx):
|
| 433 |
+
if isinstance(idx, slice):
|
| 434 |
+
return [getattr(layer, self.cache_type) for layer in self.layers[idx]]
|
| 435 |
+
return getattr(self.layers[idx], self.cache_type)
|
| 436 |
+
|
| 437 |
+
def __setitem__(self, idx, value):
|
| 438 |
+
if isinstance(idx, slice):
|
| 439 |
+
for layer, val in zip(self.layers[idx], value):
|
| 440 |
+
setattr(layer, self.cache_type, val)
|
| 441 |
+
else:
|
| 442 |
+
setattr(self.layers[idx], self.cache_type, value)
|
| 443 |
+
|
| 444 |
+
def __len__(self):
|
| 445 |
+
return len(self.layers)
|
| 446 |
+
|
| 447 |
+
def __iter__(self):
|
| 448 |
+
for layer in self.layers:
|
| 449 |
+
yield getattr(layer, self.cache_type)
|
| 450 |
+
|
| 451 |
+
def __bool__(self):
|
| 452 |
+
return bool(self.layers)
|
| 453 |
+
|
| 454 |
+
|
| 455 |
+
class Cache:
|
| 456 |
+
"""
|
| 457 |
+
A `Cache` is mostly a list of `CacheLayerMixin` objects, one per model layer. It serves as a container for
|
| 458 |
+
the Cache of each layer.
|
| 459 |
+
|
| 460 |
+
Parameters:
|
| 461 |
+
layers (`Optional`, *optional*):
|
| 462 |
+
A list of pre-created `CacheLayerMixin`. If omitted (`None`), then `layer_class_to_replicate` will
|
| 463 |
+
be used.
|
| 464 |
+
layer_class_to_replicate (`type[CacheLayerMixin]`, *optional*):
|
| 465 |
+
Only used if `layers` is omitted (`None`), in which case it will be used as the base class for each layer,
|
| 466 |
+
and the layers will be added lazily as soon as `update` is called with a `layer_idx` greater than the current
|
| 467 |
+
list of layers.
|
| 468 |
+
offloading (`bool`, *optional*, defaults to `False`):
|
| 469 |
+
Whether to perform offloading of the layers to `cpu`, to save GPU memory.
|
| 470 |
+
offload_only_non_sliding (`bool`, *optional*, defaults to `True`):
|
| 471 |
+
If `offloading` is `True`, this further decides if only the non-sliding layers will be offloaded (because
|
| 472 |
+
usually the sliding layers are small in size, so there is no need to offload them, and skipping it is faster).
|
| 473 |
+
"""
|
| 474 |
+
|
| 475 |
+
def __init__(
|
| 476 |
+
self,
|
| 477 |
+
layers: Optional[list[CacheLayerMixin]] = None,
|
| 478 |
+
layer_class_to_replicate: Optional[type[CacheLayerMixin]] = None,
|
| 479 |
+
offloading: bool = False,
|
| 480 |
+
offload_only_non_sliding: bool = True,
|
| 481 |
+
):
|
| 482 |
+
if layers is not None and layer_class_to_replicate is not None:
|
| 483 |
+
raise ValueError(
|
| 484 |
+
"You can construct a Cache either from a list `layers` of all the predefined `CacheLayer`, or from a "
|
| 485 |
+
"`layer_class_to_replicate`, in which case the Cache will append a new layer corresponding to "
|
| 486 |
+
"`layer_class_to_replicate` for each new call to `update` with an idx not already in the Cache."
|
| 487 |
+
)
|
| 488 |
+
if layers is None and layer_class_to_replicate is None:
|
| 489 |
+
raise ValueError(
|
| 490 |
+
"You should provide exactly one of `layers` or `layer_class_to_replicate` to initialize a Cache."
|
| 491 |
+
)
|
| 492 |
+
self.layers = layers if layers is not None else []
|
| 493 |
+
self.layer_class_to_replicate = layer_class_to_replicate
|
| 494 |
+
self.offloading = offloading
|
| 495 |
+
if self.offloading:
|
| 496 |
+
self.only_non_sliding = offload_only_non_sliding
|
| 497 |
+
self.prefetch_stream = torch.Stream() if _is_torch_greater_or_equal_than_2_7 else torch.cuda.Stream()
|
| 498 |
+
|
| 499 |
+
def __repr__(self):
|
| 500 |
+
return f"{self.__class__.__name__}(layers={self.layers})"
|
| 501 |
+
|
| 502 |
+
def prefetch(self, layer_idx: int, only_non_sliding: bool = True):
|
| 503 |
+
"""
|
| 504 |
+
Prefetch a given layer on its device. If `only_non_sliding` is True, it will try to prefetch only the layers
|
| 505 |
+
which are non-sliding. If the `layer_idx` is outside the range, this will circle back to the first layers.
|
| 506 |
+
Note that we use a non-default stream for this, to avoid blocking.
|
| 507 |
+
"""
|
| 508 |
+
if only_non_sliding:
|
| 509 |
+
# Try to find next non-sliding, starting at `layer_idx`
|
| 510 |
+
try:
|
| 511 |
+
layer_idx = layer_idx + self.is_sliding[layer_idx:].index(False)
|
| 512 |
+
# In this case, we need to circle back to the begining
|
| 513 |
+
except ValueError:
|
| 514 |
+
layer_idx = self.is_sliding.index(False)
|
| 515 |
+
else:
|
| 516 |
+
layer_idx = layer_idx if layer_idx < len(self.layers) else 0
|
| 517 |
+
|
| 518 |
+
# Prefetch
|
| 519 |
+
with self.prefetch_stream if _is_torch_greater_or_equal_than_2_7 else torch.cuda.stream(self.prefetch_stream):
|
| 520 |
+
self.layers[layer_idx].prefetch()
|
| 521 |
+
|
| 522 |
+
def offload(self, layer_idx: int, only_non_sliding: bool = True):
|
| 523 |
+
"""
|
| 524 |
+
Offload a given `layer_idx`. If `only_non_sliding` is True, it will offload `layer_idx` only if it is a
|
| 525 |
+
non-sliding layer. Note that we do it on the default stream, so that we ensure all earlier
|
| 526 |
+
computation in the layer's `update` methods are finished.
|
| 527 |
+
"""
|
| 528 |
+
if not (only_non_sliding and self.is_sliding[layer_idx]):
|
| 529 |
+
self.layers[layer_idx].offload()
|
| 530 |
+
|
| 531 |
+
def update_kv(
|
| 532 |
+
self,
|
| 533 |
+
key_states: torch.Tensor,
|
| 534 |
+
value_states: torch.Tensor,
|
| 535 |
+
gate_states: torch.Tensor,
|
| 536 |
+
layer_idx: int,
|
| 537 |
+
cache_kwargs: Optional[dict[str, Any]] = None,
|
| 538 |
+
) -> tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
|
| 539 |
+
"""
|
| 540 |
+
Updates the cache with the new `key_states` and `value_states` for the layer `layer_idx`.
|
| 541 |
+
|
| 542 |
+
Parameters:
|
| 543 |
+
key_states (`torch.Tensor`):
|
| 544 |
+
The new key states to cache.
|
| 545 |
+
value_states (`torch.Tensor`):
|
| 546 |
+
The new value states to cache.
|
| 547 |
+
gate_states (`torch.Tensor`):
|
| 548 |
+
The new gate states to cache.
|
| 549 |
+
layer_idx (`int`):
|
| 550 |
+
The index of the layer to cache the states for.
|
| 551 |
+
cache_kwargs (`dict[str, Any]`, *optional*):
|
| 552 |
+
Additional arguments for the cache subclass. These are specific to each subclass and allow new types of
|
| 553 |
+
cache to be created.
|
| 554 |
+
|
| 555 |
+
Return:
|
| 556 |
+
A tuple containing the updated key, value, and gate states, and current state and sum of keys.
|
| 557 |
+
"""
|
| 558 |
+
# In this case, the `layers` were not provided, and we must append as much as `layer_idx`
|
| 559 |
+
if self.layer_class_to_replicate is not None:
|
| 560 |
+
while len(self.layers) <= layer_idx:
|
| 561 |
+
self.layers.append(self.layer_class_to_replicate())
|
| 562 |
+
|
| 563 |
+
if self.offloading:
|
| 564 |
+
# Wait for the stream to finish if needed, and start prefetching the next layer
|
| 565 |
+
torch.cuda.default_stream(key_states.device).wait_stream(self.prefetch_stream)
|
| 566 |
+
self.prefetch(layer_idx + 1, self.only_non_sliding)
|
| 567 |
+
|
| 568 |
+
keys, values, gatings, state, sum_of_keys = self.layers[layer_idx].update_kv(key_states, value_states, gate_states, cache_kwargs)
|
| 569 |
+
|
| 570 |
+
if self.offloading:
|
| 571 |
+
self.offload(layer_idx, self.only_non_sliding)
|
| 572 |
+
|
| 573 |
+
return keys, values, gatings, state, sum_of_keys
|
| 574 |
+
|
| 575 |
+
def clean_kv(self, layer_idx: int) -> None:
|
| 576 |
+
self.layers[layer_idx].clean_kv()
|
| 577 |
+
|
| 578 |
+
def update_state(
|
| 579 |
+
self, state: torch.Tensor, sum_of_keys: torch.Tensor, layer_idx: int, cache_kwargs: Optional[dict[str, Any]] = None
|
| 580 |
+
) -> tuple[torch.Tensor, torch.Tensor]:
|
| 581 |
+
# In this case, the `layers` were not provided, and we must append as much as `layer_idx`
|
| 582 |
+
|
| 583 |
+
state, sum_of_keys = self.layers[layer_idx].update_state(state, sum_of_keys, cache_kwargs)
|
| 584 |
+
|
| 585 |
+
return state, sum_of_keys
|
| 586 |
+
|
| 587 |
+
def early_initialization(
|
| 588 |
+
self, batch_size: int, num_heads: int, head_dim: int, D: int, dtype: torch.dtype, device: torch.device
|
| 589 |
+
):
|
| 590 |
+
"""
|
| 591 |
+
Initialize all the layers in advance (it's otherwise lazily initialized on the first `update` call).
|
| 592 |
+
This is useful for our `export` recipes, as `export` needs everything in advance.
|
| 593 |
+
"""
|
| 594 |
+
# Note that the initialization needs all dimensions (except -2), as well as device and dtype, so we use
|
| 595 |
+
# this fake tensor approach. It has size 0 on the -2 dimension, so it does not allocate any data (it only
|
| 596 |
+
# creates an empty tensor with correct shape, dtype and device), which is very efficient and practical
|
| 597 |
+
fake_keys_tensor = torch.zeros((batch_size, num_heads, 0, head_dim), dtype=dtype, device=device)
|
| 598 |
+
fake_state_tensor = torch.zeros((batch_size, num_heads, D, head_dim), dtype=dtype, device=device)
|
| 599 |
+
# Init all layers
|
| 600 |
+
for layer in self.layers:
|
| 601 |
+
layer.lazy_initialization(fake_keys_tensor)
|
| 602 |
+
layer.lazy_initialization_state(fake_state_tensor)
|
| 603 |
+
|
| 604 |
+
def get_seq_length(self, layer_idx: int = 0, cache_position=None) -> int:
|
| 605 |
+
"""Returns the sequence length of the cache for the given layer."""
|
| 606 |
+
if layer_idx >= len(self.layers):
|
| 607 |
+
return 0
|
| 608 |
+
return self.layers[layer_idx].get_seq_length(cache_position)
|
| 609 |
+
|
| 610 |
+
def get_mask_sizes(self, cache_position: torch.Tensor, layer_idx: int) -> tuple[int, int]:
|
| 611 |
+
"""
|
| 612 |
+
Return a tuple (kv_length, kv_offset) corresponding to the length and offset that will be returned for
|
| 613 |
+
the given layer at `layer_idx`.
|
| 614 |
+
The masks are then prepared according to the given lengths (kv_length, kv_offset) and patterns for each layer.
|
| 615 |
+
"""
|
| 616 |
+
# For DynamicCache, where the layers are created at runtime -> if it was not yet created, the size is
|
| 617 |
+
# simply the shape of `cache_position`
|
| 618 |
+
if layer_idx >= len(self.layers):
|
| 619 |
+
return cache_position.shape[0], 0
|
| 620 |
+
return self.layers[layer_idx].get_mask_sizes(cache_position)
|
| 621 |
+
|
| 622 |
+
def get_max_cache_shape(self, layer_idx: int = 0) -> int:
|
| 623 |
+
"""Returns maximum sequence length of the cache object. Dynamic caches do not have a maximum length."""
|
| 624 |
+
# For DynamicCache, where the layers are created at runtime -> if it was not yet created, return -1
|
| 625 |
+
# as DynamicLayer does
|
| 626 |
+
if layer_idx >= len(self.layers):
|
| 627 |
+
return -1
|
| 628 |
+
return self.layers[layer_idx].get_max_cache_shape()
|
| 629 |
+
|
| 630 |
+
def reset(self):
|
| 631 |
+
"""Recursively reset all layers tensors"""
|
| 632 |
+
for layer_idx in range(len(self.layers)):
|
| 633 |
+
self.layers[layer_idx].reset()
|
| 634 |
+
|
| 635 |
+
def reorder_cache(self, beam_idx: torch.LongTensor):
|
| 636 |
+
"""Reorder the cache for beam search"""
|
| 637 |
+
for layer_idx in range(len(self.layers)):
|
| 638 |
+
self.layers[layer_idx].reorder_cache(beam_idx)
|
| 639 |
+
|
| 640 |
+
def crop(self, max_length: int):
|
| 641 |
+
"""Crop the cache to the given length"""
|
| 642 |
+
for layer_idx in range(len(self.layers)):
|
| 643 |
+
self.layers[layer_idx].crop(max_length)
|
| 644 |
+
|
| 645 |
+
def batch_repeat_interleave(self, repeats: int):
|
| 646 |
+
"""Repeat and interleave the cache"""
|
| 647 |
+
for layer_idx in range(len(self.layers)):
|
| 648 |
+
self.layers[layer_idx].batch_repeat_interleave(repeats)
|
| 649 |
+
|
| 650 |
+
def batch_select_indices(self, indices: torch.Tensor):
|
| 651 |
+
"""Select indices from the cache"""
|
| 652 |
+
for layer_idx in range(len(self.layers)):
|
| 653 |
+
self.layers[layer_idx].batch_select_indices(indices)
|
| 654 |
+
|
| 655 |
+
@property
|
| 656 |
+
def max_batch_size(self) -> int:
|
| 657 |
+
"""Return the maximum batch size of the cache"""
|
| 658 |
+
values = [layer.max_batch_size for layer in self.layers]
|
| 659 |
+
if len(set(values)) > 1:
|
| 660 |
+
raise ValueError(f"Max batch size is not consistent across layers: {values}")
|
| 661 |
+
return values[0]
|
| 662 |
+
|
| 663 |
+
@property
|
| 664 |
+
def max_cache_len(self) -> int:
|
| 665 |
+
"""Return the maximum cache length of the cache"""
|
| 666 |
+
values = [layer.max_cache_len for layer in self.layers]
|
| 667 |
+
return max(values)
|
| 668 |
+
|
| 669 |
+
@property
|
| 670 |
+
def is_compileable(self) -> bool:
|
| 671 |
+
"""Return whether the cache is compileable"""
|
| 672 |
+
# For DynamicCache dispatching the layers lazily (otherwise, all([]) is True)
|
| 673 |
+
if len(self.layers) == 0:
|
| 674 |
+
return False
|
| 675 |
+
return all(layer.is_compileable for layer in self.layers)
|
| 676 |
+
|
| 677 |
+
@property
|
| 678 |
+
def is_sliding(self) -> list[bool]:
|
| 679 |
+
"""Return whether the layers of the cache are sliding window"""
|
| 680 |
+
return [getattr(layer, "is_sliding", False) for layer in self.layers]
|
| 681 |
+
|
| 682 |
+
def __getitem__(self, layer_idx: int) -> tuple[torch.Tensor, torch.Tensor]:
|
| 683 |
+
"""
|
| 684 |
+
Support for backwards-compatible `past_key_values` indexing, e.g. `past_key_values[0][0].shape[2]` to get the
|
| 685 |
+
sequence length.
|
| 686 |
+
"""
|
| 687 |
+
if layer_idx < len(self.layers):
|
| 688 |
+
return self.layers[layer_idx].keys, self.layers[layer_idx].values, self.layers[layer_idx].gatings
|
| 689 |
+
else:
|
| 690 |
+
raise KeyError(
|
| 691 |
+
f"Cache only has {len(self.layers)} layers, attempted to access layer with index {layer_idx}"
|
| 692 |
+
)
|
| 693 |
+
|
| 694 |
+
def __iter__(self):
|
| 695 |
+
"""
|
| 696 |
+
Support for backwards-compatible `past_key_values` iteration, e.g. `for x in past_key_values:` to iterate over
|
| 697 |
+
keys and values
|
| 698 |
+
"""
|
| 699 |
+
for layer_idx in range(len(self)):
|
| 700 |
+
yield (self.layers[layer_idx].keys, self.layers[layer_idx].values, self.layers[layer_idx].gatings)
|
| 701 |
+
|
| 702 |
+
def __len__(self):
|
| 703 |
+
"""
|
| 704 |
+
This value corresponds to the number of layers in the model.
|
| 705 |
+
"""
|
| 706 |
+
# Note: for DynamicCache, layers are initialized lazily, so this will not be accurate before the first
|
| 707 |
+
# forward through all the layers
|
| 708 |
+
return len(self.layers)
|
| 709 |
+
|
| 710 |
+
@property
|
| 711 |
+
def key_cache(self) -> KeyValuesGatingStateWrapper:
|
| 712 |
+
"""List-like object of key cache tensors indexed by layer. Deprecated in favor of `cache.layers[idx].keys`"""
|
| 713 |
+
logger.warning_once(
|
| 714 |
+
"`cache.key_cache[idx]` is deprecated and will be removed in v4.56.0. Use `cache.layers[idx].keys` instead."
|
| 715 |
+
)
|
| 716 |
+
return KeyValuesGatingStateWrapper(self.layers, "keys")
|
| 717 |
+
|
| 718 |
+
@property
|
| 719 |
+
def value_cache(self) -> KeyValuesGatingStateWrapper:
|
| 720 |
+
"""List-like object of value cache tensors indexed by layer. Deprecated in favor of `cache.layers[idx].values`"""
|
| 721 |
+
logger.warning_once(
|
| 722 |
+
"`cache.value_cache[idx]` is deprecated and will be removed in v4.56.0. Use `cache.layers[idx].values` instead."
|
| 723 |
+
)
|
| 724 |
+
return KeyValuesGatingStateWrapper(self.layers, "values")
|
| 725 |
+
|
| 726 |
+
@property
|
| 727 |
+
def gating_cache(self) -> KeyValuesGatingStateWrapper:
|
| 728 |
+
"""List-like object of gate cache tensors indexed by layer. Deprecated in favor of `cache.layers[idx].gatings`"""
|
| 729 |
+
logger.warning_once(
|
| 730 |
+
"`cache.gate_cache[idx]` is deprecated and will be removed in v4.56.0. Use `cache.layers[idx].gatings` instead."
|
| 731 |
+
)
|
| 732 |
+
return KeyValuesGatingStateWrapper(self.layers, "gatings")
|
| 733 |
+
|
| 734 |
+
@property
|
| 735 |
+
def state_cache(self) -> KeyValuesGatingStateWrapper:
|
| 736 |
+
"""List-like object of state cache tensors indexed by layer. Deprecated in favor of `cache.layers[idx].state`"""
|
| 737 |
+
logger.warning_once(
|
| 738 |
+
"`cache.state_cache[idx]` is deprecated and will be removed in v4.56.0. Use `cache.layers[idx].state` instead."
|
| 739 |
+
)
|
| 740 |
+
return KeyValuesGatingStateWrapper(self.layers, "state")
|
| 741 |
+
|
| 742 |
+
@property
|
| 743 |
+
def sum_of_keys_cache(self) -> KeyValuesGatingStateWrapper:
|
| 744 |
+
"""List-like object of sum of keys cache tensors indexed by layer. Deprecated in favor of `cache.layers[idx].sum_of_keys`"""
|
| 745 |
+
logger.warning_once(
|
| 746 |
+
"`cache.sum_of_keys_cache[idx]` is deprecated and will be removed in v4.56.0. Use `cache.layers[idx].sum_of_keys` instead."
|
| 747 |
+
)
|
| 748 |
+
return KeyValuesGatingStateWrapper(self.layers, "sum_of_keys")
|
| 749 |
+
|
| 750 |
+
class DynamicCache(Cache):
|
| 751 |
+
"""
|
| 752 |
+
A cache that grows dynamically as more tokens are generated. This is the default for generative models.
|
| 753 |
+
|
| 754 |
+
It stores the Key, Value, and Gating states as a list of tensors, one for each layer. The expected shape for each tensor is
|
| 755 |
+
`[batch_size, num_heads, seq_len, head_dim]` for Key and Value, and `[batch_size, num_heads, seq_len]` for Gating.
|
| 756 |
+
|
| 757 |
+
See `Cache` for details on common methods that are implemented by all cache classes.
|
| 758 |
+
|
| 759 |
+
Example:
|
| 760 |
+
|
| 761 |
+
```python
|
| 762 |
+
>>> from transformers import AutoTokenizer, AutoModelForCausalLM, DynamicCache
|
| 763 |
+
|
| 764 |
+
>>> model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen2-0.5B-Instruct")
|
| 765 |
+
>>> tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen2-0.5B-Instruct")
|
| 766 |
+
|
| 767 |
+
>>> inputs = tokenizer(text="My name is Qwen2", return_tensors="pt")
|
| 768 |
+
|
| 769 |
+
>>> # Prepare a cache class and pass it to model's forward
|
| 770 |
+
>>> past_key_values = DynamicCache()
|
| 771 |
+
>>> outputs = model(**inputs, past_key_values=past_key_values, use_cache=True)
|
| 772 |
+
>>> outputs.past_key_values # access cache filled with key/values from generation
|
| 773 |
+
DynamicCache()
|
| 774 |
+
```
|
| 775 |
+
"""
|
| 776 |
+
|
| 777 |
+
# Specialized constructor for DDP cache data, needed for BC
|
| 778 |
+
def __init__(self, ddp_cache_data: Optional[Iterable[tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]]] = None):
|
| 779 |
+
# `ddp_cache_data` was originally added for compatibility with `torch.distributed` (DDP). See #36212
|
| 780 |
+
# and #36373 for more information. In a nutshell, it is `map(gather_map, zip(*caches))`, i.e. each item in the
|
| 781 |
+
# iterable contains the key and value states for a layer gathered across replicas by torch.distributed
|
| 782 |
+
# (shape=[global batch size, num_heads, seq_len, head_dim]).
|
| 783 |
+
if ddp_cache_data is not None:
|
| 784 |
+
layers = []
|
| 785 |
+
for key_states, value_states, gate_states, state, sum_of_keys in ddp_cache_data:
|
| 786 |
+
layers.append(DynamicLayer.from_tensors(key_states, value_states, gate_states, state, sum_of_keys))
|
| 787 |
+
super().__init__(layers=layers)
|
| 788 |
+
else:
|
| 789 |
+
super().__init__(layer_class_to_replicate=DynamicLayer)
|
| 790 |
+
|
| 791 |
+
def to_legacy_cache(self) -> tuple[tuple[torch.Tensor, torch.Tensor, torch.Tensor], ...]:
|
| 792 |
+
"""
|
| 793 |
+
Converts the `Cache` instance into the its equivalent in the legacy cache format. Used for
|
| 794 |
+
backward compatibility.
|
| 795 |
+
"""
|
| 796 |
+
legacy_cache = ()
|
| 797 |
+
for layer in self.layers:
|
| 798 |
+
legacy_cache += ((layer.keys, layer.values, layer.gatings, layer.state, layer.sum_of_keys),)
|
| 799 |
+
return legacy_cache
|
| 800 |
+
|
| 801 |
+
@classmethod
|
| 802 |
+
def from_legacy_cache(cls, past_key_values: tuple[tuple[torch.FloatTensor, torch.FloatTensor], ...]) -> "Cache":
|
| 803 |
+
"""
|
| 804 |
+
Converts a cache in the legacy cache format into an equivalent `Cache`. Used for
|
| 805 |
+
backward compatibility.
|
| 806 |
+
"""
|
| 807 |
+
cache = cls()
|
| 808 |
+
if past_key_values is not None:
|
| 809 |
+
for layer_idx in range(len(past_key_values)):
|
| 810 |
+
key_states, value_states, gate_states, state, sum_of_keys = past_key_values[layer_idx]
|
| 811 |
+
cache.update(key_states, value_states, gate_states, state, sum_of_keys, layer_idx)
|
| 812 |
+
return cache
|
| 813 |
+
|
| 814 |
+
|
| 815 |
+
# Utilities for `DynamicCache` <> torch.export support
|
| 816 |
+
|
| 817 |
+
if is_torch_greater_or_equal("2.3"):
|
| 818 |
+
|
| 819 |
+
def _get_cache_dict(cache: DynamicCache):
|
| 820 |
+
if any(not isinstance(layer, DynamicLayer) for layer in cache.layers):
|
| 821 |
+
raise RuntimeError("This pytree flattening function should only be applied to DynamicCache")
|
| 822 |
+
|
| 823 |
+
if not is_torch_greater_or_equal_than_2_6:
|
| 824 |
+
logger.warning_once(
|
| 825 |
+
"DynamicCache + torch.export is tested on torch 2.6.0+ and may not work on earlier versions."
|
| 826 |
+
)
|
| 827 |
+
|
| 828 |
+
return {
|
| 829 |
+
"key_cache": [layer.keys for layer in cache.layers if layer.keys is not None],
|
| 830 |
+
"value_cache": [layer.values for layer in cache.layers if layer.values is not None],
|
| 831 |
+
"gating_cache": [layer.gatings for layer in cache.layers if layer.gatings is not None],
|
| 832 |
+
"state_cache": [layer.state for layer in cache.layers if layer.state is not None],
|
| 833 |
+
"sum_of_keys_cache": [layer.sum_of_keys for layer in cache.layers if layer.sum_of_keys is not None],
|
| 834 |
+
}
|
| 835 |
+
|
| 836 |
+
def _unflatten_dynamic_cache(
|
| 837 |
+
values,
|
| 838 |
+
context: torch.utils._pytree.Context,
|
| 839 |
+
):
|
| 840 |
+
dictionary = torch.utils._pytree._dict_unflatten(values, context)
|
| 841 |
+
cache = DynamicCache()
|
| 842 |
+
# Reconstruct layers from keys and values lists
|
| 843 |
+
key_list = dictionary.get("key_cache", [])
|
| 844 |
+
value_list = dictionary.get("value_cache", [])
|
| 845 |
+
gating_list = dictionary.get("gating_cache", [])
|
| 846 |
+
state_list = dictionary.get("state_cache", [])
|
| 847 |
+
sum_of_keys_list = dictionary.get("sum_of_keys_cache", [])
|
| 848 |
+
for idx in range(max(len(key_list), len(value_list), len(gating_list), len(state_list), len(sum_of_keys_list))):
|
| 849 |
+
key = key_list[idx] if idx < len(key_list) else None
|
| 850 |
+
value = value_list[idx] if idx < len(value_list) else None
|
| 851 |
+
gating = gating_list[idx] if idx < len(gating_list) else None
|
| 852 |
+
state = state_list[idx] if idx < len(state_list) else None
|
| 853 |
+
sum_of_keys = sum_of_keys_list[idx] if idx < len(sum_of_keys_list) else None
|
| 854 |
+
cache.update(key, value, gating, state, sum_of_keys, idx)
|
| 855 |
+
return cache
|
| 856 |
+
|
| 857 |
+
torch.utils._pytree.register_pytree_node(
|
| 858 |
+
DynamicCache,
|
| 859 |
+
lambda dynamic_cache: torch.utils._pytree._dict_flatten(_get_cache_dict(dynamic_cache)),
|
| 860 |
+
_unflatten_dynamic_cache,
|
| 861 |
+
serialized_type_name=f"{DynamicCache.__module__}.{DynamicCache.__name__}",
|
| 862 |
+
flatten_with_keys_fn=lambda dynamic_cache: torch.utils._pytree._dict_flatten_with_keys(
|
| 863 |
+
_get_cache_dict(dynamic_cache)
|
| 864 |
+
),
|
| 865 |
+
)
|
| 866 |
+
# TODO (tmanlaibaatar) This won't be needed in torch 2.7.
|
| 867 |
+
torch.fx._pytree.register_pytree_flatten_spec(
|
| 868 |
+
DynamicCache, lambda cache, spec: torch.fx._pytree._dict_flatten_spec(_get_cache_dict(cache), spec)
|
| 869 |
+
)
|
merges.txt
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
model.safetensors.index.json
ADDED
|
@@ -0,0 +1,552 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"metadata": {
|
| 3 |
+
"total_parameters": 378819426,
|
| 4 |
+
"total_size": 12726202608
|
| 5 |
+
},
|
| 6 |
+
"weight_map": {
|
| 7 |
+
"lm_head.weight": "model-00003-of-00003.safetensors",
|
| 8 |
+
"model.embed_tokens.weight": "model-00001-of-00003.safetensors",
|
| 9 |
+
"model.layers.0.input_layernorm.bias": "model-00001-of-00003.safetensors",
|
| 10 |
+
"model.layers.0.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
| 11 |
+
"model.layers.0.mlp.c_fc.bias": "model-00001-of-00003.safetensors",
|
| 12 |
+
"model.layers.0.mlp.c_fc.weight": "model-00001-of-00003.safetensors",
|
| 13 |
+
"model.layers.0.mlp.c_proj.bias": "model-00001-of-00003.safetensors",
|
| 14 |
+
"model.layers.0.mlp.c_proj.weight": "model-00001-of-00003.safetensors",
|
| 15 |
+
"model.layers.0.post_attention_layernorm.bias": "model-00001-of-00003.safetensors",
|
| 16 |
+
"model.layers.0.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
| 17 |
+
"model.layers.0.self_attn.g_proj.bias": "model-00001-of-00003.safetensors",
|
| 18 |
+
"model.layers.0.self_attn.g_proj.weight": "model-00001-of-00003.safetensors",
|
| 19 |
+
"model.layers.0.self_attn.k_proj.bias": "model-00001-of-00003.safetensors",
|
| 20 |
+
"model.layers.0.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
| 21 |
+
"model.layers.0.self_attn.o_proj.bias": "model-00001-of-00003.safetensors",
|
| 22 |
+
"model.layers.0.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
| 23 |
+
"model.layers.0.self_attn.q_proj.bias": "model-00001-of-00003.safetensors",
|
| 24 |
+
"model.layers.0.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
| 25 |
+
"model.layers.0.self_attn.v_proj.bias": "model-00001-of-00003.safetensors",
|
| 26 |
+
"model.layers.0.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
| 27 |
+
"model.layers.1.input_layernorm.bias": "model-00001-of-00003.safetensors",
|
| 28 |
+
"model.layers.1.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
| 29 |
+
"model.layers.1.mlp.c_fc.bias": "model-00001-of-00003.safetensors",
|
| 30 |
+
"model.layers.1.mlp.c_fc.weight": "model-00001-of-00003.safetensors",
|
| 31 |
+
"model.layers.1.mlp.c_proj.bias": "model-00001-of-00003.safetensors",
|
| 32 |
+
"model.layers.1.mlp.c_proj.weight": "model-00001-of-00003.safetensors",
|
| 33 |
+
"model.layers.1.post_attention_layernorm.bias": "model-00001-of-00003.safetensors",
|
| 34 |
+
"model.layers.1.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
| 35 |
+
"model.layers.1.self_attn.g_proj.bias": "model-00001-of-00003.safetensors",
|
| 36 |
+
"model.layers.1.self_attn.g_proj.weight": "model-00001-of-00003.safetensors",
|
| 37 |
+
"model.layers.1.self_attn.k_proj.bias": "model-00001-of-00003.safetensors",
|
| 38 |
+
"model.layers.1.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
| 39 |
+
"model.layers.1.self_attn.o_proj.bias": "model-00001-of-00003.safetensors",
|
| 40 |
+
"model.layers.1.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
| 41 |
+
"model.layers.1.self_attn.q_proj.bias": "model-00001-of-00003.safetensors",
|
| 42 |
+
"model.layers.1.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
| 43 |
+
"model.layers.1.self_attn.v_proj.bias": "model-00001-of-00003.safetensors",
|
| 44 |
+
"model.layers.1.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
| 45 |
+
"model.layers.10.input_layernorm.bias": "model-00001-of-00003.safetensors",
|
| 46 |
+
"model.layers.10.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
| 47 |
+
"model.layers.10.mlp.c_fc.bias": "model-00001-of-00003.safetensors",
|
| 48 |
+
"model.layers.10.mlp.c_fc.weight": "model-00001-of-00003.safetensors",
|
| 49 |
+
"model.layers.10.mlp.c_proj.bias": "model-00001-of-00003.safetensors",
|
| 50 |
+
"model.layers.10.mlp.c_proj.weight": "model-00001-of-00003.safetensors",
|
| 51 |
+
"model.layers.10.post_attention_layernorm.bias": "model-00001-of-00003.safetensors",
|
| 52 |
+
"model.layers.10.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
| 53 |
+
"model.layers.10.self_attn.g_proj.bias": "model-00001-of-00003.safetensors",
|
| 54 |
+
"model.layers.10.self_attn.g_proj.weight": "model-00001-of-00003.safetensors",
|
| 55 |
+
"model.layers.10.self_attn.k_proj.bias": "model-00001-of-00003.safetensors",
|
| 56 |
+
"model.layers.10.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
| 57 |
+
"model.layers.10.self_attn.o_proj.bias": "model-00001-of-00003.safetensors",
|
| 58 |
+
"model.layers.10.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
| 59 |
+
"model.layers.10.self_attn.q_proj.bias": "model-00001-of-00003.safetensors",
|
| 60 |
+
"model.layers.10.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
| 61 |
+
"model.layers.10.self_attn.v_proj.bias": "model-00001-of-00003.safetensors",
|
| 62 |
+
"model.layers.10.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
| 63 |
+
"model.layers.11.input_layernorm.bias": "model-00002-of-00003.safetensors",
|
| 64 |
+
"model.layers.11.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
| 65 |
+
"model.layers.11.mlp.c_fc.bias": "model-00002-of-00003.safetensors",
|
| 66 |
+
"model.layers.11.mlp.c_fc.weight": "model-00002-of-00003.safetensors",
|
| 67 |
+
"model.layers.11.mlp.c_proj.bias": "model-00002-of-00003.safetensors",
|
| 68 |
+
"model.layers.11.mlp.c_proj.weight": "model-00002-of-00003.safetensors",
|
| 69 |
+
"model.layers.11.post_attention_layernorm.bias": "model-00002-of-00003.safetensors",
|
| 70 |
+
"model.layers.11.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
| 71 |
+
"model.layers.11.self_attn.g_proj.bias": "model-00001-of-00003.safetensors",
|
| 72 |
+
"model.layers.11.self_attn.g_proj.weight": "model-00001-of-00003.safetensors",
|
| 73 |
+
"model.layers.11.self_attn.k_proj.bias": "model-00001-of-00003.safetensors",
|
| 74 |
+
"model.layers.11.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
| 75 |
+
"model.layers.11.self_attn.o_proj.bias": "model-00001-of-00003.safetensors",
|
| 76 |
+
"model.layers.11.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
| 77 |
+
"model.layers.11.self_attn.q_proj.bias": "model-00001-of-00003.safetensors",
|
| 78 |
+
"model.layers.11.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
| 79 |
+
"model.layers.11.self_attn.v_proj.bias": "model-00001-of-00003.safetensors",
|
| 80 |
+
"model.layers.11.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
| 81 |
+
"model.layers.12.input_layernorm.bias": "model-00002-of-00003.safetensors",
|
| 82 |
+
"model.layers.12.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
| 83 |
+
"model.layers.12.mlp.c_fc.bias": "model-00002-of-00003.safetensors",
|
| 84 |
+
"model.layers.12.mlp.c_fc.weight": "model-00002-of-00003.safetensors",
|
| 85 |
+
"model.layers.12.mlp.c_proj.bias": "model-00002-of-00003.safetensors",
|
| 86 |
+
"model.layers.12.mlp.c_proj.weight": "model-00002-of-00003.safetensors",
|
| 87 |
+
"model.layers.12.post_attention_layernorm.bias": "model-00002-of-00003.safetensors",
|
| 88 |
+
"model.layers.12.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
| 89 |
+
"model.layers.12.self_attn.g_proj.bias": "model-00002-of-00003.safetensors",
|
| 90 |
+
"model.layers.12.self_attn.g_proj.weight": "model-00002-of-00003.safetensors",
|
| 91 |
+
"model.layers.12.self_attn.k_proj.bias": "model-00002-of-00003.safetensors",
|
| 92 |
+
"model.layers.12.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
| 93 |
+
"model.layers.12.self_attn.o_proj.bias": "model-00002-of-00003.safetensors",
|
| 94 |
+
"model.layers.12.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
| 95 |
+
"model.layers.12.self_attn.q_proj.bias": "model-00002-of-00003.safetensors",
|
| 96 |
+
"model.layers.12.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
| 97 |
+
"model.layers.12.self_attn.v_proj.bias": "model-00002-of-00003.safetensors",
|
| 98 |
+
"model.layers.12.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
| 99 |
+
"model.layers.13.input_layernorm.bias": "model-00002-of-00003.safetensors",
|
| 100 |
+
"model.layers.13.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
| 101 |
+
"model.layers.13.mlp.c_fc.bias": "model-00002-of-00003.safetensors",
|
| 102 |
+
"model.layers.13.mlp.c_fc.weight": "model-00002-of-00003.safetensors",
|
| 103 |
+
"model.layers.13.mlp.c_proj.bias": "model-00002-of-00003.safetensors",
|
| 104 |
+
"model.layers.13.mlp.c_proj.weight": "model-00002-of-00003.safetensors",
|
| 105 |
+
"model.layers.13.post_attention_layernorm.bias": "model-00002-of-00003.safetensors",
|
| 106 |
+
"model.layers.13.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
| 107 |
+
"model.layers.13.self_attn.g_proj.bias": "model-00002-of-00003.safetensors",
|
| 108 |
+
"model.layers.13.self_attn.g_proj.weight": "model-00002-of-00003.safetensors",
|
| 109 |
+
"model.layers.13.self_attn.k_proj.bias": "model-00002-of-00003.safetensors",
|
| 110 |
+
"model.layers.13.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
| 111 |
+
"model.layers.13.self_attn.o_proj.bias": "model-00002-of-00003.safetensors",
|
| 112 |
+
"model.layers.13.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
| 113 |
+
"model.layers.13.self_attn.q_proj.bias": "model-00002-of-00003.safetensors",
|
| 114 |
+
"model.layers.13.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
| 115 |
+
"model.layers.13.self_attn.v_proj.bias": "model-00002-of-00003.safetensors",
|
| 116 |
+
"model.layers.13.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
| 117 |
+
"model.layers.14.input_layernorm.bias": "model-00002-of-00003.safetensors",
|
| 118 |
+
"model.layers.14.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
| 119 |
+
"model.layers.14.mlp.c_fc.bias": "model-00002-of-00003.safetensors",
|
| 120 |
+
"model.layers.14.mlp.c_fc.weight": "model-00002-of-00003.safetensors",
|
| 121 |
+
"model.layers.14.mlp.c_proj.bias": "model-00002-of-00003.safetensors",
|
| 122 |
+
"model.layers.14.mlp.c_proj.weight": "model-00002-of-00003.safetensors",
|
| 123 |
+
"model.layers.14.post_attention_layernorm.bias": "model-00002-of-00003.safetensors",
|
| 124 |
+
"model.layers.14.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
| 125 |
+
"model.layers.14.self_attn.g_proj.bias": "model-00002-of-00003.safetensors",
|
| 126 |
+
"model.layers.14.self_attn.g_proj.weight": "model-00002-of-00003.safetensors",
|
| 127 |
+
"model.layers.14.self_attn.k_proj.bias": "model-00002-of-00003.safetensors",
|
| 128 |
+
"model.layers.14.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
| 129 |
+
"model.layers.14.self_attn.o_proj.bias": "model-00002-of-00003.safetensors",
|
| 130 |
+
"model.layers.14.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
| 131 |
+
"model.layers.14.self_attn.q_proj.bias": "model-00002-of-00003.safetensors",
|
| 132 |
+
"model.layers.14.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
| 133 |
+
"model.layers.14.self_attn.v_proj.bias": "model-00002-of-00003.safetensors",
|
| 134 |
+
"model.layers.14.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
| 135 |
+
"model.layers.15.input_layernorm.bias": "model-00002-of-00003.safetensors",
|
| 136 |
+
"model.layers.15.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
| 137 |
+
"model.layers.15.mlp.c_fc.bias": "model-00002-of-00003.safetensors",
|
| 138 |
+
"model.layers.15.mlp.c_fc.weight": "model-00002-of-00003.safetensors",
|
| 139 |
+
"model.layers.15.mlp.c_proj.bias": "model-00002-of-00003.safetensors",
|
| 140 |
+
"model.layers.15.mlp.c_proj.weight": "model-00002-of-00003.safetensors",
|
| 141 |
+
"model.layers.15.post_attention_layernorm.bias": "model-00002-of-00003.safetensors",
|
| 142 |
+
"model.layers.15.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
| 143 |
+
"model.layers.15.self_attn.g_proj.bias": "model-00002-of-00003.safetensors",
|
| 144 |
+
"model.layers.15.self_attn.g_proj.weight": "model-00002-of-00003.safetensors",
|
| 145 |
+
"model.layers.15.self_attn.k_proj.bias": "model-00002-of-00003.safetensors",
|
| 146 |
+
"model.layers.15.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
| 147 |
+
"model.layers.15.self_attn.o_proj.bias": "model-00002-of-00003.safetensors",
|
| 148 |
+
"model.layers.15.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
| 149 |
+
"model.layers.15.self_attn.q_proj.bias": "model-00002-of-00003.safetensors",
|
| 150 |
+
"model.layers.15.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
| 151 |
+
"model.layers.15.self_attn.v_proj.bias": "model-00002-of-00003.safetensors",
|
| 152 |
+
"model.layers.15.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
| 153 |
+
"model.layers.16.input_layernorm.bias": "model-00002-of-00003.safetensors",
|
| 154 |
+
"model.layers.16.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
| 155 |
+
"model.layers.16.mlp.c_fc.bias": "model-00002-of-00003.safetensors",
|
| 156 |
+
"model.layers.16.mlp.c_fc.weight": "model-00002-of-00003.safetensors",
|
| 157 |
+
"model.layers.16.mlp.c_proj.bias": "model-00002-of-00003.safetensors",
|
| 158 |
+
"model.layers.16.mlp.c_proj.weight": "model-00002-of-00003.safetensors",
|
| 159 |
+
"model.layers.16.post_attention_layernorm.bias": "model-00002-of-00003.safetensors",
|
| 160 |
+
"model.layers.16.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
| 161 |
+
"model.layers.16.self_attn.g_proj.bias": "model-00002-of-00003.safetensors",
|
| 162 |
+
"model.layers.16.self_attn.g_proj.weight": "model-00002-of-00003.safetensors",
|
| 163 |
+
"model.layers.16.self_attn.k_proj.bias": "model-00002-of-00003.safetensors",
|
| 164 |
+
"model.layers.16.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
| 165 |
+
"model.layers.16.self_attn.o_proj.bias": "model-00002-of-00003.safetensors",
|
| 166 |
+
"model.layers.16.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
| 167 |
+
"model.layers.16.self_attn.q_proj.bias": "model-00002-of-00003.safetensors",
|
| 168 |
+
"model.layers.16.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
| 169 |
+
"model.layers.16.self_attn.v_proj.bias": "model-00002-of-00003.safetensors",
|
| 170 |
+
"model.layers.16.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
| 171 |
+
"model.layers.17.input_layernorm.bias": "model-00002-of-00003.safetensors",
|
| 172 |
+
"model.layers.17.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
| 173 |
+
"model.layers.17.mlp.c_fc.bias": "model-00002-of-00003.safetensors",
|
| 174 |
+
"model.layers.17.mlp.c_fc.weight": "model-00002-of-00003.safetensors",
|
| 175 |
+
"model.layers.17.mlp.c_proj.bias": "model-00002-of-00003.safetensors",
|
| 176 |
+
"model.layers.17.mlp.c_proj.weight": "model-00002-of-00003.safetensors",
|
| 177 |
+
"model.layers.17.post_attention_layernorm.bias": "model-00002-of-00003.safetensors",
|
| 178 |
+
"model.layers.17.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
| 179 |
+
"model.layers.17.self_attn.g_proj.bias": "model-00002-of-00003.safetensors",
|
| 180 |
+
"model.layers.17.self_attn.g_proj.weight": "model-00002-of-00003.safetensors",
|
| 181 |
+
"model.layers.17.self_attn.k_proj.bias": "model-00002-of-00003.safetensors",
|
| 182 |
+
"model.layers.17.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
| 183 |
+
"model.layers.17.self_attn.o_proj.bias": "model-00002-of-00003.safetensors",
|
| 184 |
+
"model.layers.17.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
| 185 |
+
"model.layers.17.self_attn.q_proj.bias": "model-00002-of-00003.safetensors",
|
| 186 |
+
"model.layers.17.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
| 187 |
+
"model.layers.17.self_attn.v_proj.bias": "model-00002-of-00003.safetensors",
|
| 188 |
+
"model.layers.17.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
| 189 |
+
"model.layers.18.input_layernorm.bias": "model-00002-of-00003.safetensors",
|
| 190 |
+
"model.layers.18.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
| 191 |
+
"model.layers.18.mlp.c_fc.bias": "model-00002-of-00003.safetensors",
|
| 192 |
+
"model.layers.18.mlp.c_fc.weight": "model-00002-of-00003.safetensors",
|
| 193 |
+
"model.layers.18.mlp.c_proj.bias": "model-00002-of-00003.safetensors",
|
| 194 |
+
"model.layers.18.mlp.c_proj.weight": "model-00002-of-00003.safetensors",
|
| 195 |
+
"model.layers.18.post_attention_layernorm.bias": "model-00002-of-00003.safetensors",
|
| 196 |
+
"model.layers.18.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
| 197 |
+
"model.layers.18.self_attn.g_proj.bias": "model-00002-of-00003.safetensors",
|
| 198 |
+
"model.layers.18.self_attn.g_proj.weight": "model-00002-of-00003.safetensors",
|
| 199 |
+
"model.layers.18.self_attn.k_proj.bias": "model-00002-of-00003.safetensors",
|
| 200 |
+
"model.layers.18.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
| 201 |
+
"model.layers.18.self_attn.o_proj.bias": "model-00002-of-00003.safetensors",
|
| 202 |
+
"model.layers.18.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
| 203 |
+
"model.layers.18.self_attn.q_proj.bias": "model-00002-of-00003.safetensors",
|
| 204 |
+
"model.layers.18.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
| 205 |
+
"model.layers.18.self_attn.v_proj.bias": "model-00002-of-00003.safetensors",
|
| 206 |
+
"model.layers.18.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
| 207 |
+
"model.layers.19.input_layernorm.bias": "model-00002-of-00003.safetensors",
|
| 208 |
+
"model.layers.19.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
| 209 |
+
"model.layers.19.mlp.c_fc.bias": "model-00002-of-00003.safetensors",
|
| 210 |
+
"model.layers.19.mlp.c_fc.weight": "model-00002-of-00003.safetensors",
|
| 211 |
+
"model.layers.19.mlp.c_proj.bias": "model-00002-of-00003.safetensors",
|
| 212 |
+
"model.layers.19.mlp.c_proj.weight": "model-00002-of-00003.safetensors",
|
| 213 |
+
"model.layers.19.post_attention_layernorm.bias": "model-00002-of-00003.safetensors",
|
| 214 |
+
"model.layers.19.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
| 215 |
+
"model.layers.19.self_attn.g_proj.bias": "model-00002-of-00003.safetensors",
|
| 216 |
+
"model.layers.19.self_attn.g_proj.weight": "model-00002-of-00003.safetensors",
|
| 217 |
+
"model.layers.19.self_attn.k_proj.bias": "model-00002-of-00003.safetensors",
|
| 218 |
+
"model.layers.19.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
| 219 |
+
"model.layers.19.self_attn.o_proj.bias": "model-00002-of-00003.safetensors",
|
| 220 |
+
"model.layers.19.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
| 221 |
+
"model.layers.19.self_attn.q_proj.bias": "model-00002-of-00003.safetensors",
|
| 222 |
+
"model.layers.19.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
| 223 |
+
"model.layers.19.self_attn.v_proj.bias": "model-00002-of-00003.safetensors",
|
| 224 |
+
"model.layers.19.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
| 225 |
+
"model.layers.2.input_layernorm.bias": "model-00001-of-00003.safetensors",
|
| 226 |
+
"model.layers.2.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
| 227 |
+
"model.layers.2.mlp.c_fc.bias": "model-00001-of-00003.safetensors",
|
| 228 |
+
"model.layers.2.mlp.c_fc.weight": "model-00001-of-00003.safetensors",
|
| 229 |
+
"model.layers.2.mlp.c_proj.bias": "model-00001-of-00003.safetensors",
|
| 230 |
+
"model.layers.2.mlp.c_proj.weight": "model-00001-of-00003.safetensors",
|
| 231 |
+
"model.layers.2.post_attention_layernorm.bias": "model-00001-of-00003.safetensors",
|
| 232 |
+
"model.layers.2.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
| 233 |
+
"model.layers.2.self_attn.g_proj.bias": "model-00001-of-00003.safetensors",
|
| 234 |
+
"model.layers.2.self_attn.g_proj.weight": "model-00001-of-00003.safetensors",
|
| 235 |
+
"model.layers.2.self_attn.k_proj.bias": "model-00001-of-00003.safetensors",
|
| 236 |
+
"model.layers.2.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
| 237 |
+
"model.layers.2.self_attn.o_proj.bias": "model-00001-of-00003.safetensors",
|
| 238 |
+
"model.layers.2.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
| 239 |
+
"model.layers.2.self_attn.q_proj.bias": "model-00001-of-00003.safetensors",
|
| 240 |
+
"model.layers.2.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
| 241 |
+
"model.layers.2.self_attn.v_proj.bias": "model-00001-of-00003.safetensors",
|
| 242 |
+
"model.layers.2.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
| 243 |
+
"model.layers.20.input_layernorm.bias": "model-00002-of-00003.safetensors",
|
| 244 |
+
"model.layers.20.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
| 245 |
+
"model.layers.20.mlp.c_fc.bias": "model-00002-of-00003.safetensors",
|
| 246 |
+
"model.layers.20.mlp.c_fc.weight": "model-00002-of-00003.safetensors",
|
| 247 |
+
"model.layers.20.mlp.c_proj.bias": "model-00002-of-00003.safetensors",
|
| 248 |
+
"model.layers.20.mlp.c_proj.weight": "model-00002-of-00003.safetensors",
|
| 249 |
+
"model.layers.20.post_attention_layernorm.bias": "model-00002-of-00003.safetensors",
|
| 250 |
+
"model.layers.20.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
| 251 |
+
"model.layers.20.self_attn.g_proj.bias": "model-00002-of-00003.safetensors",
|
| 252 |
+
"model.layers.20.self_attn.g_proj.weight": "model-00002-of-00003.safetensors",
|
| 253 |
+
"model.layers.20.self_attn.k_proj.bias": "model-00002-of-00003.safetensors",
|
| 254 |
+
"model.layers.20.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
| 255 |
+
"model.layers.20.self_attn.o_proj.bias": "model-00002-of-00003.safetensors",
|
| 256 |
+
"model.layers.20.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
| 257 |
+
"model.layers.20.self_attn.q_proj.bias": "model-00002-of-00003.safetensors",
|
| 258 |
+
"model.layers.20.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
| 259 |
+
"model.layers.20.self_attn.v_proj.bias": "model-00002-of-00003.safetensors",
|
| 260 |
+
"model.layers.20.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
| 261 |
+
"model.layers.21.input_layernorm.bias": "model-00002-of-00003.safetensors",
|
| 262 |
+
"model.layers.21.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
| 263 |
+
"model.layers.21.mlp.c_fc.bias": "model-00002-of-00003.safetensors",
|
| 264 |
+
"model.layers.21.mlp.c_fc.weight": "model-00002-of-00003.safetensors",
|
| 265 |
+
"model.layers.21.mlp.c_proj.bias": "model-00002-of-00003.safetensors",
|
| 266 |
+
"model.layers.21.mlp.c_proj.weight": "model-00002-of-00003.safetensors",
|
| 267 |
+
"model.layers.21.post_attention_layernorm.bias": "model-00002-of-00003.safetensors",
|
| 268 |
+
"model.layers.21.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
| 269 |
+
"model.layers.21.self_attn.g_proj.bias": "model-00002-of-00003.safetensors",
|
| 270 |
+
"model.layers.21.self_attn.g_proj.weight": "model-00002-of-00003.safetensors",
|
| 271 |
+
"model.layers.21.self_attn.k_proj.bias": "model-00002-of-00003.safetensors",
|
| 272 |
+
"model.layers.21.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
| 273 |
+
"model.layers.21.self_attn.o_proj.bias": "model-00002-of-00003.safetensors",
|
| 274 |
+
"model.layers.21.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
| 275 |
+
"model.layers.21.self_attn.q_proj.bias": "model-00002-of-00003.safetensors",
|
| 276 |
+
"model.layers.21.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
| 277 |
+
"model.layers.21.self_attn.v_proj.bias": "model-00002-of-00003.safetensors",
|
| 278 |
+
"model.layers.21.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
| 279 |
+
"model.layers.22.input_layernorm.bias": "model-00002-of-00003.safetensors",
|
| 280 |
+
"model.layers.22.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
| 281 |
+
"model.layers.22.mlp.c_fc.bias": "model-00002-of-00003.safetensors",
|
| 282 |
+
"model.layers.22.mlp.c_fc.weight": "model-00002-of-00003.safetensors",
|
| 283 |
+
"model.layers.22.mlp.c_proj.bias": "model-00002-of-00003.safetensors",
|
| 284 |
+
"model.layers.22.mlp.c_proj.weight": "model-00002-of-00003.safetensors",
|
| 285 |
+
"model.layers.22.post_attention_layernorm.bias": "model-00002-of-00003.safetensors",
|
| 286 |
+
"model.layers.22.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
| 287 |
+
"model.layers.22.self_attn.g_proj.bias": "model-00002-of-00003.safetensors",
|
| 288 |
+
"model.layers.22.self_attn.g_proj.weight": "model-00002-of-00003.safetensors",
|
| 289 |
+
"model.layers.22.self_attn.k_proj.bias": "model-00002-of-00003.safetensors",
|
| 290 |
+
"model.layers.22.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
| 291 |
+
"model.layers.22.self_attn.o_proj.bias": "model-00002-of-00003.safetensors",
|
| 292 |
+
"model.layers.22.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
| 293 |
+
"model.layers.22.self_attn.q_proj.bias": "model-00002-of-00003.safetensors",
|
| 294 |
+
"model.layers.22.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
| 295 |
+
"model.layers.22.self_attn.v_proj.bias": "model-00002-of-00003.safetensors",
|
| 296 |
+
"model.layers.22.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
| 297 |
+
"model.layers.23.input_layernorm.bias": "model-00002-of-00003.safetensors",
|
| 298 |
+
"model.layers.23.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
| 299 |
+
"model.layers.23.mlp.c_fc.bias": "model-00002-of-00003.safetensors",
|
| 300 |
+
"model.layers.23.mlp.c_fc.weight": "model-00002-of-00003.safetensors",
|
| 301 |
+
"model.layers.23.mlp.c_proj.bias": "model-00002-of-00003.safetensors",
|
| 302 |
+
"model.layers.23.mlp.c_proj.weight": "model-00002-of-00003.safetensors",
|
| 303 |
+
"model.layers.23.post_attention_layernorm.bias": "model-00002-of-00003.safetensors",
|
| 304 |
+
"model.layers.23.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
| 305 |
+
"model.layers.23.self_attn.g_proj.bias": "model-00002-of-00003.safetensors",
|
| 306 |
+
"model.layers.23.self_attn.g_proj.weight": "model-00002-of-00003.safetensors",
|
| 307 |
+
"model.layers.23.self_attn.k_proj.bias": "model-00002-of-00003.safetensors",
|
| 308 |
+
"model.layers.23.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
| 309 |
+
"model.layers.23.self_attn.o_proj.bias": "model-00002-of-00003.safetensors",
|
| 310 |
+
"model.layers.23.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
| 311 |
+
"model.layers.23.self_attn.q_proj.bias": "model-00002-of-00003.safetensors",
|
| 312 |
+
"model.layers.23.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
| 313 |
+
"model.layers.23.self_attn.v_proj.bias": "model-00002-of-00003.safetensors",
|
| 314 |
+
"model.layers.23.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
| 315 |
+
"model.layers.24.input_layernorm.bias": "model-00003-of-00003.safetensors",
|
| 316 |
+
"model.layers.24.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
| 317 |
+
"model.layers.24.mlp.c_fc.bias": "model-00003-of-00003.safetensors",
|
| 318 |
+
"model.layers.24.mlp.c_fc.weight": "model-00003-of-00003.safetensors",
|
| 319 |
+
"model.layers.24.mlp.c_proj.bias": "model-00003-of-00003.safetensors",
|
| 320 |
+
"model.layers.24.mlp.c_proj.weight": "model-00003-of-00003.safetensors",
|
| 321 |
+
"model.layers.24.post_attention_layernorm.bias": "model-00003-of-00003.safetensors",
|
| 322 |
+
"model.layers.24.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
|
| 323 |
+
"model.layers.24.self_attn.g_proj.bias": "model-00002-of-00003.safetensors",
|
| 324 |
+
"model.layers.24.self_attn.g_proj.weight": "model-00002-of-00003.safetensors",
|
| 325 |
+
"model.layers.24.self_attn.k_proj.bias": "model-00002-of-00003.safetensors",
|
| 326 |
+
"model.layers.24.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
| 327 |
+
"model.layers.24.self_attn.o_proj.bias": "model-00002-of-00003.safetensors",
|
| 328 |
+
"model.layers.24.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
| 329 |
+
"model.layers.24.self_attn.q_proj.bias": "model-00002-of-00003.safetensors",
|
| 330 |
+
"model.layers.24.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
| 331 |
+
"model.layers.24.self_attn.v_proj.bias": "model-00002-of-00003.safetensors",
|
| 332 |
+
"model.layers.24.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
| 333 |
+
"model.layers.25.input_layernorm.bias": "model-00003-of-00003.safetensors",
|
| 334 |
+
"model.layers.25.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
| 335 |
+
"model.layers.25.mlp.c_fc.bias": "model-00003-of-00003.safetensors",
|
| 336 |
+
"model.layers.25.mlp.c_fc.weight": "model-00003-of-00003.safetensors",
|
| 337 |
+
"model.layers.25.mlp.c_proj.bias": "model-00003-of-00003.safetensors",
|
| 338 |
+
"model.layers.25.mlp.c_proj.weight": "model-00003-of-00003.safetensors",
|
| 339 |
+
"model.layers.25.post_attention_layernorm.bias": "model-00003-of-00003.safetensors",
|
| 340 |
+
"model.layers.25.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
|
| 341 |
+
"model.layers.25.self_attn.g_proj.bias": "model-00003-of-00003.safetensors",
|
| 342 |
+
"model.layers.25.self_attn.g_proj.weight": "model-00003-of-00003.safetensors",
|
| 343 |
+
"model.layers.25.self_attn.k_proj.bias": "model-00003-of-00003.safetensors",
|
| 344 |
+
"model.layers.25.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
|
| 345 |
+
"model.layers.25.self_attn.o_proj.bias": "model-00003-of-00003.safetensors",
|
| 346 |
+
"model.layers.25.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
|
| 347 |
+
"model.layers.25.self_attn.q_proj.bias": "model-00003-of-00003.safetensors",
|
| 348 |
+
"model.layers.25.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
|
| 349 |
+
"model.layers.25.self_attn.v_proj.bias": "model-00003-of-00003.safetensors",
|
| 350 |
+
"model.layers.25.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
|
| 351 |
+
"model.layers.26.input_layernorm.bias": "model-00003-of-00003.safetensors",
|
| 352 |
+
"model.layers.26.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
| 353 |
+
"model.layers.26.mlp.c_fc.bias": "model-00003-of-00003.safetensors",
|
| 354 |
+
"model.layers.26.mlp.c_fc.weight": "model-00003-of-00003.safetensors",
|
| 355 |
+
"model.layers.26.mlp.c_proj.bias": "model-00003-of-00003.safetensors",
|
| 356 |
+
"model.layers.26.mlp.c_proj.weight": "model-00003-of-00003.safetensors",
|
| 357 |
+
"model.layers.26.post_attention_layernorm.bias": "model-00003-of-00003.safetensors",
|
| 358 |
+
"model.layers.26.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
|
| 359 |
+
"model.layers.26.self_attn.g_proj.bias": "model-00003-of-00003.safetensors",
|
| 360 |
+
"model.layers.26.self_attn.g_proj.weight": "model-00003-of-00003.safetensors",
|
| 361 |
+
"model.layers.26.self_attn.k_proj.bias": "model-00003-of-00003.safetensors",
|
| 362 |
+
"model.layers.26.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
|
| 363 |
+
"model.layers.26.self_attn.o_proj.bias": "model-00003-of-00003.safetensors",
|
| 364 |
+
"model.layers.26.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
|
| 365 |
+
"model.layers.26.self_attn.q_proj.bias": "model-00003-of-00003.safetensors",
|
| 366 |
+
"model.layers.26.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
|
| 367 |
+
"model.layers.26.self_attn.v_proj.bias": "model-00003-of-00003.safetensors",
|
| 368 |
+
"model.layers.26.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
|
| 369 |
+
"model.layers.27.input_layernorm.bias": "model-00003-of-00003.safetensors",
|
| 370 |
+
"model.layers.27.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
| 371 |
+
"model.layers.27.mlp.c_fc.bias": "model-00003-of-00003.safetensors",
|
| 372 |
+
"model.layers.27.mlp.c_fc.weight": "model-00003-of-00003.safetensors",
|
| 373 |
+
"model.layers.27.mlp.c_proj.bias": "model-00003-of-00003.safetensors",
|
| 374 |
+
"model.layers.27.mlp.c_proj.weight": "model-00003-of-00003.safetensors",
|
| 375 |
+
"model.layers.27.post_attention_layernorm.bias": "model-00003-of-00003.safetensors",
|
| 376 |
+
"model.layers.27.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
|
| 377 |
+
"model.layers.27.self_attn.g_proj.bias": "model-00003-of-00003.safetensors",
|
| 378 |
+
"model.layers.27.self_attn.g_proj.weight": "model-00003-of-00003.safetensors",
|
| 379 |
+
"model.layers.27.self_attn.k_proj.bias": "model-00003-of-00003.safetensors",
|
| 380 |
+
"model.layers.27.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
|
| 381 |
+
"model.layers.27.self_attn.o_proj.bias": "model-00003-of-00003.safetensors",
|
| 382 |
+
"model.layers.27.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
|
| 383 |
+
"model.layers.27.self_attn.q_proj.bias": "model-00003-of-00003.safetensors",
|
| 384 |
+
"model.layers.27.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
|
| 385 |
+
"model.layers.27.self_attn.v_proj.bias": "model-00003-of-00003.safetensors",
|
| 386 |
+
"model.layers.27.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
|
| 387 |
+
"model.layers.28.input_layernorm.bias": "model-00003-of-00003.safetensors",
|
| 388 |
+
"model.layers.28.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
| 389 |
+
"model.layers.28.mlp.c_fc.bias": "model-00003-of-00003.safetensors",
|
| 390 |
+
"model.layers.28.mlp.c_fc.weight": "model-00003-of-00003.safetensors",
|
| 391 |
+
"model.layers.28.mlp.c_proj.bias": "model-00003-of-00003.safetensors",
|
| 392 |
+
"model.layers.28.mlp.c_proj.weight": "model-00003-of-00003.safetensors",
|
| 393 |
+
"model.layers.28.post_attention_layernorm.bias": "model-00003-of-00003.safetensors",
|
| 394 |
+
"model.layers.28.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
|
| 395 |
+
"model.layers.28.self_attn.g_proj.bias": "model-00003-of-00003.safetensors",
|
| 396 |
+
"model.layers.28.self_attn.g_proj.weight": "model-00003-of-00003.safetensors",
|
| 397 |
+
"model.layers.28.self_attn.k_proj.bias": "model-00003-of-00003.safetensors",
|
| 398 |
+
"model.layers.28.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
|
| 399 |
+
"model.layers.28.self_attn.o_proj.bias": "model-00003-of-00003.safetensors",
|
| 400 |
+
"model.layers.28.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
|
| 401 |
+
"model.layers.28.self_attn.q_proj.bias": "model-00003-of-00003.safetensors",
|
| 402 |
+
"model.layers.28.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
|
| 403 |
+
"model.layers.28.self_attn.v_proj.bias": "model-00003-of-00003.safetensors",
|
| 404 |
+
"model.layers.28.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
|
| 405 |
+
"model.layers.29.input_layernorm.bias": "model-00003-of-00003.safetensors",
|
| 406 |
+
"model.layers.29.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
| 407 |
+
"model.layers.29.mlp.c_fc.bias": "model-00003-of-00003.safetensors",
|
| 408 |
+
"model.layers.29.mlp.c_fc.weight": "model-00003-of-00003.safetensors",
|
| 409 |
+
"model.layers.29.mlp.c_proj.bias": "model-00003-of-00003.safetensors",
|
| 410 |
+
"model.layers.29.mlp.c_proj.weight": "model-00003-of-00003.safetensors",
|
| 411 |
+
"model.layers.29.post_attention_layernorm.bias": "model-00003-of-00003.safetensors",
|
| 412 |
+
"model.layers.29.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
|
| 413 |
+
"model.layers.29.self_attn.g_proj.bias": "model-00003-of-00003.safetensors",
|
| 414 |
+
"model.layers.29.self_attn.g_proj.weight": "model-00003-of-00003.safetensors",
|
| 415 |
+
"model.layers.29.self_attn.k_proj.bias": "model-00003-of-00003.safetensors",
|
| 416 |
+
"model.layers.29.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
|
| 417 |
+
"model.layers.29.self_attn.o_proj.bias": "model-00003-of-00003.safetensors",
|
| 418 |
+
"model.layers.29.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
|
| 419 |
+
"model.layers.29.self_attn.q_proj.bias": "model-00003-of-00003.safetensors",
|
| 420 |
+
"model.layers.29.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
|
| 421 |
+
"model.layers.29.self_attn.v_proj.bias": "model-00003-of-00003.safetensors",
|
| 422 |
+
"model.layers.29.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
|
| 423 |
+
"model.layers.3.input_layernorm.bias": "model-00001-of-00003.safetensors",
|
| 424 |
+
"model.layers.3.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
| 425 |
+
"model.layers.3.mlp.c_fc.bias": "model-00001-of-00003.safetensors",
|
| 426 |
+
"model.layers.3.mlp.c_fc.weight": "model-00001-of-00003.safetensors",
|
| 427 |
+
"model.layers.3.mlp.c_proj.bias": "model-00001-of-00003.safetensors",
|
| 428 |
+
"model.layers.3.mlp.c_proj.weight": "model-00001-of-00003.safetensors",
|
| 429 |
+
"model.layers.3.post_attention_layernorm.bias": "model-00001-of-00003.safetensors",
|
| 430 |
+
"model.layers.3.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
| 431 |
+
"model.layers.3.self_attn.g_proj.bias": "model-00001-of-00003.safetensors",
|
| 432 |
+
"model.layers.3.self_attn.g_proj.weight": "model-00001-of-00003.safetensors",
|
| 433 |
+
"model.layers.3.self_attn.k_proj.bias": "model-00001-of-00003.safetensors",
|
| 434 |
+
"model.layers.3.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
| 435 |
+
"model.layers.3.self_attn.o_proj.bias": "model-00001-of-00003.safetensors",
|
| 436 |
+
"model.layers.3.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
| 437 |
+
"model.layers.3.self_attn.q_proj.bias": "model-00001-of-00003.safetensors",
|
| 438 |
+
"model.layers.3.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
| 439 |
+
"model.layers.3.self_attn.v_proj.bias": "model-00001-of-00003.safetensors",
|
| 440 |
+
"model.layers.3.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
| 441 |
+
"model.layers.4.input_layernorm.bias": "model-00001-of-00003.safetensors",
|
| 442 |
+
"model.layers.4.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
| 443 |
+
"model.layers.4.mlp.c_fc.bias": "model-00001-of-00003.safetensors",
|
| 444 |
+
"model.layers.4.mlp.c_fc.weight": "model-00001-of-00003.safetensors",
|
| 445 |
+
"model.layers.4.mlp.c_proj.bias": "model-00001-of-00003.safetensors",
|
| 446 |
+
"model.layers.4.mlp.c_proj.weight": "model-00001-of-00003.safetensors",
|
| 447 |
+
"model.layers.4.post_attention_layernorm.bias": "model-00001-of-00003.safetensors",
|
| 448 |
+
"model.layers.4.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
| 449 |
+
"model.layers.4.self_attn.g_proj.bias": "model-00001-of-00003.safetensors",
|
| 450 |
+
"model.layers.4.self_attn.g_proj.weight": "model-00001-of-00003.safetensors",
|
| 451 |
+
"model.layers.4.self_attn.k_proj.bias": "model-00001-of-00003.safetensors",
|
| 452 |
+
"model.layers.4.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
| 453 |
+
"model.layers.4.self_attn.o_proj.bias": "model-00001-of-00003.safetensors",
|
| 454 |
+
"model.layers.4.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
| 455 |
+
"model.layers.4.self_attn.q_proj.bias": "model-00001-of-00003.safetensors",
|
| 456 |
+
"model.layers.4.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
| 457 |
+
"model.layers.4.self_attn.v_proj.bias": "model-00001-of-00003.safetensors",
|
| 458 |
+
"model.layers.4.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
| 459 |
+
"model.layers.5.input_layernorm.bias": "model-00001-of-00003.safetensors",
|
| 460 |
+
"model.layers.5.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
| 461 |
+
"model.layers.5.mlp.c_fc.bias": "model-00001-of-00003.safetensors",
|
| 462 |
+
"model.layers.5.mlp.c_fc.weight": "model-00001-of-00003.safetensors",
|
| 463 |
+
"model.layers.5.mlp.c_proj.bias": "model-00001-of-00003.safetensors",
|
| 464 |
+
"model.layers.5.mlp.c_proj.weight": "model-00001-of-00003.safetensors",
|
| 465 |
+
"model.layers.5.post_attention_layernorm.bias": "model-00001-of-00003.safetensors",
|
| 466 |
+
"model.layers.5.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
| 467 |
+
"model.layers.5.self_attn.g_proj.bias": "model-00001-of-00003.safetensors",
|
| 468 |
+
"model.layers.5.self_attn.g_proj.weight": "model-00001-of-00003.safetensors",
|
| 469 |
+
"model.layers.5.self_attn.k_proj.bias": "model-00001-of-00003.safetensors",
|
| 470 |
+
"model.layers.5.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
| 471 |
+
"model.layers.5.self_attn.o_proj.bias": "model-00001-of-00003.safetensors",
|
| 472 |
+
"model.layers.5.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
| 473 |
+
"model.layers.5.self_attn.q_proj.bias": "model-00001-of-00003.safetensors",
|
| 474 |
+
"model.layers.5.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
| 475 |
+
"model.layers.5.self_attn.v_proj.bias": "model-00001-of-00003.safetensors",
|
| 476 |
+
"model.layers.5.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
| 477 |
+
"model.layers.6.input_layernorm.bias": "model-00001-of-00003.safetensors",
|
| 478 |
+
"model.layers.6.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
| 479 |
+
"model.layers.6.mlp.c_fc.bias": "model-00001-of-00003.safetensors",
|
| 480 |
+
"model.layers.6.mlp.c_fc.weight": "model-00001-of-00003.safetensors",
|
| 481 |
+
"model.layers.6.mlp.c_proj.bias": "model-00001-of-00003.safetensors",
|
| 482 |
+
"model.layers.6.mlp.c_proj.weight": "model-00001-of-00003.safetensors",
|
| 483 |
+
"model.layers.6.post_attention_layernorm.bias": "model-00001-of-00003.safetensors",
|
| 484 |
+
"model.layers.6.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
| 485 |
+
"model.layers.6.self_attn.g_proj.bias": "model-00001-of-00003.safetensors",
|
| 486 |
+
"model.layers.6.self_attn.g_proj.weight": "model-00001-of-00003.safetensors",
|
| 487 |
+
"model.layers.6.self_attn.k_proj.bias": "model-00001-of-00003.safetensors",
|
| 488 |
+
"model.layers.6.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
| 489 |
+
"model.layers.6.self_attn.o_proj.bias": "model-00001-of-00003.safetensors",
|
| 490 |
+
"model.layers.6.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
| 491 |
+
"model.layers.6.self_attn.q_proj.bias": "model-00001-of-00003.safetensors",
|
| 492 |
+
"model.layers.6.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
| 493 |
+
"model.layers.6.self_attn.v_proj.bias": "model-00001-of-00003.safetensors",
|
| 494 |
+
"model.layers.6.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
| 495 |
+
"model.layers.7.input_layernorm.bias": "model-00001-of-00003.safetensors",
|
| 496 |
+
"model.layers.7.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
| 497 |
+
"model.layers.7.mlp.c_fc.bias": "model-00001-of-00003.safetensors",
|
| 498 |
+
"model.layers.7.mlp.c_fc.weight": "model-00001-of-00003.safetensors",
|
| 499 |
+
"model.layers.7.mlp.c_proj.bias": "model-00001-of-00003.safetensors",
|
| 500 |
+
"model.layers.7.mlp.c_proj.weight": "model-00001-of-00003.safetensors",
|
| 501 |
+
"model.layers.7.post_attention_layernorm.bias": "model-00001-of-00003.safetensors",
|
| 502 |
+
"model.layers.7.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
| 503 |
+
"model.layers.7.self_attn.g_proj.bias": "model-00001-of-00003.safetensors",
|
| 504 |
+
"model.layers.7.self_attn.g_proj.weight": "model-00001-of-00003.safetensors",
|
| 505 |
+
"model.layers.7.self_attn.k_proj.bias": "model-00001-of-00003.safetensors",
|
| 506 |
+
"model.layers.7.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
| 507 |
+
"model.layers.7.self_attn.o_proj.bias": "model-00001-of-00003.safetensors",
|
| 508 |
+
"model.layers.7.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
| 509 |
+
"model.layers.7.self_attn.q_proj.bias": "model-00001-of-00003.safetensors",
|
| 510 |
+
"model.layers.7.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
| 511 |
+
"model.layers.7.self_attn.v_proj.bias": "model-00001-of-00003.safetensors",
|
| 512 |
+
"model.layers.7.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
| 513 |
+
"model.layers.8.input_layernorm.bias": "model-00001-of-00003.safetensors",
|
| 514 |
+
"model.layers.8.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
| 515 |
+
"model.layers.8.mlp.c_fc.bias": "model-00001-of-00003.safetensors",
|
| 516 |
+
"model.layers.8.mlp.c_fc.weight": "model-00001-of-00003.safetensors",
|
| 517 |
+
"model.layers.8.mlp.c_proj.bias": "model-00001-of-00003.safetensors",
|
| 518 |
+
"model.layers.8.mlp.c_proj.weight": "model-00001-of-00003.safetensors",
|
| 519 |
+
"model.layers.8.post_attention_layernorm.bias": "model-00001-of-00003.safetensors",
|
| 520 |
+
"model.layers.8.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
| 521 |
+
"model.layers.8.self_attn.g_proj.bias": "model-00001-of-00003.safetensors",
|
| 522 |
+
"model.layers.8.self_attn.g_proj.weight": "model-00001-of-00003.safetensors",
|
| 523 |
+
"model.layers.8.self_attn.k_proj.bias": "model-00001-of-00003.safetensors",
|
| 524 |
+
"model.layers.8.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
| 525 |
+
"model.layers.8.self_attn.o_proj.bias": "model-00001-of-00003.safetensors",
|
| 526 |
+
"model.layers.8.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
| 527 |
+
"model.layers.8.self_attn.q_proj.bias": "model-00001-of-00003.safetensors",
|
| 528 |
+
"model.layers.8.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
| 529 |
+
"model.layers.8.self_attn.v_proj.bias": "model-00001-of-00003.safetensors",
|
| 530 |
+
"model.layers.8.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
| 531 |
+
"model.layers.9.input_layernorm.bias": "model-00001-of-00003.safetensors",
|
| 532 |
+
"model.layers.9.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
| 533 |
+
"model.layers.9.mlp.c_fc.bias": "model-00001-of-00003.safetensors",
|
| 534 |
+
"model.layers.9.mlp.c_fc.weight": "model-00001-of-00003.safetensors",
|
| 535 |
+
"model.layers.9.mlp.c_proj.bias": "model-00001-of-00003.safetensors",
|
| 536 |
+
"model.layers.9.mlp.c_proj.weight": "model-00001-of-00003.safetensors",
|
| 537 |
+
"model.layers.9.post_attention_layernorm.bias": "model-00001-of-00003.safetensors",
|
| 538 |
+
"model.layers.9.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
| 539 |
+
"model.layers.9.self_attn.g_proj.bias": "model-00001-of-00003.safetensors",
|
| 540 |
+
"model.layers.9.self_attn.g_proj.weight": "model-00001-of-00003.safetensors",
|
| 541 |
+
"model.layers.9.self_attn.k_proj.bias": "model-00001-of-00003.safetensors",
|
| 542 |
+
"model.layers.9.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
| 543 |
+
"model.layers.9.self_attn.o_proj.bias": "model-00001-of-00003.safetensors",
|
| 544 |
+
"model.layers.9.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
| 545 |
+
"model.layers.9.self_attn.q_proj.bias": "model-00001-of-00003.safetensors",
|
| 546 |
+
"model.layers.9.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
| 547 |
+
"model.layers.9.self_attn.v_proj.bias": "model-00001-of-00003.safetensors",
|
| 548 |
+
"model.layers.9.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
| 549 |
+
"model.norm.bias": "model-00003-of-00003.safetensors",
|
| 550 |
+
"model.norm.weight": "model-00003-of-00003.safetensors"
|
| 551 |
+
}
|
| 552 |
+
}
|
modeling_powercoder.py
ADDED
|
@@ -0,0 +1,543 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
|
| 2 |
+
from typing import Callable, Optional, Union
|
| 3 |
+
|
| 4 |
+
import torch
|
| 5 |
+
from torch import nn
|
| 6 |
+
|
| 7 |
+
from retention.triton import power_retention, power_retention_inference
|
| 8 |
+
|
| 9 |
+
from transformers.activations import ACT2FN
|
| 10 |
+
from transformers.generation import GenerationMixin
|
| 11 |
+
from transformers.masking_utils import create_causal_mask, create_sliding_window_causal_mask
|
| 12 |
+
from transformers.modeling_flash_attention_utils import FlashAttentionKwargs
|
| 13 |
+
from transformers.modeling_layers import (
|
| 14 |
+
GenericForSequenceClassification,
|
| 15 |
+
GenericForTokenClassification,
|
| 16 |
+
GradientCheckpointingLayer,
|
| 17 |
+
)
|
| 18 |
+
from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast
|
| 19 |
+
from transformers.modeling_rope_utils import ROPE_INIT_FUNCTIONS, dynamic_rope_update
|
| 20 |
+
from transformers.modeling_utils import ALL_ATTENTION_FUNCTIONS, PreTrainedModel
|
| 21 |
+
from transformers.processing_utils import Unpack
|
| 22 |
+
from transformers.utils import TransformersKwargs, auto_docstring, can_return_tuple
|
| 23 |
+
from .configuration_powercoder import PowerCoderConfig
|
| 24 |
+
from .kvgs_dynamic_cache import Cache, DynamicCache
|
| 25 |
+
|
| 26 |
+
class PowerCoderMLP(nn.Module):
|
| 27 |
+
def __init__(self, config: PowerCoderConfig):
|
| 28 |
+
super().__init__()
|
| 29 |
+
embed_dim = config.hidden_size
|
| 30 |
+
self.c_fc = nn.Linear(embed_dim, config.intermediate_size, bias=config.use_bias)
|
| 31 |
+
self.c_proj = nn.Linear(config.intermediate_size, embed_dim, bias=config.use_bias)
|
| 32 |
+
self.act = ACT2FN[config.hidden_act]
|
| 33 |
+
self.residual_dropout = config.residual_dropout
|
| 34 |
+
|
| 35 |
+
def forward(self, hidden_states: Optional[tuple[torch.FloatTensor]]) -> torch.FloatTensor:
|
| 36 |
+
hidden_states = self.c_fc(hidden_states)
|
| 37 |
+
hidden_states = self.act(hidden_states)
|
| 38 |
+
hidden_states = self.c_proj(hidden_states)
|
| 39 |
+
hidden_states = nn.functional.dropout(hidden_states, p=self.residual_dropout, training=self.training)
|
| 40 |
+
return hidden_states
|
| 41 |
+
|
| 42 |
+
|
| 43 |
+
def rotate_half(x):
|
| 44 |
+
"""Rotates half the hidden dims of the input."""
|
| 45 |
+
x1 = x[..., : x.shape[-1] // 2]
|
| 46 |
+
x2 = x[..., x.shape[-1] // 2 :]
|
| 47 |
+
return torch.cat((-x2, x1), dim=-1)
|
| 48 |
+
|
| 49 |
+
|
| 50 |
+
def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1):
|
| 51 |
+
"""Applies Rotary Position Embedding to the query and key tensors.
|
| 52 |
+
|
| 53 |
+
Args:
|
| 54 |
+
q (`torch.Tensor`): The query tensor.
|
| 55 |
+
k (`torch.Tensor`): The key tensor.
|
| 56 |
+
cos (`torch.Tensor`): The cosine part of the rotary embedding.
|
| 57 |
+
sin (`torch.Tensor`): The sine part of the rotary embedding.
|
| 58 |
+
position_ids (`torch.Tensor`, *optional*):
|
| 59 |
+
Deprecated and unused.
|
| 60 |
+
unsqueeze_dim (`int`, *optional*, defaults to 1):
|
| 61 |
+
The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
|
| 62 |
+
sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
|
| 63 |
+
that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
|
| 64 |
+
k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
|
| 65 |
+
cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
|
| 66 |
+
the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
|
| 67 |
+
Returns:
|
| 68 |
+
`tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
|
| 69 |
+
"""
|
| 70 |
+
cos = cos.unsqueeze(unsqueeze_dim)
|
| 71 |
+
sin = sin.unsqueeze(unsqueeze_dim)
|
| 72 |
+
q_embed = (q * cos) + (rotate_half(q) * sin)
|
| 73 |
+
k_embed = (k * cos) + (rotate_half(k) * sin)
|
| 74 |
+
return q_embed.to(q.dtype), k_embed.to(k.dtype)
|
| 75 |
+
|
| 76 |
+
|
| 77 |
+
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
|
| 78 |
+
"""
|
| 79 |
+
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
|
| 80 |
+
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
|
| 81 |
+
"""
|
| 82 |
+
batch, num_key_value_heads, slen, head_dim = hidden_states.shape
|
| 83 |
+
if n_rep == 1:
|
| 84 |
+
return hidden_states
|
| 85 |
+
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
|
| 86 |
+
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
|
| 87 |
+
|
| 88 |
+
|
| 89 |
+
def eager_power_attention_forward(
|
| 90 |
+
module: nn.Module,
|
| 91 |
+
query: torch.Tensor,
|
| 92 |
+
key: torch.Tensor,
|
| 93 |
+
value: torch.Tensor,
|
| 94 |
+
attention_mask: Optional[torch.Tensor],
|
| 95 |
+
scaling: float,
|
| 96 |
+
dropout: float = 0.0,
|
| 97 |
+
**kwargs: Unpack[TransformersKwargs],
|
| 98 |
+
):
|
| 99 |
+
key_states = repeat_kv(key, module.num_key_value_groups)
|
| 100 |
+
value_states = repeat_kv(value, module.num_key_value_groups)
|
| 101 |
+
|
| 102 |
+
attn_weights = 2*torch.log(torch.abs( torch.matmul(query, key_states.transpose(2, 3)) * scaling + 1e-5))
|
| 103 |
+
if attention_mask is not None:
|
| 104 |
+
causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
|
| 105 |
+
attn_weights = attn_weights + causal_mask
|
| 106 |
+
|
| 107 |
+
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query.dtype)
|
| 108 |
+
attn_weights = nn.functional.dropout(attn_weights, p=dropout, training=module.training)
|
| 109 |
+
attn_output = torch.matmul(attn_weights, value_states)
|
| 110 |
+
attn_output = attn_output.transpose(1, 2).contiguous()
|
| 111 |
+
|
| 112 |
+
return attn_output, attn_weights
|
| 113 |
+
|
| 114 |
+
|
| 115 |
+
class PowerCoderAttention(nn.Module):
|
| 116 |
+
"""Multi-headed attention from 'Attention Is All You Need' paper"""
|
| 117 |
+
|
| 118 |
+
def __init__(self, config: PowerCoderConfig, layer_idx: Optional[int] = None):
|
| 119 |
+
super().__init__()
|
| 120 |
+
self.config = config
|
| 121 |
+
self.layer_idx = layer_idx
|
| 122 |
+
self.chunk_size = config.chunk_size
|
| 123 |
+
self.switch_over_seq_len = config.switch_over_seq_len
|
| 124 |
+
self.head_dim = getattr(config, "head_dim", None) or config.hidden_size // config.num_attention_heads
|
| 125 |
+
self.num_key_value_groups = config.num_attention_heads // config.num_key_value_heads
|
| 126 |
+
self.scaling = self.head_dim**-0.5
|
| 127 |
+
self.attention_dropout = config.attention_dropout
|
| 128 |
+
self.is_causal = True
|
| 129 |
+
|
| 130 |
+
self.q_proj = nn.Linear(config.hidden_size, config.num_attention_heads * self.head_dim, bias=config.use_bias)
|
| 131 |
+
self.k_proj = nn.Linear(config.hidden_size, config.num_key_value_heads * self.head_dim, bias=config.use_bias)
|
| 132 |
+
self.v_proj = nn.Linear(config.hidden_size, config.num_key_value_heads * self.head_dim, bias=config.use_bias)
|
| 133 |
+
self.g_proj = nn.Linear(config.hidden_size, config.num_key_value_heads, bias=config.use_bias)
|
| 134 |
+
self.o_proj = nn.Linear(config.num_attention_heads * self.head_dim, config.hidden_size, bias=config.use_bias)
|
| 135 |
+
self.residual_dropout = config.residual_dropout
|
| 136 |
+
|
| 137 |
+
def forward(
|
| 138 |
+
self,
|
| 139 |
+
hidden_states: torch.Tensor,
|
| 140 |
+
position_embeddings: tuple[torch.Tensor, torch.Tensor],
|
| 141 |
+
padding_starts: Optional[torch.Tensor],
|
| 142 |
+
past_key_value: Optional[Cache] = None,
|
| 143 |
+
cache_position: Optional[torch.LongTensor] = None,
|
| 144 |
+
**kwargs: Unpack[FlashAttentionKwargs],
|
| 145 |
+
) -> tuple[torch.Tensor, Optional[torch.Tensor], Optional[tuple[torch.Tensor]]]:
|
| 146 |
+
input_shape = hidden_states.shape[:-1]
|
| 147 |
+
hidden_shape = (*input_shape, -1, self.head_dim)
|
| 148 |
+
interpolate_exp_amount = kwargs.get('interpolate_exp', 0)
|
| 149 |
+
assert 0 <= interpolate_exp_amount <= 1, f'{interpolate_exp_amount=}'
|
| 150 |
+
run_exp = interpolate_exp_amount > 0
|
| 151 |
+
|
| 152 |
+
query_states = self.q_proj(hidden_states).view(hidden_shape).transpose(1, 2)
|
| 153 |
+
key_states = self.k_proj(hidden_states).view(hidden_shape).transpose(1, 2)
|
| 154 |
+
value_states = self.v_proj(hidden_states).view(hidden_shape).transpose(1, 2)
|
| 155 |
+
gate_states = self.g_proj(hidden_states).view(hidden_shape[:-1]).transpose(1, 2)
|
| 156 |
+
gate_states = nn.functional.logsigmoid(gate_states.to(torch.float32))
|
| 157 |
+
|
| 158 |
+
cos, sin = position_embeddings
|
| 159 |
+
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
|
| 160 |
+
|
| 161 |
+
if past_key_value is not None:
|
| 162 |
+
# sin and cos are specific to RoPE models; cache_position needed for the static cache
|
| 163 |
+
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
|
| 164 |
+
key_states, value_states, gate_states, state, sum_of_keys = past_key_value.update_kv(key_states, value_states, gate_states, self.layer_idx, cache_kwargs)
|
| 165 |
+
|
| 166 |
+
if run_exp:
|
| 167 |
+
attention_interface = ALL_ATTENTION_FUNCTIONS["sdpa"]
|
| 168 |
+
|
| 169 |
+
exp_attn_output, exp_attn_weights = attention_interface(
|
| 170 |
+
self,
|
| 171 |
+
query_states,
|
| 172 |
+
key_states,
|
| 173 |
+
value_states,
|
| 174 |
+
is_causal=True,
|
| 175 |
+
attention_mask=None,
|
| 176 |
+
dropout=0.0 if not self.training else self.attention_dropout,
|
| 177 |
+
scaling=self.scaling,
|
| 178 |
+
**kwargs,
|
| 179 |
+
)
|
| 180 |
+
|
| 181 |
+
if query_states.shape[2] == 1:
|
| 182 |
+
key_len = key_states.shape[2]
|
| 183 |
+
power_attn_output, state, sum_of_keys = power_retention_inference(
|
| 184 |
+
query_states.transpose(1, 2),
|
| 185 |
+
key_states.transpose(1, 2),
|
| 186 |
+
value_states.transpose(1, 2),
|
| 187 |
+
gate_states.transpose(1, 2),
|
| 188 |
+
initial_state=state,
|
| 189 |
+
sum_of_keys=sum_of_keys,
|
| 190 |
+
deg=2,
|
| 191 |
+
scale=self.scaling,
|
| 192 |
+
switch_over_seq_len=self.switch_over_seq_len,
|
| 193 |
+
)
|
| 194 |
+
if self.switch_over_seq_len is not None and key_len >= self.switch_over_seq_len:
|
| 195 |
+
past_key_value.clean_kv(self.layer_idx)
|
| 196 |
+
past_key_value.update_state(state, sum_of_keys, self.layer_idx, cache_kwargs)
|
| 197 |
+
|
| 198 |
+
else:
|
| 199 |
+
key_len = key_states.shape[2]
|
| 200 |
+
power_attn_output = power_retention(
|
| 201 |
+
query_states.transpose(1, 2),
|
| 202 |
+
key_states.transpose(1, 2),
|
| 203 |
+
value_states.transpose(1, 2),
|
| 204 |
+
gate_states.transpose(1, 2),
|
| 205 |
+
deg=2,
|
| 206 |
+
scale=self.scaling,
|
| 207 |
+
chunk_size=self.chunk_size, # enable chunked prefilling by default
|
| 208 |
+
)
|
| 209 |
+
|
| 210 |
+
if interpolate_exp_amount == 1:
|
| 211 |
+
attn_output = exp_attn_output
|
| 212 |
+
elif interpolate_exp_amount == 0:
|
| 213 |
+
attn_output = power_attn_output
|
| 214 |
+
else:
|
| 215 |
+
attn_output = interpolate_exp_amount * exp_attn_output + (1 - interpolate_exp_amount) * power_attn_output
|
| 216 |
+
|
| 217 |
+
assert attn_output.shape == (input_shape[0], query_states.shape[2], self.config.num_attention_heads, self.head_dim),\
|
| 218 |
+
f'{attn_output.shape=} {(input_shape[0], query_states.shape[2], self.config.num_attention_heads, self.head_dim)=}'
|
| 219 |
+
attn_output = attn_output.reshape(*input_shape, -1).contiguous()
|
| 220 |
+
attn_output = self.o_proj(attn_output)
|
| 221 |
+
attn_output = nn.functional.dropout(
|
| 222 |
+
attn_output, p=self.residual_dropout, training=self.training
|
| 223 |
+
) # diff with Llama
|
| 224 |
+
|
| 225 |
+
return attn_output
|
| 226 |
+
|
| 227 |
+
|
| 228 |
+
class PowerCoderDecoderLayer(GradientCheckpointingLayer):
|
| 229 |
+
def __init__(self, config: PowerCoderConfig, layer_idx: int):
|
| 230 |
+
super().__init__()
|
| 231 |
+
self.hidden_size = config.hidden_size
|
| 232 |
+
self.self_attn = PowerCoderAttention(config=config, layer_idx=layer_idx)
|
| 233 |
+
self.mlp = PowerCoderMLP(config)
|
| 234 |
+
self.input_layernorm = nn.LayerNorm(config.hidden_size, eps=config.norm_epsilon)
|
| 235 |
+
self.post_attention_layernorm = nn.LayerNorm(config.hidden_size, eps=config.norm_epsilon)
|
| 236 |
+
|
| 237 |
+
def forward(
|
| 238 |
+
self,
|
| 239 |
+
hidden_states: torch.Tensor,
|
| 240 |
+
padding_starts: Optional[torch.Tensor] = None,
|
| 241 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 242 |
+
past_key_value: Optional[Cache] = None,
|
| 243 |
+
use_cache: Optional[bool] = False,
|
| 244 |
+
cache_position: Optional[torch.LongTensor] = None,
|
| 245 |
+
position_embeddings: Optional[tuple[torch.Tensor, torch.Tensor]] = None, # necessary, but kept here for BC
|
| 246 |
+
**kwargs: Unpack[TransformersKwargs],
|
| 247 |
+
) -> tuple[torch.Tensor]:
|
| 248 |
+
residual = hidden_states
|
| 249 |
+
hidden_states = self.input_layernorm(hidden_states)
|
| 250 |
+
# Self Attention
|
| 251 |
+
hidden_states = self.self_attn(
|
| 252 |
+
hidden_states=hidden_states,
|
| 253 |
+
padding_starts=padding_starts,
|
| 254 |
+
position_ids=position_ids,
|
| 255 |
+
past_key_value=past_key_value,
|
| 256 |
+
use_cache=use_cache,
|
| 257 |
+
cache_position=cache_position,
|
| 258 |
+
position_embeddings=position_embeddings,
|
| 259 |
+
**kwargs,
|
| 260 |
+
)
|
| 261 |
+
hidden_states = residual + hidden_states
|
| 262 |
+
# Fully Connected
|
| 263 |
+
residual = hidden_states
|
| 264 |
+
hidden_states = self.post_attention_layernorm(hidden_states)
|
| 265 |
+
hidden_states = self.mlp(hidden_states)
|
| 266 |
+
hidden_states = residual + hidden_states
|
| 267 |
+
return hidden_states
|
| 268 |
+
|
| 269 |
+
|
| 270 |
+
class PowerCoderRotaryEmbedding(nn.Module):
|
| 271 |
+
def __init__(self, config: PowerCoderConfig, device=None):
|
| 272 |
+
super().__init__()
|
| 273 |
+
# BC: "rope_type" was originally "type"
|
| 274 |
+
if hasattr(config, "rope_scaling") and isinstance(config.rope_scaling, dict):
|
| 275 |
+
self.rope_type = config.rope_scaling.get("rope_type", config.rope_scaling.get("type"))
|
| 276 |
+
else:
|
| 277 |
+
self.rope_type = "default"
|
| 278 |
+
self.max_seq_len_cached = config.max_position_embeddings
|
| 279 |
+
self.original_max_seq_len = config.max_position_embeddings
|
| 280 |
+
|
| 281 |
+
self.config = config
|
| 282 |
+
self.rope_init_fn = ROPE_INIT_FUNCTIONS[self.rope_type]
|
| 283 |
+
|
| 284 |
+
inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device)
|
| 285 |
+
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
| 286 |
+
self.original_inv_freq = self.inv_freq
|
| 287 |
+
|
| 288 |
+
@torch.no_grad()
|
| 289 |
+
@dynamic_rope_update # power user: used with advanced RoPE types (e.g. dynamic rope)
|
| 290 |
+
def forward(self, x, position_ids):
|
| 291 |
+
inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1).to(x.device)
|
| 292 |
+
position_ids_expanded = position_ids[:, None, :].float()
|
| 293 |
+
|
| 294 |
+
device_type = x.device.type if isinstance(x.device.type, str) and x.device.type != "mps" else "cpu"
|
| 295 |
+
with torch.autocast(device_type=device_type, enabled=False): # Force float32
|
| 296 |
+
freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
|
| 297 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
| 298 |
+
cos = emb.cos() * self.attention_scaling
|
| 299 |
+
sin = emb.sin() * self.attention_scaling
|
| 300 |
+
|
| 301 |
+
return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
|
| 302 |
+
|
| 303 |
+
|
| 304 |
+
@auto_docstring
|
| 305 |
+
class PowerCoderPreTrainedModel(PreTrainedModel):
|
| 306 |
+
config: PowerCoderConfig
|
| 307 |
+
base_model_prefix = "model"
|
| 308 |
+
supports_gradient_checkpointing = True
|
| 309 |
+
_no_split_modules = ["PowerCoderDecoderLayer"]
|
| 310 |
+
_skip_keys_device_placement = ["past_key_values"]
|
| 311 |
+
_supports_flash_attn = True
|
| 312 |
+
_supports_sdpa = True
|
| 313 |
+
_supports_flex_attn = True
|
| 314 |
+
|
| 315 |
+
_can_compile_fullgraph = True
|
| 316 |
+
_supports_attention_backend = True
|
| 317 |
+
_can_record_outputs = {
|
| 318 |
+
"hidden_states": PowerCoderDecoderLayer,
|
| 319 |
+
"attentions": PowerCoderAttention,
|
| 320 |
+
}
|
| 321 |
+
|
| 322 |
+
|
| 323 |
+
@auto_docstring
|
| 324 |
+
class PowerCoderModel(PowerCoderPreTrainedModel):
|
| 325 |
+
def __init__(self, config: PowerCoderConfig):
|
| 326 |
+
super().__init__(config)
|
| 327 |
+
self.padding_idx = config.pad_token_id
|
| 328 |
+
self.vocab_size = config.vocab_size
|
| 329 |
+
|
| 330 |
+
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
|
| 331 |
+
self.layers = nn.ModuleList(
|
| 332 |
+
[PowerCoderDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
|
| 333 |
+
)
|
| 334 |
+
self.norm = nn.LayerNorm(config.hidden_size, eps=config.norm_epsilon)
|
| 335 |
+
self.rotary_emb = PowerCoderRotaryEmbedding(config=config)
|
| 336 |
+
self.gradient_checkpointing = False
|
| 337 |
+
self.embedding_dropout = config.embedding_dropout
|
| 338 |
+
|
| 339 |
+
# Initialize weights and apply final processing
|
| 340 |
+
self.post_init()
|
| 341 |
+
|
| 342 |
+
def forward(
|
| 343 |
+
self,
|
| 344 |
+
input_ids: Optional[torch.LongTensor] = None,
|
| 345 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 346 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 347 |
+
past_key_values: Optional[Union[Cache, list[torch.FloatTensor]]] = None,
|
| 348 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
| 349 |
+
use_cache: Optional[bool] = None,
|
| 350 |
+
cache_position: Optional[torch.LongTensor] = None,
|
| 351 |
+
**kwargs: Unpack[TransformersKwargs],
|
| 352 |
+
) -> BaseModelOutputWithPast:
|
| 353 |
+
if (input_ids is None) ^ (inputs_embeds is not None):
|
| 354 |
+
raise ValueError("You must specify exactly one of input_ids or inputs_embeds")
|
| 355 |
+
|
| 356 |
+
if inputs_embeds is None:
|
| 357 |
+
inputs_embeds = self.embed_tokens(input_ids)
|
| 358 |
+
|
| 359 |
+
# Always use our local DynamicCache implementation for compatibility with gating
|
| 360 |
+
if use_cache:
|
| 361 |
+
if past_key_values is None or not isinstance(past_key_values, Cache):
|
| 362 |
+
past_key_values = DynamicCache()
|
| 363 |
+
|
| 364 |
+
if cache_position is None:
|
| 365 |
+
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
|
| 366 |
+
cache_position = torch.arange(
|
| 367 |
+
past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
|
| 368 |
+
)
|
| 369 |
+
|
| 370 |
+
if position_ids is None:
|
| 371 |
+
position_ids = cache_position.unsqueeze(0)
|
| 372 |
+
|
| 373 |
+
# mask_function = create_causal_mask if self.config.sliding_window is None else create_sliding_window_causal_mask
|
| 374 |
+
# causal_mask = mask_function(
|
| 375 |
+
# config=self.config,
|
| 376 |
+
# input_embeds=inputs_embeds,
|
| 377 |
+
# attention_mask=attention_mask,
|
| 378 |
+
# cache_position=cache_position,
|
| 379 |
+
# past_key_values=past_key_values,
|
| 380 |
+
# position_ids=position_ids,
|
| 381 |
+
# )
|
| 382 |
+
padding_starts = attention_mask.argmin(-1) if attention_mask is not None else None
|
| 383 |
+
|
| 384 |
+
hidden_states = inputs_embeds
|
| 385 |
+
hidden_states = nn.functional.dropout(
|
| 386 |
+
hidden_states, p=self.embedding_dropout, training=self.training
|
| 387 |
+
) # main diff with Llama
|
| 388 |
+
|
| 389 |
+
# create position embeddings to be shared across the decoder layers
|
| 390 |
+
position_embeddings = self.rotary_emb(hidden_states, position_ids)
|
| 391 |
+
for i, decoder_layer in enumerate(self.layers[: self.config.num_hidden_layers]):
|
| 392 |
+
hidden_states = decoder_layer(
|
| 393 |
+
hidden_states,
|
| 394 |
+
padding_starts=padding_starts,
|
| 395 |
+
position_ids=position_ids,
|
| 396 |
+
past_key_value=past_key_values,
|
| 397 |
+
use_cache=use_cache,
|
| 398 |
+
cache_position=cache_position,
|
| 399 |
+
position_embeddings=position_embeddings,
|
| 400 |
+
**kwargs,
|
| 401 |
+
)
|
| 402 |
+
|
| 403 |
+
hidden_states = self.norm(hidden_states)
|
| 404 |
+
|
| 405 |
+
return BaseModelOutputWithPast(
|
| 406 |
+
last_hidden_state=hidden_states,
|
| 407 |
+
past_key_values=past_key_values if use_cache else None,
|
| 408 |
+
)
|
| 409 |
+
|
| 410 |
+
|
| 411 |
+
@auto_docstring
|
| 412 |
+
class PowerCoderForCausalLM(PowerCoderPreTrainedModel, GenerationMixin):
|
| 413 |
+
_tied_weights_keys = ["lm_head.weight"]
|
| 414 |
+
_tp_plan = {"lm_head": "colwise_rep"}
|
| 415 |
+
_pp_plan = {"lm_head": (["hidden_states"], ["logits"])}
|
| 416 |
+
|
| 417 |
+
def __init__(self, config, chunk_size=None, switch_over_seq_len=None):
|
| 418 |
+
if chunk_size is not None:
|
| 419 |
+
config.chunk_size = chunk_size
|
| 420 |
+
if switch_over_seq_len is not None:
|
| 421 |
+
config.switch_over_seq_len = switch_over_seq_len
|
| 422 |
+
super().__init__(config)
|
| 423 |
+
self.model = PowerCoderModel(config)
|
| 424 |
+
self.vocab_size = config.vocab_size
|
| 425 |
+
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
| 426 |
+
|
| 427 |
+
# Initialize weights and apply final processing
|
| 428 |
+
self.post_init()
|
| 429 |
+
|
| 430 |
+
def set_decoder(self, decoder):
|
| 431 |
+
self.model = decoder
|
| 432 |
+
|
| 433 |
+
def get_decoder(self):
|
| 434 |
+
return self.model
|
| 435 |
+
|
| 436 |
+
@can_return_tuple
|
| 437 |
+
@auto_docstring
|
| 438 |
+
def forward(
|
| 439 |
+
self,
|
| 440 |
+
input_ids: Optional[torch.LongTensor] = None,
|
| 441 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 442 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 443 |
+
past_key_values: Optional[Cache] = None,
|
| 444 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
| 445 |
+
labels: Optional[torch.LongTensor] = None,
|
| 446 |
+
use_cache: Optional[bool] = None,
|
| 447 |
+
cache_position: Optional[torch.LongTensor] = None,
|
| 448 |
+
logits_to_keep: Union[int, torch.Tensor] = 0,
|
| 449 |
+
**kwargs: Unpack[TransformersKwargs],
|
| 450 |
+
) -> CausalLMOutputWithPast:
|
| 451 |
+
r"""
|
| 452 |
+
Example:
|
| 453 |
+
|
| 454 |
+
```python
|
| 455 |
+
>>> from transformers import AutoTokenizer, PowerCoderForCausalLM
|
| 456 |
+
|
| 457 |
+
>>> model = PowerCoderForCausalLM.from_pretrained("meta-PowerCoder/PowerCoder-2-7b-hf")
|
| 458 |
+
>>> tokenizer = AutoTokenizer.from_pretrained("meta-PowerCoder/PowerCoder-2-7b-hf")
|
| 459 |
+
|
| 460 |
+
>>> prompt = "Hey, are you conscious? Can you talk to me?"
|
| 461 |
+
>>> inputs = tokenizer(prompt, return_tensors="pt")
|
| 462 |
+
|
| 463 |
+
>>> # Generate
|
| 464 |
+
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
|
| 465 |
+
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
| 466 |
+
"Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
|
| 467 |
+
```
|
| 468 |
+
|
| 469 |
+
Args:
|
| 470 |
+
input_ids (`Optional[torch.LongTensor]`, *optional*):
|
| 471 |
+
Indices of input sequence tokens in the vocabulary.
|
| 472 |
+
attention_mask (`Optional[torch.Tensor]`, *optional*):
|
| 473 |
+
Mask to avoid performing attention on padding token indices.
|
| 474 |
+
position_ids (`Optional[torch.LongTensor]`, *optional*):
|
| 475 |
+
Indices of positions of each input sequence tokens.
|
| 476 |
+
past_key_values (`Optional[Cache]`, *optional*):
|
| 477 |
+
Cache containing pre-computed key and value states for attention layers, used for faster inference.
|
| 478 |
+
If `use_cache` is True, the cache will be used and updated with new key/value states.
|
| 479 |
+
inputs_embeds (`Optional[torch.FloatTensor]`, *optional*):
|
| 480 |
+
Pre-computed input embeddings. Useful for scenarios where you want to compute embeddings separately.
|
| 481 |
+
labels (`Optional[torch.LongTensor]`, *optional*):
|
| 482 |
+
Labels for computing language modeling loss.
|
| 483 |
+
use_cache (`Optional[bool]`, *optional*):
|
| 484 |
+
If True, past key/value states are returned and can be used for future predictions.
|
| 485 |
+
cache_position (`Optional[torch.LongTensor]`, *optional*):
|
| 486 |
+
Position indices for cached key/value states when using incremental decoding.
|
| 487 |
+
logits_to_keep (`Union[int, torch.Tensor]`, *optional*, defaults to 0):
|
| 488 |
+
Number of logits to compute from the end of the sequence, or specific indices to compute.
|
| 489 |
+
**kwargs:
|
| 490 |
+
Additional arguments passed to the underlying model's forward method.
|
| 491 |
+
|
| 492 |
+
Returns:
|
| 493 |
+
`CausalLMOutputWithPast`: A dataclass containing:
|
| 494 |
+
- loss (`Optional[torch.FloatTensor]`): Language modeling loss if labels were provided.
|
| 495 |
+
- logits (`torch.FloatTensor`): Prediction scores for the vocabulary.
|
| 496 |
+
- past_key_values (`Optional[Cache]`): Updated key/value states for attention layers if use_cache=True.
|
| 497 |
+
- hidden_states (`Optional[Tuple[torch.FloatTensor]]`): Model's hidden states.
|
| 498 |
+
- attentions (`Optional[Tuple[torch.FloatTensor]]`): Attention weights if output_attentions=True.
|
| 499 |
+
"""
|
| 500 |
+
outputs: BaseModelOutputWithPast = self.model(
|
| 501 |
+
input_ids=input_ids,
|
| 502 |
+
attention_mask=attention_mask,
|
| 503 |
+
position_ids=position_ids,
|
| 504 |
+
past_key_values=past_key_values,
|
| 505 |
+
inputs_embeds=inputs_embeds,
|
| 506 |
+
use_cache=use_cache,
|
| 507 |
+
cache_position=cache_position,
|
| 508 |
+
**kwargs,
|
| 509 |
+
)
|
| 510 |
+
|
| 511 |
+
hidden_states = outputs.last_hidden_state
|
| 512 |
+
# Only compute necessary logits, and do not upcast them to float if we are not computing the loss
|
| 513 |
+
slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep
|
| 514 |
+
logits = self.lm_head(hidden_states[:, slice_indices, :])
|
| 515 |
+
|
| 516 |
+
loss = None
|
| 517 |
+
if labels is not None:
|
| 518 |
+
loss = self.loss_function(logits=logits, labels=labels, vocab_size=self.config.vocab_size, **kwargs)
|
| 519 |
+
|
| 520 |
+
return CausalLMOutputWithPast(
|
| 521 |
+
loss=loss,
|
| 522 |
+
logits=logits,
|
| 523 |
+
past_key_values=outputs.past_key_values,
|
| 524 |
+
hidden_states=outputs.hidden_states,
|
| 525 |
+
attentions=outputs.attentions,
|
| 526 |
+
)
|
| 527 |
+
|
| 528 |
+
|
| 529 |
+
class PowerCoderForSequenceClassification(GenericForSequenceClassification, PowerCoderPreTrainedModel):
|
| 530 |
+
pass
|
| 531 |
+
|
| 532 |
+
|
| 533 |
+
class PowerCoderForTokenClassification(GenericForTokenClassification, PowerCoderPreTrainedModel):
|
| 534 |
+
pass
|
| 535 |
+
|
| 536 |
+
|
| 537 |
+
__all__ = [
|
| 538 |
+
"PowerCoderForCausalLM",
|
| 539 |
+
"PowerCoderModel",
|
| 540 |
+
"PowerCoderPreTrainedModel",
|
| 541 |
+
"PowerCoderForSequenceClassification",
|
| 542 |
+
"PowerCoderForTokenClassification",
|
| 543 |
+
]
|
special_tokens_map.json
ADDED
|
@@ -0,0 +1,64 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"additional_special_tokens": [
|
| 3 |
+
"<|endoftext|>",
|
| 4 |
+
"<fim_prefix>",
|
| 5 |
+
"<fim_middle>",
|
| 6 |
+
"<fim_suffix>",
|
| 7 |
+
"<fim_pad>",
|
| 8 |
+
"<repo_name>",
|
| 9 |
+
"<file_sep>",
|
| 10 |
+
"<issue_start>",
|
| 11 |
+
"<issue_comment>",
|
| 12 |
+
"<issue_closed>",
|
| 13 |
+
"<jupyter_start>",
|
| 14 |
+
"<jupyter_text>",
|
| 15 |
+
"<jupyter_code>",
|
| 16 |
+
"<jupyter_output>",
|
| 17 |
+
"<jupyter_script>",
|
| 18 |
+
"<empty_output>",
|
| 19 |
+
"<code_to_intermediate>",
|
| 20 |
+
"<intermediate_to_code>",
|
| 21 |
+
"<pr>",
|
| 22 |
+
"<pr_status>",
|
| 23 |
+
"<pr_is_merged>",
|
| 24 |
+
"<pr_base>",
|
| 25 |
+
"<pr_file>",
|
| 26 |
+
"<pr_base_code>",
|
| 27 |
+
"<pr_diff>",
|
| 28 |
+
"<pr_diff_hunk>",
|
| 29 |
+
"<pr_comment>",
|
| 30 |
+
"<pr_event_id>",
|
| 31 |
+
"<pr_review>",
|
| 32 |
+
"<pr_review_state>",
|
| 33 |
+
"<pr_review_comment>",
|
| 34 |
+
"<pr_in_reply_to_review_id>",
|
| 35 |
+
"<pr_in_reply_to_comment_id>",
|
| 36 |
+
"<pr_diff_hunk_comment_line>",
|
| 37 |
+
"<NAME>",
|
| 38 |
+
"<EMAIL>",
|
| 39 |
+
"<KEY>",
|
| 40 |
+
"<PASSWORD>"
|
| 41 |
+
],
|
| 42 |
+
"bos_token": {
|
| 43 |
+
"content": "<|endoftext|>",
|
| 44 |
+
"lstrip": false,
|
| 45 |
+
"normalized": false,
|
| 46 |
+
"rstrip": false,
|
| 47 |
+
"single_word": false
|
| 48 |
+
},
|
| 49 |
+
"eos_token": {
|
| 50 |
+
"content": "<|endoftext|>",
|
| 51 |
+
"lstrip": false,
|
| 52 |
+
"normalized": false,
|
| 53 |
+
"rstrip": false,
|
| 54 |
+
"single_word": false
|
| 55 |
+
},
|
| 56 |
+
"pad_token": "<|endoftext|>",
|
| 57 |
+
"unk_token": {
|
| 58 |
+
"content": "<|endoftext|>",
|
| 59 |
+
"lstrip": false,
|
| 60 |
+
"normalized": false,
|
| 61 |
+
"rstrip": false,
|
| 62 |
+
"single_word": false
|
| 63 |
+
}
|
| 64 |
+
}
|
tokenizer.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
tokenizer_config.json
ADDED
|
@@ -0,0 +1,358 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"add_prefix_space": false,
|
| 3 |
+
"added_tokens_decoder": {
|
| 4 |
+
"0": {
|
| 5 |
+
"content": "<|endoftext|>",
|
| 6 |
+
"lstrip": false,
|
| 7 |
+
"normalized": false,
|
| 8 |
+
"rstrip": false,
|
| 9 |
+
"single_word": false,
|
| 10 |
+
"special": true
|
| 11 |
+
},
|
| 12 |
+
"1": {
|
| 13 |
+
"content": "<fim_prefix>",
|
| 14 |
+
"lstrip": false,
|
| 15 |
+
"normalized": false,
|
| 16 |
+
"rstrip": false,
|
| 17 |
+
"single_word": false,
|
| 18 |
+
"special": true
|
| 19 |
+
},
|
| 20 |
+
"2": {
|
| 21 |
+
"content": "<fim_middle>",
|
| 22 |
+
"lstrip": false,
|
| 23 |
+
"normalized": false,
|
| 24 |
+
"rstrip": false,
|
| 25 |
+
"single_word": false,
|
| 26 |
+
"special": true
|
| 27 |
+
},
|
| 28 |
+
"3": {
|
| 29 |
+
"content": "<fim_suffix>",
|
| 30 |
+
"lstrip": false,
|
| 31 |
+
"normalized": false,
|
| 32 |
+
"rstrip": false,
|
| 33 |
+
"single_word": false,
|
| 34 |
+
"special": true
|
| 35 |
+
},
|
| 36 |
+
"4": {
|
| 37 |
+
"content": "<fim_pad>",
|
| 38 |
+
"lstrip": false,
|
| 39 |
+
"normalized": false,
|
| 40 |
+
"rstrip": false,
|
| 41 |
+
"single_word": false,
|
| 42 |
+
"special": true
|
| 43 |
+
},
|
| 44 |
+
"5": {
|
| 45 |
+
"content": "<repo_name>",
|
| 46 |
+
"lstrip": false,
|
| 47 |
+
"normalized": false,
|
| 48 |
+
"rstrip": false,
|
| 49 |
+
"single_word": false,
|
| 50 |
+
"special": true
|
| 51 |
+
},
|
| 52 |
+
"6": {
|
| 53 |
+
"content": "<file_sep>",
|
| 54 |
+
"lstrip": false,
|
| 55 |
+
"normalized": false,
|
| 56 |
+
"rstrip": false,
|
| 57 |
+
"single_word": false,
|
| 58 |
+
"special": true
|
| 59 |
+
},
|
| 60 |
+
"7": {
|
| 61 |
+
"content": "<issue_start>",
|
| 62 |
+
"lstrip": false,
|
| 63 |
+
"normalized": false,
|
| 64 |
+
"rstrip": false,
|
| 65 |
+
"single_word": false,
|
| 66 |
+
"special": true
|
| 67 |
+
},
|
| 68 |
+
"8": {
|
| 69 |
+
"content": "<issue_comment>",
|
| 70 |
+
"lstrip": false,
|
| 71 |
+
"normalized": false,
|
| 72 |
+
"rstrip": false,
|
| 73 |
+
"single_word": false,
|
| 74 |
+
"special": true
|
| 75 |
+
},
|
| 76 |
+
"9": {
|
| 77 |
+
"content": "<issue_closed>",
|
| 78 |
+
"lstrip": false,
|
| 79 |
+
"normalized": false,
|
| 80 |
+
"rstrip": false,
|
| 81 |
+
"single_word": false,
|
| 82 |
+
"special": true
|
| 83 |
+
},
|
| 84 |
+
"10": {
|
| 85 |
+
"content": "<jupyter_start>",
|
| 86 |
+
"lstrip": false,
|
| 87 |
+
"normalized": false,
|
| 88 |
+
"rstrip": false,
|
| 89 |
+
"single_word": false,
|
| 90 |
+
"special": true
|
| 91 |
+
},
|
| 92 |
+
"11": {
|
| 93 |
+
"content": "<jupyter_text>",
|
| 94 |
+
"lstrip": false,
|
| 95 |
+
"normalized": false,
|
| 96 |
+
"rstrip": false,
|
| 97 |
+
"single_word": false,
|
| 98 |
+
"special": true
|
| 99 |
+
},
|
| 100 |
+
"12": {
|
| 101 |
+
"content": "<jupyter_code>",
|
| 102 |
+
"lstrip": false,
|
| 103 |
+
"normalized": false,
|
| 104 |
+
"rstrip": false,
|
| 105 |
+
"single_word": false,
|
| 106 |
+
"special": true
|
| 107 |
+
},
|
| 108 |
+
"13": {
|
| 109 |
+
"content": "<jupyter_output>",
|
| 110 |
+
"lstrip": false,
|
| 111 |
+
"normalized": false,
|
| 112 |
+
"rstrip": false,
|
| 113 |
+
"single_word": false,
|
| 114 |
+
"special": true
|
| 115 |
+
},
|
| 116 |
+
"14": {
|
| 117 |
+
"content": "<jupyter_script>",
|
| 118 |
+
"lstrip": false,
|
| 119 |
+
"normalized": false,
|
| 120 |
+
"rstrip": false,
|
| 121 |
+
"single_word": false,
|
| 122 |
+
"special": true
|
| 123 |
+
},
|
| 124 |
+
"15": {
|
| 125 |
+
"content": "<empty_output>",
|
| 126 |
+
"lstrip": false,
|
| 127 |
+
"normalized": false,
|
| 128 |
+
"rstrip": false,
|
| 129 |
+
"single_word": false,
|
| 130 |
+
"special": true
|
| 131 |
+
},
|
| 132 |
+
"16": {
|
| 133 |
+
"content": "<code_to_intermediate>",
|
| 134 |
+
"lstrip": false,
|
| 135 |
+
"normalized": false,
|
| 136 |
+
"rstrip": false,
|
| 137 |
+
"single_word": false,
|
| 138 |
+
"special": true
|
| 139 |
+
},
|
| 140 |
+
"17": {
|
| 141 |
+
"content": "<intermediate_to_code>",
|
| 142 |
+
"lstrip": false,
|
| 143 |
+
"normalized": false,
|
| 144 |
+
"rstrip": false,
|
| 145 |
+
"single_word": false,
|
| 146 |
+
"special": true
|
| 147 |
+
},
|
| 148 |
+
"18": {
|
| 149 |
+
"content": "<pr>",
|
| 150 |
+
"lstrip": false,
|
| 151 |
+
"normalized": false,
|
| 152 |
+
"rstrip": false,
|
| 153 |
+
"single_word": false,
|
| 154 |
+
"special": true
|
| 155 |
+
},
|
| 156 |
+
"19": {
|
| 157 |
+
"content": "<pr_status>",
|
| 158 |
+
"lstrip": false,
|
| 159 |
+
"normalized": false,
|
| 160 |
+
"rstrip": false,
|
| 161 |
+
"single_word": false,
|
| 162 |
+
"special": true
|
| 163 |
+
},
|
| 164 |
+
"20": {
|
| 165 |
+
"content": "<pr_is_merged>",
|
| 166 |
+
"lstrip": false,
|
| 167 |
+
"normalized": false,
|
| 168 |
+
"rstrip": false,
|
| 169 |
+
"single_word": false,
|
| 170 |
+
"special": true
|
| 171 |
+
},
|
| 172 |
+
"21": {
|
| 173 |
+
"content": "<pr_base>",
|
| 174 |
+
"lstrip": false,
|
| 175 |
+
"normalized": false,
|
| 176 |
+
"rstrip": false,
|
| 177 |
+
"single_word": false,
|
| 178 |
+
"special": true
|
| 179 |
+
},
|
| 180 |
+
"22": {
|
| 181 |
+
"content": "<pr_file>",
|
| 182 |
+
"lstrip": false,
|
| 183 |
+
"normalized": false,
|
| 184 |
+
"rstrip": false,
|
| 185 |
+
"single_word": false,
|
| 186 |
+
"special": true
|
| 187 |
+
},
|
| 188 |
+
"23": {
|
| 189 |
+
"content": "<pr_base_code>",
|
| 190 |
+
"lstrip": false,
|
| 191 |
+
"normalized": false,
|
| 192 |
+
"rstrip": false,
|
| 193 |
+
"single_word": false,
|
| 194 |
+
"special": true
|
| 195 |
+
},
|
| 196 |
+
"24": {
|
| 197 |
+
"content": "<pr_diff>",
|
| 198 |
+
"lstrip": false,
|
| 199 |
+
"normalized": false,
|
| 200 |
+
"rstrip": false,
|
| 201 |
+
"single_word": false,
|
| 202 |
+
"special": true
|
| 203 |
+
},
|
| 204 |
+
"25": {
|
| 205 |
+
"content": "<pr_diff_hunk>",
|
| 206 |
+
"lstrip": false,
|
| 207 |
+
"normalized": false,
|
| 208 |
+
"rstrip": false,
|
| 209 |
+
"single_word": false,
|
| 210 |
+
"special": true
|
| 211 |
+
},
|
| 212 |
+
"26": {
|
| 213 |
+
"content": "<pr_comment>",
|
| 214 |
+
"lstrip": false,
|
| 215 |
+
"normalized": false,
|
| 216 |
+
"rstrip": false,
|
| 217 |
+
"single_word": false,
|
| 218 |
+
"special": true
|
| 219 |
+
},
|
| 220 |
+
"27": {
|
| 221 |
+
"content": "<pr_event_id>",
|
| 222 |
+
"lstrip": false,
|
| 223 |
+
"normalized": false,
|
| 224 |
+
"rstrip": false,
|
| 225 |
+
"single_word": false,
|
| 226 |
+
"special": true
|
| 227 |
+
},
|
| 228 |
+
"28": {
|
| 229 |
+
"content": "<pr_review>",
|
| 230 |
+
"lstrip": false,
|
| 231 |
+
"normalized": false,
|
| 232 |
+
"rstrip": false,
|
| 233 |
+
"single_word": false,
|
| 234 |
+
"special": true
|
| 235 |
+
},
|
| 236 |
+
"29": {
|
| 237 |
+
"content": "<pr_review_state>",
|
| 238 |
+
"lstrip": false,
|
| 239 |
+
"normalized": false,
|
| 240 |
+
"rstrip": false,
|
| 241 |
+
"single_word": false,
|
| 242 |
+
"special": true
|
| 243 |
+
},
|
| 244 |
+
"30": {
|
| 245 |
+
"content": "<pr_review_comment>",
|
| 246 |
+
"lstrip": false,
|
| 247 |
+
"normalized": false,
|
| 248 |
+
"rstrip": false,
|
| 249 |
+
"single_word": false,
|
| 250 |
+
"special": true
|
| 251 |
+
},
|
| 252 |
+
"31": {
|
| 253 |
+
"content": "<pr_in_reply_to_review_id>",
|
| 254 |
+
"lstrip": false,
|
| 255 |
+
"normalized": false,
|
| 256 |
+
"rstrip": false,
|
| 257 |
+
"single_word": false,
|
| 258 |
+
"special": true
|
| 259 |
+
},
|
| 260 |
+
"32": {
|
| 261 |
+
"content": "<pr_in_reply_to_comment_id>",
|
| 262 |
+
"lstrip": false,
|
| 263 |
+
"normalized": false,
|
| 264 |
+
"rstrip": false,
|
| 265 |
+
"single_word": false,
|
| 266 |
+
"special": true
|
| 267 |
+
},
|
| 268 |
+
"33": {
|
| 269 |
+
"content": "<pr_diff_hunk_comment_line>",
|
| 270 |
+
"lstrip": false,
|
| 271 |
+
"normalized": false,
|
| 272 |
+
"rstrip": false,
|
| 273 |
+
"single_word": false,
|
| 274 |
+
"special": true
|
| 275 |
+
},
|
| 276 |
+
"34": {
|
| 277 |
+
"content": "<NAME>",
|
| 278 |
+
"lstrip": false,
|
| 279 |
+
"normalized": false,
|
| 280 |
+
"rstrip": false,
|
| 281 |
+
"single_word": false,
|
| 282 |
+
"special": true
|
| 283 |
+
},
|
| 284 |
+
"35": {
|
| 285 |
+
"content": "<EMAIL>",
|
| 286 |
+
"lstrip": false,
|
| 287 |
+
"normalized": false,
|
| 288 |
+
"rstrip": false,
|
| 289 |
+
"single_word": false,
|
| 290 |
+
"special": true
|
| 291 |
+
},
|
| 292 |
+
"36": {
|
| 293 |
+
"content": "<KEY>",
|
| 294 |
+
"lstrip": false,
|
| 295 |
+
"normalized": false,
|
| 296 |
+
"rstrip": false,
|
| 297 |
+
"single_word": false,
|
| 298 |
+
"special": true
|
| 299 |
+
},
|
| 300 |
+
"37": {
|
| 301 |
+
"content": "<PASSWORD>",
|
| 302 |
+
"lstrip": false,
|
| 303 |
+
"normalized": false,
|
| 304 |
+
"rstrip": false,
|
| 305 |
+
"single_word": false,
|
| 306 |
+
"special": true
|
| 307 |
+
}
|
| 308 |
+
},
|
| 309 |
+
"additional_special_tokens": [
|
| 310 |
+
"<|endoftext|>",
|
| 311 |
+
"<fim_prefix>",
|
| 312 |
+
"<fim_middle>",
|
| 313 |
+
"<fim_suffix>",
|
| 314 |
+
"<fim_pad>",
|
| 315 |
+
"<repo_name>",
|
| 316 |
+
"<file_sep>",
|
| 317 |
+
"<issue_start>",
|
| 318 |
+
"<issue_comment>",
|
| 319 |
+
"<issue_closed>",
|
| 320 |
+
"<jupyter_start>",
|
| 321 |
+
"<jupyter_text>",
|
| 322 |
+
"<jupyter_code>",
|
| 323 |
+
"<jupyter_output>",
|
| 324 |
+
"<jupyter_script>",
|
| 325 |
+
"<empty_output>",
|
| 326 |
+
"<code_to_intermediate>",
|
| 327 |
+
"<intermediate_to_code>",
|
| 328 |
+
"<pr>",
|
| 329 |
+
"<pr_status>",
|
| 330 |
+
"<pr_is_merged>",
|
| 331 |
+
"<pr_base>",
|
| 332 |
+
"<pr_file>",
|
| 333 |
+
"<pr_base_code>",
|
| 334 |
+
"<pr_diff>",
|
| 335 |
+
"<pr_diff_hunk>",
|
| 336 |
+
"<pr_comment>",
|
| 337 |
+
"<pr_event_id>",
|
| 338 |
+
"<pr_review>",
|
| 339 |
+
"<pr_review_state>",
|
| 340 |
+
"<pr_review_comment>",
|
| 341 |
+
"<pr_in_reply_to_review_id>",
|
| 342 |
+
"<pr_in_reply_to_comment_id>",
|
| 343 |
+
"<pr_diff_hunk_comment_line>",
|
| 344 |
+
"<NAME>",
|
| 345 |
+
"<EMAIL>",
|
| 346 |
+
"<KEY>",
|
| 347 |
+
"<PASSWORD>"
|
| 348 |
+
],
|
| 349 |
+
"bos_token": "<|endoftext|>",
|
| 350 |
+
"clean_up_tokenization_spaces": true,
|
| 351 |
+
"eos_token": "<|endoftext|>",
|
| 352 |
+
"extra_special_tokens": {},
|
| 353 |
+
"model_max_length": 1000000000000000019884624838656,
|
| 354 |
+
"pad_token": "<|endoftext|>",
|
| 355 |
+
"tokenizer_class": "GPT2Tokenizer",
|
| 356 |
+
"unk_token": "<|endoftext|>",
|
| 357 |
+
"vocab_size": 49152
|
| 358 |
+
}
|
vocab.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|