update_model_init_fp16 (#12)
Browse files- update model init with float16 (8c55fe1ada8186cc1d35785756e0e63ef1e6827a)
Co-authored-by: Haiping Wu <haipingwu@users.noreply.huggingface.co>
- README.md +9 -5
- config.json +1 -1
    	
        README.md
    CHANGED
    
    | @@ -27,7 +27,7 @@ Resources and Technical Documentation: | |
| 27 |  | 
| 28 | 
             
            ## How to Get Started with the Model
         | 
| 29 |  | 
| 30 | 
            -
            Use the code below to get started with the model.
         | 
| 31 |  | 
| 32 | 
             
            ```python
         | 
| 33 | 
             
            import requests
         | 
| @@ -35,8 +35,10 @@ import requests | |
| 35 | 
             
            from PIL import Image
         | 
| 36 | 
             
            from transformers import AutoProcessor, AutoModelForCausalLM 
         | 
| 37 |  | 
|  | |
|  | |
| 38 |  | 
| 39 | 
            -
            model = AutoModelForCausalLM.from_pretrained("microsoft/Florence-2-base", trust_remote_code=True)
         | 
| 40 | 
             
            processor = AutoProcessor.from_pretrained("microsoft/Florence-2-base", trust_remote_code=True)
         | 
| 41 |  | 
| 42 | 
             
            prompt = "<OD>"
         | 
| @@ -44,7 +46,7 @@ prompt = "<OD>" | |
| 44 | 
             
            url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/car.jpg?download=true"
         | 
| 45 | 
             
            image = Image.open(requests.get(url, stream=True).raw)
         | 
| 46 |  | 
| 47 | 
            -
            inputs = processor(text=prompt, images=image, return_tensors="pt")
         | 
| 48 |  | 
| 49 | 
             
            generated_ids = model.generate(
         | 
| 50 | 
             
                input_ids=inputs["input_ids"],
         | 
| @@ -77,8 +79,10 @@ import requests | |
| 77 | 
             
            from PIL import Image
         | 
| 78 | 
             
            from transformers import AutoProcessor, AutoModelForCausalLM 
         | 
| 79 |  | 
|  | |
|  | |
| 80 |  | 
| 81 | 
            -
            model = AutoModelForCausalLM.from_pretrained("microsoft/Florence-2-base", trust_remote_code=True)
         | 
| 82 | 
             
            processor = AutoProcessor.from_pretrained("microsoft/Florence-2-base", trust_remote_code=True)
         | 
| 83 |  | 
| 84 | 
             
            url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/car.jpg?download=true"
         | 
| @@ -89,7 +93,7 @@ def run_example(task_prompt, text_input=None): | |
| 89 | 
             
                    prompt = task_prompt
         | 
| 90 | 
             
                else:
         | 
| 91 | 
             
                    prompt = task_prompt + text_input
         | 
| 92 | 
            -
                inputs = processor(text=prompt, images=image, return_tensors="pt")
         | 
| 93 | 
             
                generated_ids = model.generate(
         | 
| 94 | 
             
                  input_ids=inputs["input_ids"],
         | 
| 95 | 
             
                  pixel_values=inputs["pixel_values"],
         | 
|  | |
| 27 |  | 
| 28 | 
             
            ## How to Get Started with the Model
         | 
| 29 |  | 
| 30 | 
            +
            Use the code below to get started with the model.  All models are trained with float16. 
         | 
| 31 |  | 
| 32 | 
             
            ```python
         | 
| 33 | 
             
            import requests
         | 
|  | |
| 35 | 
             
            from PIL import Image
         | 
| 36 | 
             
            from transformers import AutoProcessor, AutoModelForCausalLM 
         | 
| 37 |  | 
| 38 | 
            +
            device = "cuda:0" if torch.cuda.is_available() else "cpu"
         | 
| 39 | 
            +
            torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
         | 
| 40 |  | 
| 41 | 
            +
            model = AutoModelForCausalLM.from_pretrained("microsoft/Florence-2-base", torch_dtype=torch_dtype, trust_remote_code=True).to(device)
         | 
| 42 | 
             
            processor = AutoProcessor.from_pretrained("microsoft/Florence-2-base", trust_remote_code=True)
         | 
| 43 |  | 
| 44 | 
             
            prompt = "<OD>"
         | 
|  | |
| 46 | 
             
            url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/car.jpg?download=true"
         | 
| 47 | 
             
            image = Image.open(requests.get(url, stream=True).raw)
         | 
| 48 |  | 
| 49 | 
            +
            inputs = processor(text=prompt, images=image, return_tensors="pt").to(device, torch_dtype)
         | 
| 50 |  | 
| 51 | 
             
            generated_ids = model.generate(
         | 
| 52 | 
             
                input_ids=inputs["input_ids"],
         | 
|  | |
| 79 | 
             
            from PIL import Image
         | 
| 80 | 
             
            from transformers import AutoProcessor, AutoModelForCausalLM 
         | 
| 81 |  | 
| 82 | 
            +
            device = "cuda:0" if torch.cuda.is_available() else "cpu"
         | 
| 83 | 
            +
            torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
         | 
| 84 |  | 
| 85 | 
            +
            model = AutoModelForCausalLM.from_pretrained("microsoft/Florence-2-base", torch_dtype=torch_dtype, trust_remote_code=True).to(device)
         | 
| 86 | 
             
            processor = AutoProcessor.from_pretrained("microsoft/Florence-2-base", trust_remote_code=True)
         | 
| 87 |  | 
| 88 | 
             
            url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/car.jpg?download=true"
         | 
|  | |
| 93 | 
             
                    prompt = task_prompt
         | 
| 94 | 
             
                else:
         | 
| 95 | 
             
                    prompt = task_prompt + text_input
         | 
| 96 | 
            +
                inputs = processor(text=prompt, images=image, return_tensors="pt").to(device, torch_dtype)
         | 
| 97 | 
             
                generated_ids = model.generate(
         | 
| 98 | 
             
                  input_ids=inputs["input_ids"],
         | 
| 99 | 
             
                  pixel_values=inputs["pixel_values"],
         | 
    	
        config.json
    CHANGED
    
    | @@ -79,7 +79,7 @@ | |
| 79 | 
             
                "image_feature_source": ["spatial_avg_pool", "temporal_avg_pool"]
         | 
| 80 | 
             
              },
         | 
| 81 | 
             
              "vocab_size": 51289,
         | 
| 82 | 
            -
              "torch_dtype": " | 
| 83 | 
             
              "transformers_version": "4.41.0.dev0",
         | 
| 84 | 
             
              "is_encoder_decoder": true
         | 
| 85 | 
             
            }
         | 
|  | |
| 79 | 
             
                "image_feature_source": ["spatial_avg_pool", "temporal_avg_pool"]
         | 
| 80 | 
             
              },
         | 
| 81 | 
             
              "vocab_size": 51289,
         | 
| 82 | 
            +
              "torch_dtype": "float16",
         | 
| 83 | 
             
              "transformers_version": "4.41.0.dev0",
         | 
| 84 | 
             
              "is_encoder_decoder": true
         | 
| 85 | 
             
            }
         | 
