upload initial files
Browse files- CODE_OF_CONDUCT.md +9 -0
- LICENSE +22 -0
- NOTICE.md +38 -0
- SECURITY.md +41 -0
- added_tokens.json +13 -0
- config.json +178 -0
- configuration_phimoe.py +244 -0
- generation_config.json +11 -0
- model-00001-of-00017.safetensors +3 -0
- model-00002-of-00017.safetensors +3 -0
- model-00003-of-00017.safetensors +3 -0
- model-00004-of-00017.safetensors +3 -0
- model-00005-of-00017.safetensors +3 -0
- model-00006-of-00017.safetensors +3 -0
- model-00007-of-00017.safetensors +3 -0
- model-00008-of-00017.safetensors +3 -0
- model-00009-of-00017.safetensors +3 -0
- model-00010-of-00017.safetensors +3 -0
- model-00011-of-00017.safetensors +3 -0
- model-00012-of-00017.safetensors +3 -0
- model-00013-of-00017.safetensors +3 -0
- model-00014-of-00017.safetensors +3 -0
- model-00015-of-00017.safetensors +3 -0
- model-00016-of-00017.safetensors +3 -0
- model-00017-of-00017.safetensors +3 -0
- model.safetensors.index.json +0 -0
- modeling_phimoe.py +1800 -0
- sample_finetune.py +224 -0
- special_tokens_map.json +30 -0
- tokenizer.json +0 -0
- tokenizer.model +3 -0
- tokenizer_config.json +130 -0
    	
        CODE_OF_CONDUCT.md
    ADDED
    
    | @@ -0,0 +1,9 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            # Microsoft Open Source Code of Conduct
         | 
| 2 | 
            +
             | 
| 3 | 
            +
            This project has adopted the [Microsoft Open Source Code of Conduct](https://opensource.microsoft.com/codeofconduct/).
         | 
| 4 | 
            +
             | 
| 5 | 
            +
            Resources:
         | 
| 6 | 
            +
             | 
| 7 | 
            +
            - [Microsoft Open Source Code of Conduct](https://opensource.microsoft.com/codeofconduct/)
         | 
| 8 | 
            +
            - [Microsoft Code of Conduct FAQ](https://opensource.microsoft.com/codeofconduct/faq/)
         | 
| 9 | 
            +
            - Contact [opencode@microsoft.com](mailto:opencode@microsoft.com) with questions or concerns
         | 
    	
        LICENSE
    ADDED
    
    | @@ -0,0 +1,22 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            Microsoft.
         | 
| 2 | 
            +
            Copyright (c) Microsoft Corporation.
         | 
| 3 | 
            +
             | 
| 4 | 
            +
            MIT License
         | 
| 5 | 
            +
             | 
| 6 | 
            +
            Permission is hereby granted, free of charge, to any person obtaining a copy
         | 
| 7 | 
            +
            of this software and associated documentation files (the "Software"), to deal
         | 
| 8 | 
            +
            in the Software without restriction, including without limitation the rights
         | 
| 9 | 
            +
            to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
         | 
| 10 | 
            +
            copies of the Software, and to permit persons to whom the Software is
         | 
| 11 | 
            +
            furnished to do so, subject to the following conditions:
         | 
| 12 | 
            +
             | 
| 13 | 
            +
            The above copyright notice and this permission notice shall be included in all
         | 
| 14 | 
            +
            copies or substantial portions of the Software.
         | 
| 15 | 
            +
             | 
| 16 | 
            +
            THE SOFTWARE IS PROVIDED *AS IS*, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
         | 
| 17 | 
            +
            IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
         | 
| 18 | 
            +
            FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
         | 
| 19 | 
            +
            AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
         | 
| 20 | 
            +
            LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
         | 
| 21 | 
            +
            OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
         | 
| 22 | 
            +
            SOFTWARE.
         | 
    	
        NOTICE.md
    ADDED
    
    | @@ -0,0 +1,38 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            NOTICES AND INFORMATION
         | 
| 2 | 
            +
            Do Not Translate or Localize
         | 
| 3 | 
            +
             | 
| 4 | 
            +
            This software incorporates material from third parties.
         | 
| 5 | 
            +
             | 
| 6 | 
            +
            **Component.** https://github.com/Dao-AILab/flash-attention
         | 
| 7 | 
            +
             | 
| 8 | 
            +
            **Open Source License/Copyright Notice.**
         | 
| 9 | 
            +
             | 
| 10 | 
            +
            BSD 3-Clause License
         | 
| 11 | 
            +
             | 
| 12 | 
            +
            Copyright (c) 2022, the respective contributors, as shown by the AUTHORS file.
         | 
| 13 | 
            +
            All rights reserved.
         | 
| 14 | 
            +
             | 
| 15 | 
            +
            Redistribution and use in source and binary forms, with or without
         | 
| 16 | 
            +
            modification, are permitted provided that the following conditions are met:
         | 
| 17 | 
            +
             | 
| 18 | 
            +
            * Redistributions of source code must retain the above copyright notice, this
         | 
| 19 | 
            +
              list of conditions and the following disclaimer.
         | 
| 20 | 
            +
             | 
| 21 | 
            +
            * Redistributions in binary form must reproduce the above copyright notice,
         | 
| 22 | 
            +
              this list of conditions and the following disclaimer in the documentation
         | 
| 23 | 
            +
              and/or other materials provided with the distribution.
         | 
| 24 | 
            +
             | 
| 25 | 
            +
            * Neither the name of the copyright holder nor the names of its
         | 
| 26 | 
            +
              contributors may be used to endorse or promote products derived from
         | 
| 27 | 
            +
              this software without specific prior written permission.
         | 
| 28 | 
            +
             | 
| 29 | 
            +
            THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
         | 
| 30 | 
            +
            AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
         | 
| 31 | 
            +
            IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
         | 
| 32 | 
            +
            DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
         | 
| 33 | 
            +
            FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
         | 
| 34 | 
            +
            DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
         | 
| 35 | 
            +
            SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
         | 
| 36 | 
            +
            CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
         | 
| 37 | 
            +
            OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
         | 
| 38 | 
            +
            OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
         | 
    	
        SECURITY.md
    ADDED
    
    | @@ -0,0 +1,41 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            <!-- BEGIN MICROSOFT SECURITY.MD V0.0.9 BLOCK -->
         | 
| 2 | 
            +
             | 
| 3 | 
            +
            ## Security
         | 
| 4 | 
            +
             | 
| 5 | 
            +
            Microsoft takes the security of our software products and services seriously, which includes all source code repositories managed through our GitHub organizations, which include [Microsoft](https://github.com/Microsoft), [Azure](https://github.com/Azure), [DotNet](https://github.com/dotnet), [AspNet](https://github.com/aspnet) and [Xamarin](https://github.com/xamarin).
         | 
| 6 | 
            +
             | 
| 7 | 
            +
            If you believe you have found a security vulnerability in any Microsoft-owned repository that meets [Microsoft's definition of a security vulnerability](https://aka.ms/security.md/definition), please report it to us as described below.
         | 
| 8 | 
            +
             | 
| 9 | 
            +
            ## Reporting Security Issues
         | 
| 10 | 
            +
             | 
| 11 | 
            +
            **Please do not report security vulnerabilities through public GitHub issues.**
         | 
| 12 | 
            +
             | 
| 13 | 
            +
            Instead, please report them to the Microsoft Security Response Center (MSRC) at [https://msrc.microsoft.com/create-report](https://aka.ms/security.md/msrc/create-report).
         | 
| 14 | 
            +
             | 
| 15 | 
            +
            If you prefer to submit without logging in, send email to [secure@microsoft.com](mailto:secure@microsoft.com).  If possible, encrypt your message with our PGP key; please download it from the [Microsoft Security Response Center PGP Key page](https://aka.ms/security.md/msrc/pgp).
         | 
| 16 | 
            +
             | 
| 17 | 
            +
            You should receive a response within 24 hours. If for some reason you do not, please follow up via email to ensure we received your original message. Additional information can be found at [microsoft.com/msrc](https://www.microsoft.com/msrc). 
         | 
| 18 | 
            +
             | 
| 19 | 
            +
            Please include the requested information listed below (as much as you can provide) to help us better understand the nature and scope of the possible issue:
         | 
| 20 | 
            +
             | 
| 21 | 
            +
              * Type of issue (e.g. buffer overflow, SQL injection, cross-site scripting, etc.)
         | 
| 22 | 
            +
              * Full paths of source file(s) related to the manifestation of the issue
         | 
| 23 | 
            +
              * The location of the affected source code (tag/branch/commit or direct URL)
         | 
| 24 | 
            +
              * Any special configuration required to reproduce the issue
         | 
| 25 | 
            +
              * Step-by-step instructions to reproduce the issue
         | 
| 26 | 
            +
              * Proof-of-concept or exploit code (if possible)
         | 
| 27 | 
            +
              * Impact of the issue, including how an attacker might exploit the issue
         | 
| 28 | 
            +
             | 
| 29 | 
            +
            This information will help us triage your report more quickly.
         | 
| 30 | 
            +
             | 
| 31 | 
            +
            If you are reporting for a bug bounty, more complete reports can contribute to a higher bounty award. Please visit our [Microsoft Bug Bounty Program](https://aka.ms/security.md/msrc/bounty) page for more details about our active programs.
         | 
| 32 | 
            +
             | 
| 33 | 
            +
            ## Preferred Languages
         | 
| 34 | 
            +
             | 
| 35 | 
            +
            We prefer all communications to be in English.
         | 
| 36 | 
            +
             | 
| 37 | 
            +
            ## Policy
         | 
| 38 | 
            +
             | 
| 39 | 
            +
            Microsoft follows the principle of [Coordinated Vulnerability Disclosure](https://aka.ms/security.md/cvd).
         | 
| 40 | 
            +
             | 
| 41 | 
            +
            <!-- END MICROSOFT SECURITY.MD BLOCK -->
         | 
    	
        added_tokens.json
    ADDED
    
    | @@ -0,0 +1,13 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            {
         | 
| 2 | 
            +
                "<|endoftext|>": 32000,
         | 
| 3 | 
            +
                "<|assistant|>": 32001,
         | 
| 4 | 
            +
                "<|placeholder1|>": 32002,
         | 
| 5 | 
            +
                "<|placeholder2|>": 32003,
         | 
| 6 | 
            +
                "<|placeholder3|>": 32004,
         | 
| 7 | 
            +
                "<|placeholder4|>": 32005,
         | 
| 8 | 
            +
                "<|system|>": 32006,
         | 
| 9 | 
            +
                "<|end|>": 32007,
         | 
| 10 | 
            +
                "<|placeholder5|>": 32008,
         | 
| 11 | 
            +
                "<|placeholder6|>": 32009,
         | 
| 12 | 
            +
                "<|user|>": 32010
         | 
| 13 | 
            +
            }
         | 
    	
        config.json
    ADDED
    
    | @@ -0,0 +1,178 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            {
         | 
| 2 | 
            +
              "_name_or_path": "Phi-3.5-moe-instruct",
         | 
| 3 | 
            +
              "architectures": [
         | 
| 4 | 
            +
                "PhiMoEForCausalLM"
         | 
| 5 | 
            +
              ],
         | 
| 6 | 
            +
              "attention_bias": true,
         | 
| 7 | 
            +
              "attention_dropout": 0.0,
         | 
| 8 | 
            +
              "auto_map": {
         | 
| 9 | 
            +
                "AutoConfig": "configuration_phimoe.PhiMoEConfig",
         | 
| 10 | 
            +
                "AutoModelForCausalLM": "modeling_phimoe.PhiMoEForCausalLM"
         | 
| 11 | 
            +
              },
         | 
| 12 | 
            +
              "bos_token_id": 1,
         | 
| 13 | 
            +
              "eos_token_id": 32000,
         | 
| 14 | 
            +
              "hidden_act": "silu",
         | 
| 15 | 
            +
              "hidden_dropout": 0.0,
         | 
| 16 | 
            +
              "hidden_size": 4096,
         | 
| 17 | 
            +
              "initializer_range": 0.02,
         | 
| 18 | 
            +
              "input_jitter_noise": 0.01,
         | 
| 19 | 
            +
              "intermediate_size": 6400,
         | 
| 20 | 
            +
              "lm_head_bias": true,
         | 
| 21 | 
            +
              "max_position_embeddings": 131072,
         | 
| 22 | 
            +
              "model_type": "phimoe",
         | 
| 23 | 
            +
              "num_attention_heads": 32,
         | 
| 24 | 
            +
              "num_experts_per_tok": 2,
         | 
| 25 | 
            +
              "num_hidden_layers": 32,
         | 
| 26 | 
            +
              "num_key_value_heads": 8,
         | 
| 27 | 
            +
              "num_local_experts": 16,
         | 
| 28 | 
            +
              "original_max_position_embeddings": 4096,
         | 
| 29 | 
            +
              "output_router_logits": false,
         | 
| 30 | 
            +
              "rms_norm_eps": 1e-05,
         | 
| 31 | 
            +
              "rope_scaling": {
         | 
| 32 | 
            +
                "long_factor": [
         | 
| 33 | 
            +
                  1.0199999809265137,
         | 
| 34 | 
            +
                  1.0299999713897705,
         | 
| 35 | 
            +
                  1.0399999618530273,
         | 
| 36 | 
            +
                  1.0499999523162842,
         | 
| 37 | 
            +
                  1.0499999523162842,
         | 
| 38 | 
            +
                  1.0499999523162842,
         | 
| 39 | 
            +
                  1.059999942779541,
         | 
| 40 | 
            +
                  1.059999942779541,
         | 
| 41 | 
            +
                  1.059999942779541,
         | 
| 42 | 
            +
                  1.059999942779541,
         | 
| 43 | 
            +
                  1.059999942779541,
         | 
| 44 | 
            +
                  1.059999942779541,
         | 
| 45 | 
            +
                  1.0999999046325684,
         | 
| 46 | 
            +
                  1.1799999475479126,
         | 
| 47 | 
            +
                  1.1799999475479126,
         | 
| 48 | 
            +
                  1.3700000047683716,
         | 
| 49 | 
            +
                  1.4899998903274536,
         | 
| 50 | 
            +
                  2.109999895095825,
         | 
| 51 | 
            +
                  2.8899998664855957,
         | 
| 52 | 
            +
                  3.9499998092651367,
         | 
| 53 | 
            +
                  4.299999713897705,
         | 
| 54 | 
            +
                  6.429999828338623,
         | 
| 55 | 
            +
                  8.09000015258789,
         | 
| 56 | 
            +
                  10.690000534057617,
         | 
| 57 | 
            +
                  12.050000190734863,
         | 
| 58 | 
            +
                  18.229999542236328,
         | 
| 59 | 
            +
                  18.84000015258789,
         | 
| 60 | 
            +
                  19.899999618530273,
         | 
| 61 | 
            +
                  21.420000076293945,
         | 
| 62 | 
            +
                  26.200000762939453,
         | 
| 63 | 
            +
                  34.28000259399414,
         | 
| 64 | 
            +
                  34.590003967285156,
         | 
| 65 | 
            +
                  38.730003356933594,
         | 
| 66 | 
            +
                  40.22000503540039,
         | 
| 67 | 
            +
                  42.54000473022461,
         | 
| 68 | 
            +
                  44.000003814697266,
         | 
| 69 | 
            +
                  47.590003967285156,
         | 
| 70 | 
            +
                  54.750003814697266,
         | 
| 71 | 
            +
                  56.19000244140625,
         | 
| 72 | 
            +
                  57.44000244140625,
         | 
| 73 | 
            +
                  57.4900016784668,
         | 
| 74 | 
            +
                  61.20000076293945,
         | 
| 75 | 
            +
                  61.540000915527344,
         | 
| 76 | 
            +
                  61.75,
         | 
| 77 | 
            +
                  61.779998779296875,
         | 
| 78 | 
            +
                  62.06999969482422,
         | 
| 79 | 
            +
                  63.11000061035156,
         | 
| 80 | 
            +
                  63.43000030517578,
         | 
| 81 | 
            +
                  63.560001373291016,
         | 
| 82 | 
            +
                  63.71000289916992,
         | 
| 83 | 
            +
                  63.92000198364258,
         | 
| 84 | 
            +
                  63.94000244140625,
         | 
| 85 | 
            +
                  63.94000244140625,
         | 
| 86 | 
            +
                  63.96000289916992,
         | 
| 87 | 
            +
                  63.980003356933594,
         | 
| 88 | 
            +
                  64.0300064086914,
         | 
| 89 | 
            +
                  64.0300064086914,
         | 
| 90 | 
            +
                  64.0300064086914,
         | 
| 91 | 
            +
                  64.04000854492188,
         | 
| 92 | 
            +
                  64.10000610351562,
         | 
| 93 | 
            +
                  64.19000244140625,
         | 
| 94 | 
            +
                  64.20999908447266,
         | 
| 95 | 
            +
                  64.75,
         | 
| 96 | 
            +
                  64.95999908447266
         | 
| 97 | 
            +
                ],
         | 
| 98 | 
            +
                "long_mscale": 1.243163121016122,
         | 
| 99 | 
            +
                "original_max_position_embeddings": 4096,
         | 
| 100 | 
            +
                "short_factor": [
         | 
| 101 | 
            +
                  1.0,
         | 
| 102 | 
            +
                  1.0399999618530273,
         | 
| 103 | 
            +
                  1.0399999618530273,
         | 
| 104 | 
            +
                  1.0399999618530273,
         | 
| 105 | 
            +
                  1.0499999523162842,
         | 
| 106 | 
            +
                  1.0499999523162842,
         | 
| 107 | 
            +
                  1.0499999523162842,
         | 
| 108 | 
            +
                  1.0499999523162842,
         | 
| 109 | 
            +
                  1.0499999523162842,
         | 
| 110 | 
            +
                  1.0499999523162842,
         | 
| 111 | 
            +
                  1.0499999523162842,
         | 
| 112 | 
            +
                  1.0499999523162842,
         | 
| 113 | 
            +
                  1.0499999523162842,
         | 
| 114 | 
            +
                  1.0499999523162842,
         | 
| 115 | 
            +
                  1.059999942779541,
         | 
| 116 | 
            +
                  1.059999942779541,
         | 
| 117 | 
            +
                  1.0699999332427979,
         | 
| 118 | 
            +
                  1.0699999332427979,
         | 
| 119 | 
            +
                  1.0699999332427979,
         | 
| 120 | 
            +
                  1.0699999332427979,
         | 
| 121 | 
            +
                  1.1399999856948853,
         | 
| 122 | 
            +
                  1.159999966621399,
         | 
| 123 | 
            +
                  1.159999966621399,
         | 
| 124 | 
            +
                  1.159999966621399,
         | 
| 125 | 
            +
                  1.159999966621399,
         | 
| 126 | 
            +
                  1.1799999475479126,
         | 
| 127 | 
            +
                  1.1999999284744263,
         | 
| 128 | 
            +
                  1.3199999332427979,
         | 
| 129 | 
            +
                  1.3399999141693115,
         | 
| 130 | 
            +
                  1.3499999046325684,
         | 
| 131 | 
            +
                  1.3999998569488525,
         | 
| 132 | 
            +
                  1.4799998998641968,
         | 
| 133 | 
            +
                  1.4999998807907104,
         | 
| 134 | 
            +
                  1.589999794960022,
         | 
| 135 | 
            +
                  1.6499998569488525,
         | 
| 136 | 
            +
                  1.71999990940094,
         | 
| 137 | 
            +
                  1.8999998569488525,
         | 
| 138 | 
            +
                  1.9099998474121094,
         | 
| 139 | 
            +
                  1.9099998474121094,
         | 
| 140 | 
            +
                  1.9899998903274536,
         | 
| 141 | 
            +
                  1.9999998807907104,
         | 
| 142 | 
            +
                  1.9999998807907104,
         | 
| 143 | 
            +
                  2.009999990463257,
         | 
| 144 | 
            +
                  2.009999990463257,
         | 
| 145 | 
            +
                  2.009999990463257,
         | 
| 146 | 
            +
                  2.009999990463257,
         | 
| 147 | 
            +
                  2.009999990463257,
         | 
| 148 | 
            +
                  2.009999990463257,
         | 
| 149 | 
            +
                  2.009999990463257,
         | 
| 150 | 
            +
                  2.009999990463257,
         | 
| 151 | 
            +
                  2.009999990463257,
         | 
| 152 | 
            +
                  2.009999990463257,
         | 
| 153 | 
            +
                  2.009999990463257,
         | 
| 154 | 
            +
                  2.009999990463257,
         | 
| 155 | 
            +
                  2.009999990463257,
         | 
| 156 | 
            +
                  2.009999990463257,
         | 
| 157 | 
            +
                  2.009999990463257,
         | 
| 158 | 
            +
                  2.009999990463257,
         | 
| 159 | 
            +
                  2.009999990463257,
         | 
| 160 | 
            +
                  2.0999999046325684,
         | 
| 161 | 
            +
                  2.319999933242798,
         | 
| 162 | 
            +
                  2.419999837875366,
         | 
| 163 | 
            +
                  2.5899999141693115,
         | 
| 164 | 
            +
                  2.7899999618530273
         | 
| 165 | 
            +
                ],
         | 
| 166 | 
            +
                "short_mscale": 1.243163121016122,
         | 
| 167 | 
            +
                "type": "longrope"
         | 
| 168 | 
            +
              },
         | 
| 169 | 
            +
              "rope_theta": 10000.0,
         | 
| 170 | 
            +
              "router_aux_loss_coef": 0.0,
         | 
| 171 | 
            +
              "router_jitter_noise": 0.01,
         | 
| 172 | 
            +
              "sliding_window": 131072,
         | 
| 173 | 
            +
              "tie_word_embeddings": false,
         | 
| 174 | 
            +
              "torch_dtype": "bfloat16",
         | 
| 175 | 
            +
              "transformers_version": "4.43.3",
         | 
| 176 | 
            +
              "use_cache": true,
         | 
| 177 | 
            +
              "vocab_size": 32064
         | 
| 178 | 
            +
            }
         | 
    	
        configuration_phimoe.py
    ADDED
    
    | @@ -0,0 +1,244 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            # coding=utf-8
         | 
| 2 | 
            +
            # Copyright 2024 Microsoft and the HuggingFace Inc. team. All rights reserved.
         | 
| 3 | 
            +
            #
         | 
| 4 | 
            +
            # Licensed under the Apache License, Version 2.0 (the "License");
         | 
| 5 | 
            +
            # you may not use this file except in compliance with the License.
         | 
| 6 | 
            +
            # You may obtain a copy of the License at
         | 
| 7 | 
            +
            #
         | 
| 8 | 
            +
            #     http://www.apache.org/licenses/LICENSE-2.0
         | 
| 9 | 
            +
            #
         | 
| 10 | 
            +
            # Unless required by applicable law or agreed to in writing, software
         | 
| 11 | 
            +
            # distributed under the License is distributed on an "AS IS" BASIS,
         | 
| 12 | 
            +
            # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
         | 
| 13 | 
            +
            # See the License for the specific language governing permissions and
         | 
| 14 | 
            +
            # limitations under the License.
         | 
| 15 | 
            +
             | 
| 16 | 
            +
            """ PyTorch Phi-MoE model."""
         | 
| 17 | 
            +
             | 
| 18 | 
            +
             | 
| 19 | 
            +
            from transformers.configuration_utils import PretrainedConfig
         | 
| 20 | 
            +
            from transformers.utils import logging
         | 
| 21 | 
            +
             | 
| 22 | 
            +
             | 
| 23 | 
            +
            logger = logging.get_logger(__name__)
         | 
| 24 | 
            +
             | 
| 25 | 
            +
             | 
| 26 | 
            +
            PHIMOE_PRETRAINED_CONFIG_ARCHIVE_MAP = {
         | 
| 27 | 
            +
                "microsoft/Phi-3.5-moe-instruct": "https://huggingface.co/microsoft/Phi-3.5-moe-instruct/resolve/main/config.json",
         | 
| 28 | 
            +
            }
         | 
| 29 | 
            +
             | 
| 30 | 
            +
            class PhiMoEConfig(PretrainedConfig):
         | 
| 31 | 
            +
                r"""
         | 
| 32 | 
            +
                This is the configuration class to store the configuration of a [`PhiMoEModel`]. It is used to instantiate a Phi-MoE
         | 
| 33 | 
            +
                model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
         | 
| 34 | 
            +
                defaults will yield a similar configuration to that of the
         | 
| 35 | 
            +
                [microsoft/Phi-3.5-moe-instruct](https://huggingface.co/microsoft/Phi-3.5-moe-instruct).
         | 
| 36 | 
            +
             | 
| 37 | 
            +
                Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
         | 
| 38 | 
            +
                documentation from [`PretrainedConfig`] for more information.
         | 
| 39 | 
            +
             | 
| 40 | 
            +
             | 
| 41 | 
            +
                Args:
         | 
| 42 | 
            +
                    vocab_size (`int`, *optional*, defaults to 32064):
         | 
| 43 | 
            +
                        Vocabulary size of the PhiMoE model. Defines the number of different tokens that can be represented by the
         | 
| 44 | 
            +
                        `inputs_ids` passed when calling [`PhiMoEModel`]
         | 
| 45 | 
            +
                    hidden_size (`int`, *optional*, defaults to 4096):
         | 
| 46 | 
            +
                        Dimension of the hidden representations.
         | 
| 47 | 
            +
                    intermediate_size (`int`, *optional*, defaults to 6400):
         | 
| 48 | 
            +
                        Dimension of the MLP representations.
         | 
| 49 | 
            +
                    num_hidden_layers (`int`, *optional*, defaults to 32):
         | 
| 50 | 
            +
                        Number of hidden layers in the Transformer encoder.
         | 
| 51 | 
            +
                    num_attention_heads (`int`, *optional*, defaults to 32):
         | 
| 52 | 
            +
                        Number of attention heads for each attention layer in the Transformer encoder.
         | 
| 53 | 
            +
                    num_key_value_heads (`int`, *optional*, defaults to 8):
         | 
| 54 | 
            +
                        This is the number of key_value heads that should be used to implement Grouped Query Attention. If
         | 
| 55 | 
            +
                        `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
         | 
| 56 | 
            +
                        `num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
         | 
| 57 | 
            +
                        converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
         | 
| 58 | 
            +
                        by meanpooling all the original heads within that group. For more details checkout [this
         | 
| 59 | 
            +
                        paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to `8`.
         | 
| 60 | 
            +
                    hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
         | 
| 61 | 
            +
                        The non-linear activation function (function or string) in the decoder.
         | 
| 62 | 
            +
                    max_position_embeddings (`int`, *optional*, defaults to `4096*32`):
         | 
| 63 | 
            +
                        The maximum sequence length that this model might ever be used with. Mixtral's sliding window attention
         | 
| 64 | 
            +
                        allows sequence of up to 4096*32 tokens.
         | 
| 65 | 
            +
                    initializer_range (`float`, *optional*, defaults to 0.02):
         | 
| 66 | 
            +
                        The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
         | 
| 67 | 
            +
                    rms_norm_eps (`float`, *optional*, defaults to 1e-05):
         | 
| 68 | 
            +
                        The epsilon used by the rms normalization layers.
         | 
| 69 | 
            +
                    use_cache (`bool`, *optional*, defaults to `True`):
         | 
| 70 | 
            +
                        Whether or not the model should return the last key/values attentions (not used by all models). Only
         | 
| 71 | 
            +
                        relevant if `config.is_decoder=True`.
         | 
| 72 | 
            +
                    pad_token_id (`int`, *optional*):
         | 
| 73 | 
            +
                        The id of the padding token.
         | 
| 74 | 
            +
                    bos_token_id (`int`, *optional*, defaults to 1):
         | 
| 75 | 
            +
                        The id of the "beginning-of-sequence" token.
         | 
| 76 | 
            +
                    eos_token_id (`int`, *optional*, defaults to 2):
         | 
| 77 | 
            +
                        The id of the "end-of-sequence" token.
         | 
| 78 | 
            +
                    tie_word_embeddings (`bool`, *optional*, defaults to `False`):
         | 
| 79 | 
            +
                        Whether the model's input and output word embeddings should be tied.
         | 
| 80 | 
            +
                    rope_theta (`float`, *optional*, defaults to 10000.0):
         | 
| 81 | 
            +
                        The base period of the RoPE embeddings.
         | 
| 82 | 
            +
                    rope_scaling (`dict`, *optional*):
         | 
| 83 | 
            +
                        The scaling strategy for the RoPE embeddings. If `None`, no scaling is applied. If a dictionary, it must
         | 
| 84 | 
            +
                        contain the following keys: `type`, `short_factor`, `long_factor`, `short_mscale`, `long_mscale` and
         | 
| 85 | 
            +
                        `original_max_position_embeddings`. The `type` must be `longrope`, the `short_mscale` and `long_scale` must
         | 
| 86 | 
            +
                        be numbers, the `short_factor` and `long_factor` must be lists of numbers with the same length as half of
         | 
| 87 | 
            +
                        the attention head size and the `original_max_position_embeddings` must be an integer.
         | 
| 88 | 
            +
                    sliding_window (`int`, *optional*):
         | 
| 89 | 
            +
                        Sliding window attention window size. If not specified, will default to `262144`.
         | 
| 90 | 
            +
                    attention_dropout (`float`, *optional*, defaults to 0.0):
         | 
| 91 | 
            +
                        The dropout ratio for the attention probabilities.
         | 
| 92 | 
            +
                    num_experts_per_tok (`int`, *optional*, defaults to 2):
         | 
| 93 | 
            +
                        The number of experts to root per-token, can be also interpreted as the `top-p` routing
         | 
| 94 | 
            +
                        parameter
         | 
| 95 | 
            +
                    num_local_experts (`int`, *optional*, defaults to 16):
         | 
| 96 | 
            +
                        Number of experts per Sparse MLP layer.
         | 
| 97 | 
            +
                    output_router_logits (`bool`, *optional*, defaults to `False`):
         | 
| 98 | 
            +
                        Whether or not the router logits should be returned by the model. Enabeling this will also
         | 
| 99 | 
            +
                        allow the model to output the auxiliary loss. See [here]() for more details
         | 
| 100 | 
            +
                    router_aux_loss_coef (`float`, *optional*, defaults to 0.0):
         | 
| 101 | 
            +
                        The aux loss factor for the total loss.
         | 
| 102 | 
            +
                    router_jitter_noise (`float`, *optional*, defaults to 0.01):
         | 
| 103 | 
            +
                        Amount of noise to add to the router.
         | 
| 104 | 
            +
             | 
| 105 | 
            +
                ```python
         | 
| 106 | 
            +
                >>> from transformers import PhiMoEModel, PhiMoEConfig
         | 
| 107 | 
            +
             | 
| 108 | 
            +
                >>> # Initializing a Phi-3 style configuration
         | 
| 109 | 
            +
                >>> configuration = PhiMoEConfig.from_pretrained("microsoft/Phi-3.5-moe-instruct")
         | 
| 110 | 
            +
             | 
| 111 | 
            +
                >>> # Initializing a model from the configuration
         | 
| 112 | 
            +
                >>> model = PhiMoEModel(configuration)
         | 
| 113 | 
            +
             | 
| 114 | 
            +
                >>> # Accessing the model configuration
         | 
| 115 | 
            +
                >>> configuration = model.config
         | 
| 116 | 
            +
                ```"""
         | 
| 117 | 
            +
                
         | 
| 118 | 
            +
                model_type = "phimoe"
         | 
| 119 | 
            +
                keys_to_ignore_at_inference = ["past_key_values"]
         | 
| 120 | 
            +
             | 
| 121 | 
            +
                def __init__(
         | 
| 122 | 
            +
                    self,
         | 
| 123 | 
            +
                    vocab_size=32064,
         | 
| 124 | 
            +
                    hidden_size=4096,
         | 
| 125 | 
            +
                    intermediate_size=6400,
         | 
| 126 | 
            +
                    num_hidden_layers=32,
         | 
| 127 | 
            +
                    num_attention_heads=32,
         | 
| 128 | 
            +
                    num_key_value_heads=8,
         | 
| 129 | 
            +
                    hidden_act="silu",
         | 
| 130 | 
            +
                    max_position_embeddings=4096 * 32,
         | 
| 131 | 
            +
                    initializer_range=0.02,
         | 
| 132 | 
            +
                    rms_norm_eps=1e-5,
         | 
| 133 | 
            +
                    use_cache=True,
         | 
| 134 | 
            +
                    pad_token_id=None,
         | 
| 135 | 
            +
                    bos_token_id=1,
         | 
| 136 | 
            +
                    eos_token_id=2,
         | 
| 137 | 
            +
                    tie_word_embeddings=False,
         | 
| 138 | 
            +
                    rope_theta=1e6,
         | 
| 139 | 
            +
                    rope_scaling=None,
         | 
| 140 | 
            +
                    sliding_window=None,
         | 
| 141 | 
            +
                    attention_dropout=0.0,
         | 
| 142 | 
            +
                    num_experts_per_tok=2,
         | 
| 143 | 
            +
                    num_local_experts=16,
         | 
| 144 | 
            +
                    output_router_logits=False,
         | 
| 145 | 
            +
                    router_aux_loss_coef=0.001,
         | 
| 146 | 
            +
                    router_jitter_noise=0.01,
         | 
| 147 | 
            +
                    input_jitter_noise=0.0,
         | 
| 148 | 
            +
                    attention_bias = False,
         | 
| 149 | 
            +
                    lm_head_bias = False,
         | 
| 150 | 
            +
                    **kwargs,
         | 
| 151 | 
            +
                ):
         | 
| 152 | 
            +
                    self.vocab_size = vocab_size
         | 
| 153 | 
            +
                    self.max_position_embeddings = max_position_embeddings
         | 
| 154 | 
            +
                    self.hidden_size = hidden_size
         | 
| 155 | 
            +
                    self.intermediate_size = intermediate_size
         | 
| 156 | 
            +
                    self.num_hidden_layers = num_hidden_layers
         | 
| 157 | 
            +
                    self.num_attention_heads = num_attention_heads
         | 
| 158 | 
            +
                    self.sliding_window = sliding_window
         | 
| 159 | 
            +
                    self.attention_bias = attention_bias
         | 
| 160 | 
            +
                    self.lm_head_bias = lm_head_bias
         | 
| 161 | 
            +
                    # for backward compatibility
         | 
| 162 | 
            +
                    if num_key_value_heads is None:
         | 
| 163 | 
            +
                        num_key_value_heads = num_attention_heads
         | 
| 164 | 
            +
             | 
| 165 | 
            +
                    self.num_key_value_heads = num_key_value_heads
         | 
| 166 | 
            +
                    self.hidden_act = hidden_act
         | 
| 167 | 
            +
                    self.initializer_range = initializer_range
         | 
| 168 | 
            +
                    self.rms_norm_eps = rms_norm_eps
         | 
| 169 | 
            +
                    self.use_cache = use_cache
         | 
| 170 | 
            +
                    self.rope_theta = rope_theta
         | 
| 171 | 
            +
                    self.attention_dropout = attention_dropout
         | 
| 172 | 
            +
             | 
| 173 | 
            +
                    self.num_experts_per_tok = num_experts_per_tok
         | 
| 174 | 
            +
                    self.num_local_experts = num_local_experts
         | 
| 175 | 
            +
                    self.output_router_logits = output_router_logits
         | 
| 176 | 
            +
                    self.router_aux_loss_coef = router_aux_loss_coef
         | 
| 177 | 
            +
                    self.router_jitter_noise = router_jitter_noise
         | 
| 178 | 
            +
                    self.input_jitter_noise = input_jitter_noise
         | 
| 179 | 
            +
             | 
| 180 | 
            +
                    self.rope_scaling = rope_scaling
         | 
| 181 | 
            +
                    self._rope_scaling_validation()
         | 
| 182 | 
            +
             | 
| 183 | 
            +
                    super().__init__(
         | 
| 184 | 
            +
                        pad_token_id=pad_token_id,
         | 
| 185 | 
            +
                        bos_token_id=bos_token_id,
         | 
| 186 | 
            +
                        eos_token_id=eos_token_id,
         | 
| 187 | 
            +
                        tie_word_embeddings=tie_word_embeddings,
         | 
| 188 | 
            +
                        **kwargs,
         | 
| 189 | 
            +
                    )
         | 
| 190 | 
            +
             | 
| 191 | 
            +
                def _rope_scaling_validation(self):
         | 
| 192 | 
            +
                    """
         | 
| 193 | 
            +
                    Validate the `rope_scaling` configuration.
         | 
| 194 | 
            +
                    """
         | 
| 195 | 
            +
                    if self.rope_scaling is None:
         | 
| 196 | 
            +
                        return
         | 
| 197 | 
            +
             | 
| 198 | 
            +
                    if not isinstance(self.rope_scaling, dict) or len(self.rope_scaling) != 6:
         | 
| 199 | 
            +
                        raise ValueError(
         | 
| 200 | 
            +
                            "`rope_scaling` must be a dictionary with three fields, `type`, `short_factor`, `long_factor`, "
         | 
| 201 | 
            +
                            f"`short_mscale`, `long_mscale` and `original_max_position_embeddings`, got {self.rope_scaling}"
         | 
| 202 | 
            +
                        )
         | 
| 203 | 
            +
                    rope_scaling_type = self.rope_scaling.get("type", None)
         | 
| 204 | 
            +
                    rope_scaling_short_factor = self.rope_scaling.get("short_factor", None)
         | 
| 205 | 
            +
                    rope_scaling_long_factor = self.rope_scaling.get("long_factor", None)
         | 
| 206 | 
            +
                    rope_scaling_short_mscale = self.rope_scaling.get("short_mscale", None)
         | 
| 207 | 
            +
                    rope_scaling_long_mscale = self.rope_scaling.get("long_mscale", None)
         | 
| 208 | 
            +
                    original_max_position_embeddings = self.rope_scaling.get("original_max_position_embeddings", None)
         | 
| 209 | 
            +
                    if rope_scaling_type is None or rope_scaling_type not in ["longrope"]:
         | 
| 210 | 
            +
                        raise ValueError(f"`rope_scaling`'s type field must be one of ['longrope'], got {rope_scaling_type}")
         | 
| 211 | 
            +
                    if not (
         | 
| 212 | 
            +
                        isinstance(rope_scaling_short_factor, list)
         | 
| 213 | 
            +
                        and all(isinstance(x, (int, float)) for x in rope_scaling_short_factor)
         | 
| 214 | 
            +
                    ):
         | 
| 215 | 
            +
                        raise ValueError(
         | 
| 216 | 
            +
                            f"`rope_scaling`'s short_factor field must be a list of numbers, got {rope_scaling_short_factor}"
         | 
| 217 | 
            +
                        )
         | 
| 218 | 
            +
                    if not len(rope_scaling_short_factor) == self.hidden_size // self.num_attention_heads // 2:
         | 
| 219 | 
            +
                        raise ValueError(
         | 
| 220 | 
            +
                            f"`rope_scaling`'s short_factor field must have length {self.hidden_size // self.num_attention_heads // 2}, got {len(rope_scaling_short_factor)}"
         | 
| 221 | 
            +
                        )
         | 
| 222 | 
            +
                    if not (
         | 
| 223 | 
            +
                        isinstance(rope_scaling_long_factor, list)
         | 
| 224 | 
            +
                        and all(isinstance(x, (int, float)) for x in rope_scaling_long_factor)
         | 
| 225 | 
            +
                    ):
         | 
| 226 | 
            +
                        raise ValueError(
         | 
| 227 | 
            +
                            f"`rope_scaling`'s long_factor field must be a list of numbers, got {rope_scaling_long_factor}"
         | 
| 228 | 
            +
                        )
         | 
| 229 | 
            +
                    if not len(rope_scaling_long_factor) == self.hidden_size // self.num_attention_heads // 2:
         | 
| 230 | 
            +
                        raise ValueError(
         | 
| 231 | 
            +
                            f"`rope_scaling`'s long_factor field must have length {self.hidden_size // self.num_attention_heads // 2}, got {len(rope_scaling_long_factor)}"
         | 
| 232 | 
            +
                        )
         | 
| 233 | 
            +
                    if not isinstance(rope_scaling_short_mscale, (int, float)):
         | 
| 234 | 
            +
                        raise ValueError(
         | 
| 235 | 
            +
                            f"`rope_scaling`'s short_mscale field must be a number, got {rope_scaling_short_mscale}"
         | 
| 236 | 
            +
                        )
         | 
| 237 | 
            +
                    if not isinstance(rope_scaling_long_mscale, (int, float)):
         | 
| 238 | 
            +
                        raise ValueError(
         | 
| 239 | 
            +
                            f"`rope_scaling`'s long_mscale field must be a number, got {rope_scaling_long_mscale}"
         | 
| 240 | 
            +
                        )
         | 
| 241 | 
            +
                    if not isinstance(original_max_position_embeddings, int):
         | 
| 242 | 
            +
                        raise ValueError(
         | 
| 243 | 
            +
                            f"`rope_scaling`'s original_max_position_embeddings field must be an integer, got {original_max_position_embeddings}"
         | 
| 244 | 
            +
                        )
         | 
    	
        generation_config.json
    ADDED
    
    | @@ -0,0 +1,11 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            {
         | 
| 2 | 
            +
                "_from_model_config": true,
         | 
| 3 | 
            +
                "bos_token_id": 1,
         | 
| 4 | 
            +
                "eos_token_id": [
         | 
| 5 | 
            +
                    32000,
         | 
| 6 | 
            +
                    32001,
         | 
| 7 | 
            +
                    32007
         | 
| 8 | 
            +
                ],
         | 
| 9 | 
            +
                "transformers_version": "4.43.3",
         | 
| 10 | 
            +
                "pad_token_id": 32000
         | 
| 11 | 
            +
            }
         | 
    	
        model-00001-of-00017.safetensors
    ADDED
    
    | @@ -0,0 +1,3 @@ | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            version https://git-lfs.github.com/spec/v1
         | 
| 2 | 
            +
            oid sha256:7a2a38dddac2bec339a66038c1ce134c6b2d95dd9ae7a5c413e3de58bd9db05f
         | 
| 3 | 
            +
            size 4992095880
         | 
    	
        model-00002-of-00017.safetensors
    ADDED
    
    | @@ -0,0 +1,3 @@ | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            version https://git-lfs.github.com/spec/v1
         | 
| 2 | 
            +
            oid sha256:afd870833e845abeafe3b113681ead38aa7793f6254a4ec0cf5ffc3ee228980d
         | 
| 3 | 
            +
            size 4991605352
         | 
    	
        model-00003-of-00017.safetensors
    ADDED
    
    | @@ -0,0 +1,3 @@ | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            version https://git-lfs.github.com/spec/v1
         | 
| 2 | 
            +
            oid sha256:975c103d00185c0a9a18428b07fe5ac43accb425688505eef5f0c3e6fe5feb32
         | 
| 3 | 
            +
            size 4991605352
         | 
    	
        model-00004-of-00017.safetensors
    ADDED
    
    | @@ -0,0 +1,3 @@ | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            version https://git-lfs.github.com/spec/v1
         | 
| 2 | 
            +
            oid sha256:a66a9092c3db38fcfbab5f95ecaf44e6bd00d65ba51073696284db1685bd9d5e
         | 
| 3 | 
            +
            size 4991605352
         | 
    	
        model-00005-of-00017.safetensors
    ADDED
    
    | @@ -0,0 +1,3 @@ | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            version https://git-lfs.github.com/spec/v1
         | 
| 2 | 
            +
            oid sha256:ba2adfeab2a7ab223827bb2d897414dc2824c67702890b6f9eb993ac6ecd2d20
         | 
| 3 | 
            +
            size 4991605360
         | 
    	
        model-00006-of-00017.safetensors
    ADDED
    
    | @@ -0,0 +1,3 @@ | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            version https://git-lfs.github.com/spec/v1
         | 
| 2 | 
            +
            oid sha256:108066de41d72313733781039fa3f92d13770b53e509761c0a96f28f60eff04f
         | 
| 3 | 
            +
            size 4991605448
         | 
    	
        model-00007-of-00017.safetensors
    ADDED
    
    | @@ -0,0 +1,3 @@ | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            version https://git-lfs.github.com/spec/v1
         | 
| 2 | 
            +
            oid sha256:8e46cf6d73bf6aed908ac77b69907326d5dd53f73d44efa21e987658d6b910c5
         | 
| 3 | 
            +
            size 4991605480
         | 
    	
        model-00008-of-00017.safetensors
    ADDED
    
    | @@ -0,0 +1,3 @@ | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            version https://git-lfs.github.com/spec/v1
         | 
| 2 | 
            +
            oid sha256:07e31965b1d580fbc731cfcf6f06ad165018705d322ee16c85db096d2dee9e0a
         | 
| 3 | 
            +
            size 4991605480
         | 
    	
        model-00009-of-00017.safetensors
    ADDED
    
    | @@ -0,0 +1,3 @@ | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            version https://git-lfs.github.com/spec/v1
         | 
| 2 | 
            +
            oid sha256:0ae70cc917acd6f28e23bffef7c8f784e2ea2106a1cd954cc308fecd55a63db1
         | 
| 3 | 
            +
            size 4991605480
         | 
    	
        model-00010-of-00017.safetensors
    ADDED
    
    | @@ -0,0 +1,3 @@ | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            version https://git-lfs.github.com/spec/v1
         | 
| 2 | 
            +
            oid sha256:8d782af17c36e83d981aa7a07cb0e0063b8956855f66158bf44410774e0161c0
         | 
| 3 | 
            +
            size 4991605480
         | 
    	
        model-00011-of-00017.safetensors
    ADDED
    
    | @@ -0,0 +1,3 @@ | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            version https://git-lfs.github.com/spec/v1
         | 
| 2 | 
            +
            oid sha256:512fbacfba567133a119fc8754194651e492c9cfe04cac8adb64fb630cb38c57
         | 
| 3 | 
            +
            size 4993558592
         | 
    	
        model-00012-of-00017.safetensors
    ADDED
    
    | @@ -0,0 +1,3 @@ | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            version https://git-lfs.github.com/spec/v1
         | 
| 2 | 
            +
            oid sha256:f4fa1d225920b80645b4018cc8fe87299f0ef5107e3352805827ddf490487d82
         | 
| 3 | 
            +
            size 4958009392
         | 
    	
        model-00013-of-00017.safetensors
    ADDED
    
    | @@ -0,0 +1,3 @@ | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            version https://git-lfs.github.com/spec/v1
         | 
| 2 | 
            +
            oid sha256:1db195a922ebfde60f1e94194808ddccd73633571462b9afc00365d74bc74834
         | 
| 3 | 
            +
            size 4991605472
         | 
    	
        model-00014-of-00017.safetensors
    ADDED
    
    | @@ -0,0 +1,3 @@ | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            version https://git-lfs.github.com/spec/v1
         | 
| 2 | 
            +
            oid sha256:06d87c9b7aabd0ba7d564c208322ed681eb03a0fa1133f2c91771371060adf5e
         | 
| 3 | 
            +
            size 4991605472
         | 
    	
        model-00015-of-00017.safetensors
    ADDED
    
    | @@ -0,0 +1,3 @@ | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            version https://git-lfs.github.com/spec/v1
         | 
| 2 | 
            +
            oid sha256:4b5d6e7ea18615f1aa6c8bd49dc96a3d3514bfbd16fcc68973806e08b293c28c
         | 
| 3 | 
            +
            size 4991605472
         | 
    	
        model-00016-of-00017.safetensors
    ADDED
    
    | @@ -0,0 +1,3 @@ | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            version https://git-lfs.github.com/spec/v1
         | 
| 2 | 
            +
            oid sha256:bc74d530dbfa2ba36335d8268705b4c7459eddb43891f084241c52edcb0d324c
         | 
| 3 | 
            +
            size 4991605472
         | 
    	
        model-00017-of-00017.safetensors
    ADDED
    
    | @@ -0,0 +1,3 @@ | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            version https://git-lfs.github.com/spec/v1
         | 
| 2 | 
            +
            oid sha256:e1d4d7793e752a874b923bf988734eec919fe8f4317d4a124f30564c85ded637
         | 
| 3 | 
            +
            size 3912021632
         | 
    	
        model.safetensors.index.json
    ADDED
    
    | The diff for this file is too large to render. 
		See raw diff | 
|  | 
    	
        modeling_phimoe.py
    ADDED
    
    | @@ -0,0 +1,1800 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            # coding=utf-8
         | 
| 2 | 
            +
            # Copyright 2024 Microsoft and the HuggingFace Inc. team. All rights reserved.
         | 
| 3 | 
            +
            #
         | 
| 4 | 
            +
            # Licensed under the Apache License, Version 2.0 (the "License");
         | 
| 5 | 
            +
            # you may not use this file except in compliance with the License.
         | 
| 6 | 
            +
            # You may obtain a copy of the License at
         | 
| 7 | 
            +
            #
         | 
| 8 | 
            +
            #     http://www.apache.org/licenses/LICENSE-2.0
         | 
| 9 | 
            +
            #
         | 
| 10 | 
            +
            # Unless required by applicable law or agreed to in writing, software
         | 
| 11 | 
            +
            # distributed under the License is distributed on an "AS IS" BASIS,
         | 
| 12 | 
            +
            # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
         | 
| 13 | 
            +
            # See the License for the specific language governing permissions and
         | 
| 14 | 
            +
            # limitations under the License.
         | 
| 15 | 
            +
             | 
| 16 | 
            +
            """ PyTorch PhiMoE model."""
         | 
| 17 | 
            +
            import inspect
         | 
| 18 | 
            +
            import math
         | 
| 19 | 
            +
            import warnings
         | 
| 20 | 
            +
            from typing import List, Optional, Tuple, Union
         | 
| 21 | 
            +
             | 
| 22 | 
            +
            import torch
         | 
| 23 | 
            +
            import torch.nn.functional as F
         | 
| 24 | 
            +
            import torch.utils.checkpoint
         | 
| 25 | 
            +
            from torch import nn
         | 
| 26 | 
            +
            from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
         | 
| 27 | 
            +
             | 
| 28 | 
            +
            from transformers.activations import ACT2FN
         | 
| 29 | 
            +
            from transformers.cache_utils import Cache, DynamicCache
         | 
| 30 | 
            +
            from transformers.modeling_attn_mask_utils import (
         | 
| 31 | 
            +
                _prepare_4d_causal_attention_mask,
         | 
| 32 | 
            +
                _prepare_4d_causal_attention_mask_for_sdpa,
         | 
| 33 | 
            +
            )
         | 
| 34 | 
            +
            from transformers.modeling_outputs import (
         | 
| 35 | 
            +
                MoeCausalLMOutputWithPast,
         | 
| 36 | 
            +
                MoeModelOutputWithPast,
         | 
| 37 | 
            +
                SequenceClassifierOutputWithPast,
         | 
| 38 | 
            +
            )
         | 
| 39 | 
            +
            from transformers.modeling_utils import PreTrainedModel
         | 
| 40 | 
            +
            from transformers.pytorch_utils import is_torch_greater_or_equal_than_1_13
         | 
| 41 | 
            +
            from transformers.utils import (
         | 
| 42 | 
            +
                add_start_docstrings,
         | 
| 43 | 
            +
                add_start_docstrings_to_model_forward,
         | 
| 44 | 
            +
                is_flash_attn_2_available,
         | 
| 45 | 
            +
                is_flash_attn_greater_or_equal_2_10,
         | 
| 46 | 
            +
                logging,
         | 
| 47 | 
            +
                replace_return_docstrings,
         | 
| 48 | 
            +
            )
         | 
| 49 | 
            +
            from transformers.utils.import_utils import is_torch_fx_available
         | 
| 50 | 
            +
            from .configuration_phimoe import PhiMoEConfig
         | 
| 51 | 
            +
             | 
| 52 | 
            +
            from einops import rearrange
         | 
| 53 | 
            +
            from flash_attn.layers.rotary import RotaryEmbedding as FlashRotaryEmbedding
         | 
| 54 | 
            +
             | 
| 55 | 
            +
             | 
| 56 | 
            +
            if is_flash_attn_2_available():
         | 
| 57 | 
            +
                from flash_attn import flash_attn_func, flash_attn_varlen_func
         | 
| 58 | 
            +
                from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input  # noqa
         | 
| 59 | 
            +
             | 
| 60 | 
            +
                _flash_supports_window_size = "window_size" in list(inspect.signature(flash_attn_func).parameters)
         | 
| 61 | 
            +
             | 
| 62 | 
            +
            # This makes `_prepare_4d_causal_attention_mask` a leaf function in the FX graph.
         | 
| 63 | 
            +
            # It means that the function will not be traced through and simply appear as a node in the graph.
         | 
| 64 | 
            +
            if is_torch_fx_available():
         | 
| 65 | 
            +
                if not is_torch_greater_or_equal_than_1_13:
         | 
| 66 | 
            +
                    import torch.fx
         | 
| 67 | 
            +
             | 
| 68 | 
            +
                _prepare_4d_causal_attention_mask = torch.fx.wrap(_prepare_4d_causal_attention_mask)
         | 
| 69 | 
            +
             | 
| 70 | 
            +
             | 
| 71 | 
            +
            logger = logging.get_logger(__name__)
         | 
| 72 | 
            +
             | 
| 73 | 
            +
            _CONFIG_FOR_DOC = "PhiMoEConfig"
         | 
| 74 | 
            +
             | 
| 75 | 
            +
             | 
| 76 | 
            +
            def load_balancing_loss_func(
         | 
| 77 | 
            +
                gate_logits: torch.Tensor, num_experts: torch.Tensor = None, top_k=2, attention_mask: Optional[torch.Tensor] = None
         | 
| 78 | 
            +
            ) -> float:
         | 
| 79 | 
            +
                r"""
         | 
| 80 | 
            +
                Computes auxiliary load balancing loss as in Switch Transformer - implemented in Pytorch.
         | 
| 81 | 
            +
             | 
| 82 | 
            +
                See Switch Transformer (https://arxiv.org/abs/2101.03961) for more details. This function implements the loss
         | 
| 83 | 
            +
                function presented in equations (4) - (6) of the paper. It aims at penalizing cases where the routing between
         | 
| 84 | 
            +
                experts is too unbalanced.
         | 
| 85 | 
            +
             | 
| 86 | 
            +
                Args:
         | 
| 87 | 
            +
                    gate_logits (Union[`torch.Tensor`, Tuple[torch.Tensor]):
         | 
| 88 | 
            +
                        Logits from the `gate`, should be a tuple of model.config.num_hidden_layers tensors of
         | 
| 89 | 
            +
                        shape [batch_size X sequence_length, num_experts].
         | 
| 90 | 
            +
                    attention_mask (`torch.Tensor`, None):
         | 
| 91 | 
            +
                        The attention_mask used in forward function
         | 
| 92 | 
            +
                        shape [batch_size X sequence_length] if not None.
         | 
| 93 | 
            +
                    num_experts (`int`, *optional*):
         | 
| 94 | 
            +
                        Number of experts
         | 
| 95 | 
            +
             | 
| 96 | 
            +
                Returns:
         | 
| 97 | 
            +
                    The auxiliary loss.
         | 
| 98 | 
            +
                """
         | 
| 99 | 
            +
                if gate_logits is None or not isinstance(gate_logits, tuple):
         | 
| 100 | 
            +
                    return 0
         | 
| 101 | 
            +
             | 
| 102 | 
            +
                if isinstance(gate_logits, tuple):
         | 
| 103 | 
            +
                    compute_device = gate_logits[0].device
         | 
| 104 | 
            +
                    concatenated_gate_logits = torch.cat([layer_gate.to(compute_device) for layer_gate in gate_logits], dim=0)
         | 
| 105 | 
            +
             | 
| 106 | 
            +
                routing_weights = torch.nn.functional.softmax(concatenated_gate_logits, dim=-1)
         | 
| 107 | 
            +
             | 
| 108 | 
            +
                _, selected_experts = torch.topk(routing_weights, top_k, dim=-1)
         | 
| 109 | 
            +
             | 
| 110 | 
            +
                expert_mask = torch.nn.functional.one_hot(selected_experts, num_experts)
         | 
| 111 | 
            +
             | 
| 112 | 
            +
                if attention_mask is None:
         | 
| 113 | 
            +
                    # Compute the percentage of tokens routed to each experts
         | 
| 114 | 
            +
                    tokens_per_expert = torch.mean(expert_mask.float(), dim=0)
         | 
| 115 | 
            +
             | 
| 116 | 
            +
                    # Compute the average probability of routing to these experts
         | 
| 117 | 
            +
                    router_prob_per_expert = torch.mean(routing_weights, dim=0)
         | 
| 118 | 
            +
                else:
         | 
| 119 | 
            +
                    batch_size, sequence_length = attention_mask.shape
         | 
| 120 | 
            +
                    num_hidden_layers = concatenated_gate_logits.shape[0] // (batch_size * sequence_length)
         | 
| 121 | 
            +
             | 
| 122 | 
            +
                    # Compute the mask that masks all padding tokens as 0 with the same shape of expert_mask
         | 
| 123 | 
            +
                    expert_attention_mask = (
         | 
| 124 | 
            +
                        attention_mask[None, :, :, None, None]
         | 
| 125 | 
            +
                        .expand((num_hidden_layers, batch_size, sequence_length, top_k, num_experts))
         | 
| 126 | 
            +
                        .reshape(-1, top_k, num_experts)
         | 
| 127 | 
            +
                        .to(compute_device)
         | 
| 128 | 
            +
                    )
         | 
| 129 | 
            +
             | 
| 130 | 
            +
                    # Compute the percentage of tokens routed to each experts
         | 
| 131 | 
            +
                    tokens_per_expert = torch.sum(expert_mask.float() * expert_attention_mask, dim=0) / torch.sum(
         | 
| 132 | 
            +
                        expert_attention_mask, dim=0
         | 
| 133 | 
            +
                    )
         | 
| 134 | 
            +
             | 
| 135 | 
            +
                    # Compute the mask that masks all padding tokens as 0 with the same shape of tokens_per_expert
         | 
| 136 | 
            +
                    router_per_expert_attention_mask = (
         | 
| 137 | 
            +
                        attention_mask[None, :, :, None]
         | 
| 138 | 
            +
                        .expand((num_hidden_layers, batch_size, sequence_length, num_experts))
         | 
| 139 | 
            +
                        .reshape(-1, num_experts)
         | 
| 140 | 
            +
                        .to(compute_device)
         | 
| 141 | 
            +
                    )
         | 
| 142 | 
            +
             | 
| 143 | 
            +
                    # Compute the average probability of routing to these experts
         | 
| 144 | 
            +
                    router_prob_per_expert = torch.sum(routing_weights * router_per_expert_attention_mask, dim=0) / torch.sum(
         | 
| 145 | 
            +
                        router_per_expert_attention_mask, dim=0
         | 
| 146 | 
            +
                    )
         | 
| 147 | 
            +
             | 
| 148 | 
            +
                overall_loss = torch.sum(tokens_per_expert * router_prob_per_expert.unsqueeze(0))
         | 
| 149 | 
            +
                return overall_loss * num_experts
         | 
| 150 | 
            +
             | 
| 151 | 
            +
             | 
| 152 | 
            +
            # Copied from transformers.models.llama.modeling_llama._get_unpad_data
         | 
| 153 | 
            +
            def _get_unpad_data(attention_mask):
         | 
| 154 | 
            +
                seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
         | 
| 155 | 
            +
                indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
         | 
| 156 | 
            +
                max_seqlen_in_batch = seqlens_in_batch.max().item()
         | 
| 157 | 
            +
                cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.int32), (1, 0))
         | 
| 158 | 
            +
                return (
         | 
| 159 | 
            +
                    indices,
         | 
| 160 | 
            +
                    cu_seqlens,
         | 
| 161 | 
            +
                    max_seqlen_in_batch,
         | 
| 162 | 
            +
                )
         | 
| 163 | 
            +
             | 
| 164 | 
            +
             | 
| 165 | 
            +
            # Copied from transformers.models.llama.modeling_llama.LlamaRMSNorm with Llama->PhiMoE
         | 
| 166 | 
            +
            ##https://dl.acm.org/doi/pdf/10.5555/3454287.3455397 The following is the implementation of layernorm
         | 
| 167 | 
            +
             | 
| 168 | 
            +
             | 
| 169 | 
            +
            class PhiMoERotaryEmbedding(nn.Module):
         | 
| 170 | 
            +
                def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
         | 
| 171 | 
            +
                    super().__init__()
         | 
| 172 | 
            +
             | 
| 173 | 
            +
                    self.dim = dim
         | 
| 174 | 
            +
                    self.max_position_embeddings = max_position_embeddings
         | 
| 175 | 
            +
                    self.base = base
         | 
| 176 | 
            +
                    inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2, dtype=torch.int64).float().to(device) / self.dim))
         | 
| 177 | 
            +
                    self.register_buffer("inv_freq", inv_freq, persistent=False)
         | 
| 178 | 
            +
             | 
| 179 | 
            +
                    # Build here to make `torch.jit.trace` work.
         | 
| 180 | 
            +
                    self._set_cos_sin_cache(
         | 
| 181 | 
            +
                        seq_len=max_position_embeddings, device=self.inv_freq.device, dtype=torch.get_default_dtype()
         | 
| 182 | 
            +
                    )
         | 
| 183 | 
            +
             | 
| 184 | 
            +
                def _set_cos_sin_cache(self, seq_len, device, dtype):
         | 
| 185 | 
            +
                    self.max_seq_len_cached = seq_len
         | 
| 186 | 
            +
                    t = torch.arange(self.max_seq_len_cached, device=device, dtype=torch.int64).type_as(self.inv_freq)
         | 
| 187 | 
            +
             | 
| 188 | 
            +
                    freqs = torch.outer(t, self.inv_freq)
         | 
| 189 | 
            +
                    # Different from paper, but it uses a different permutation in order to obtain the same calculation
         | 
| 190 | 
            +
                    emb = torch.cat((freqs, freqs), dim=-1)
         | 
| 191 | 
            +
                    self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
         | 
| 192 | 
            +
                    self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
         | 
| 193 | 
            +
             | 
| 194 | 
            +
                def forward(self, x, seq_len=None):
         | 
| 195 | 
            +
                    # x: [bs, num_attention_heads, seq_len, head_size]
         | 
| 196 | 
            +
                    if seq_len > self.max_seq_len_cached:
         | 
| 197 | 
            +
                        self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=x.dtype)
         | 
| 198 | 
            +
             | 
| 199 | 
            +
                    return (
         | 
| 200 | 
            +
                        self.cos_cached[:seq_len].to(dtype=x.dtype),
         | 
| 201 | 
            +
                        self.sin_cached[:seq_len].to(dtype=x.dtype),
         | 
| 202 | 
            +
                    )
         | 
| 203 | 
            +
             | 
| 204 | 
            +
             | 
| 205 | 
            +
            class Phi3LongRoPEScaledRotaryEmbedding(nn.Module):
         | 
| 206 | 
            +
             | 
| 207 | 
            +
                def __init__(self, dim, config):
         | 
| 208 | 
            +
                    super().__init__()
         | 
| 209 | 
            +
                    self.dim = dim
         | 
| 210 | 
            +
                    self.max_position_embeddings = config.max_position_embeddings
         | 
| 211 | 
            +
                    self.base = config.rope_theta
         | 
| 212 | 
            +
                    self.short_factor = config.rope_scaling["short_factor"]
         | 
| 213 | 
            +
                    self.long_factor = config.rope_scaling["long_factor"]
         | 
| 214 | 
            +
                    self.short_mscale = config.rope_scaling["short_mscale"]
         | 
| 215 | 
            +
                    self.long_mscale = config.rope_scaling["long_mscale"]
         | 
| 216 | 
            +
                    self.original_max_position_embeddings = config.rope_scaling["original_max_position_embeddings"]
         | 
| 217 | 
            +
             | 
| 218 | 
            +
                def forward(self, x, seq_len=None):
         | 
| 219 | 
            +
                    if seq_len is None:
         | 
| 220 | 
            +
                        seq_len = x.shape[-2]
         | 
| 221 | 
            +
             | 
| 222 | 
            +
                    if seq_len > self.original_max_position_embeddings:
         | 
| 223 | 
            +
                        rescale_factors = torch.tensor(self.long_factor, dtype=torch.float32, device=x.device)
         | 
| 224 | 
            +
                        mscale = self.long_mscale
         | 
| 225 | 
            +
                    else:
         | 
| 226 | 
            +
                        rescale_factors = torch.tensor(self.short_factor, dtype=torch.float32, device=x.device)
         | 
| 227 | 
            +
                        mscale = self.short_mscale
         | 
| 228 | 
            +
                    assert rescale_factors.shape == (self.dim // 2, ), \
         | 
| 229 | 
            +
                        f"misaligned shape for LongRoPE rescale factors: {rescale_factors.shape}"
         | 
| 230 | 
            +
             | 
| 231 | 
            +
                    inv_freq = 1.0 / (rescale_factors * (self.base ** (torch.arange(0, self.dim, 2).float().to(x.device) / self.dim)))
         | 
| 232 | 
            +
             | 
| 233 | 
            +
                    t = torch.arange(seq_len, device=x.device, dtype=torch.float32)
         | 
| 234 | 
            +
                    freqs = torch.outer(t, inv_freq)
         | 
| 235 | 
            +
             | 
| 236 | 
            +
                    emb = torch.cat((freqs, freqs), dim=-1)
         | 
| 237 | 
            +
                    return (emb.cos() * mscale).to(x.dtype), (emb.sin() * mscale).to(x.dtype)
         | 
| 238 | 
            +
             | 
| 239 | 
            +
             | 
| 240 | 
            +
            # Copied from transformers.models.llama.modeling_llama.rotate_half
         | 
| 241 | 
            +
            def rotate_half(x):
         | 
| 242 | 
            +
                """Rotates half the hidden dims of the input."""
         | 
| 243 | 
            +
                x1 = x[..., : x.shape[-1] // 2]
         | 
| 244 | 
            +
                x2 = x[..., x.shape[-1] // 2 :]
         | 
| 245 | 
            +
                return torch.cat((-x2, x1), dim=-1)
         | 
| 246 | 
            +
             | 
| 247 | 
            +
             | 
| 248 | 
            +
             | 
| 249 | 
            +
            def apply_rotary_pos_emb(q, k, cos, sin, position_ids, unsqueeze_dim=1):
         | 
| 250 | 
            +
                """Applies Rotary Position Embedding to the query and key tensors.
         | 
| 251 | 
            +
             | 
| 252 | 
            +
                Args:
         | 
| 253 | 
            +
                    q (`torch.Tensor`): The query tensor.
         | 
| 254 | 
            +
                    k (`torch.Tensor`): The key tensor.
         | 
| 255 | 
            +
                    cos (`torch.Tensor`): The cosine part of the rotary embedding.
         | 
| 256 | 
            +
                    sin (`torch.Tensor`): The sine part of the rotary embedding.
         | 
| 257 | 
            +
                    position_ids (`torch.Tensor`):
         | 
| 258 | 
            +
                        The position indices of the tokens corresponding to the query and key tensors. For example, this can be
         | 
| 259 | 
            +
                        used to pass offsetted position ids when working with a KV-cache.
         | 
| 260 | 
            +
                    unsqueeze_dim (`int`, *optional*, defaults to 1):
         | 
| 261 | 
            +
                        The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
         | 
| 262 | 
            +
                        sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
         | 
| 263 | 
            +
                        that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
         | 
| 264 | 
            +
                        k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
         | 
| 265 | 
            +
                        cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
         | 
| 266 | 
            +
                        the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
         | 
| 267 | 
            +
                Returns:
         | 
| 268 | 
            +
                    `tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
         | 
| 269 | 
            +
                """
         | 
| 270 | 
            +
                cos = cos[position_ids].unsqueeze(unsqueeze_dim)
         | 
| 271 | 
            +
                sin = sin[position_ids].unsqueeze(unsqueeze_dim)
         | 
| 272 | 
            +
                q_embed = (q * cos) + (rotate_half(q) * sin)
         | 
| 273 | 
            +
                k_embed = (k * cos) + (rotate_half(k) * sin)
         | 
| 274 | 
            +
                return q_embed, k_embed
         | 
| 275 | 
            +
             | 
| 276 | 
            +
             | 
| 277 | 
            +
            # Copied from transformers.models.llama.modeling_llama.repeat_kv
         | 
| 278 | 
            +
            def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
         | 
| 279 | 
            +
                """
         | 
| 280 | 
            +
                This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
         | 
| 281 | 
            +
                num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
         | 
| 282 | 
            +
                """
         | 
| 283 | 
            +
                batch, num_key_value_heads, slen, head_dim = hidden_states.shape
         | 
| 284 | 
            +
                if n_rep == 1:
         | 
| 285 | 
            +
                    return hidden_states
         | 
| 286 | 
            +
                hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
         | 
| 287 | 
            +
                return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
         | 
| 288 | 
            +
             | 
| 289 | 
            +
             | 
| 290 | 
            +
             | 
| 291 | 
            +
            class PhiMoEAttention(nn.Module):
         | 
| 292 | 
            +
                """
         | 
| 293 | 
            +
                Multi-headed attention from 'Attention Is All You Need' paper. Modified to use sliding window attention: Longformer
         | 
| 294 | 
            +
                and "Generating Long Sequences with Sparse Transformers".
         | 
| 295 | 
            +
                """
         | 
| 296 | 
            +
             | 
| 297 | 
            +
                def __init__(self, config: PhiMoEConfig, layer_idx: Optional[int] = None):
         | 
| 298 | 
            +
                    super().__init__()
         | 
| 299 | 
            +
                    self.config = config
         | 
| 300 | 
            +
                    self.layer_idx = layer_idx
         | 
| 301 | 
            +
                    if layer_idx is None:
         | 
| 302 | 
            +
                        logger.warning_once(
         | 
| 303 | 
            +
                            f"Instantiating {self.__class__.__name__} without passing a `layer_idx` is not recommended and will "
         | 
| 304 | 
            +
                            "lead to errors during the forward call if caching is used. Please make sure to provide a `layer_idx` "
         | 
| 305 | 
            +
                            "when creating this class."
         | 
| 306 | 
            +
                        )
         | 
| 307 | 
            +
             | 
| 308 | 
            +
                    self.hidden_size = config.hidden_size
         | 
| 309 | 
            +
                    self.num_heads = config.num_attention_heads
         | 
| 310 | 
            +
                    self.head_dim = self.hidden_size // self.num_heads
         | 
| 311 | 
            +
                    self.num_key_value_heads = config.num_key_value_heads
         | 
| 312 | 
            +
                    self.num_key_value_groups = self.num_heads // self.num_key_value_heads
         | 
| 313 | 
            +
                    self.max_position_embeddings = config.max_position_embeddings
         | 
| 314 | 
            +
                    self.rope_theta = config.rope_theta
         | 
| 315 | 
            +
                    self.is_causal = True
         | 
| 316 | 
            +
                    self.attention_dropout = config.attention_dropout
         | 
| 317 | 
            +
             | 
| 318 | 
            +
                    if (self.head_dim * self.num_heads) != self.hidden_size:
         | 
| 319 | 
            +
                        raise ValueError(
         | 
| 320 | 
            +
                            f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
         | 
| 321 | 
            +
                            f" and `num_heads`: {self.num_heads})."
         | 
| 322 | 
            +
                        )
         | 
| 323 | 
            +
                    self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=self.config.attention_bias)
         | 
| 324 | 
            +
                    self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=self.config.attention_bias)
         | 
| 325 | 
            +
                    self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=self.config.attention_bias)
         | 
| 326 | 
            +
                    self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=self.config.attention_bias)
         | 
| 327 | 
            +
             | 
| 328 | 
            +
                    if getattr(config, 'rope_scaling', None) is None:
         | 
| 329 | 
            +
                        self.rotary_emb = PhiMoERotaryEmbedding(
         | 
| 330 | 
            +
                            self.head_dim,
         | 
| 331 | 
            +
                            max_position_embeddings=self.max_position_embeddings,
         | 
| 332 | 
            +
                            base=self.rope_theta,
         | 
| 333 | 
            +
                        )
         | 
| 334 | 
            +
                    else:
         | 
| 335 | 
            +
                        scaling_type = self.config.rope_scaling["type"]
         | 
| 336 | 
            +
                        if scaling_type == "longrope":
         | 
| 337 | 
            +
                            self.rotary_emb = Phi3LongRoPEScaledRotaryEmbedding(self.head_dim, self.config)
         | 
| 338 | 
            +
                        else:
         | 
| 339 | 
            +
                            raise ValueError(f"Unknown RoPE scaling type {scaling_type}")
         | 
| 340 | 
            +
             | 
| 341 | 
            +
                def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
         | 
| 342 | 
            +
                    return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
         | 
| 343 | 
            +
             | 
| 344 | 
            +
                def forward(
         | 
| 345 | 
            +
                    self,
         | 
| 346 | 
            +
                    hidden_states: torch.Tensor,
         | 
| 347 | 
            +
                    attention_mask: Optional[torch.Tensor] = None,
         | 
| 348 | 
            +
                    position_ids: Optional[torch.LongTensor] = None,
         | 
| 349 | 
            +
                    past_key_value: Optional[Cache] = None,
         | 
| 350 | 
            +
                    output_attentions: bool = False,
         | 
| 351 | 
            +
                    use_cache: bool = False,
         | 
| 352 | 
            +
                    **kwargs,
         | 
| 353 | 
            +
                ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
         | 
| 354 | 
            +
                    if "padding_mask" in kwargs:
         | 
| 355 | 
            +
                        warnings.warn(
         | 
| 356 | 
            +
                            "Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
         | 
| 357 | 
            +
                        )
         | 
| 358 | 
            +
                    bsz, q_len, _ = hidden_states.size()
         | 
| 359 | 
            +
             | 
| 360 | 
            +
                    query_states = self.q_proj(hidden_states)
         | 
| 361 | 
            +
                    key_states = self.k_proj(hidden_states)
         | 
| 362 | 
            +
                    value_states = self.v_proj(hidden_states)
         | 
| 363 | 
            +
             | 
| 364 | 
            +
                    query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
         | 
| 365 | 
            +
                    key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
         | 
| 366 | 
            +
                    value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
         | 
| 367 | 
            +
             | 
| 368 | 
            +
                    kv_seq_len = key_states.shape[-2]
         | 
| 369 | 
            +
                    if past_key_value is not None:
         | 
| 370 | 
            +
                        if self.layer_idx is None:
         | 
| 371 | 
            +
                            raise ValueError(
         | 
| 372 | 
            +
                                f"The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} "
         | 
| 373 | 
            +
                                "for auto-regressive decoding with k/v caching, please make sure to initialize the attention class "
         | 
| 374 | 
            +
                                "with a layer index."
         | 
| 375 | 
            +
                            )
         | 
| 376 | 
            +
                        kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
         | 
| 377 | 
            +
                    
         | 
| 378 | 
            +
                    # print ("before apply rotary pos_emb", len(kv_seq_len),torch.norm(value_states).items(),\
         | 
| 379 | 
            +
                    #         torch.norm(query_states).items(), torch.norm(key_states).items(), position_ids)
         | 
| 380 | 
            +
                    cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
         | 
| 381 | 
            +
                    query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
         | 
| 382 | 
            +
             | 
| 383 | 
            +
                    # print ('after pos emb', torch.norm(query_states).item(), torch.norm(key_states).items())
         | 
| 384 | 
            +
                    if past_key_value is not None:
         | 
| 385 | 
            +
                        cache_kwargs = {"sin": sin, "cos": cos}  # Specific to RoPE models
         | 
| 386 | 
            +
                        key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
         | 
| 387 | 
            +
             | 
| 388 | 
            +
                    # repeat k/v heads if n_kv_heads < n_heads
         | 
| 389 | 
            +
                    key_states = repeat_kv(key_states, self.num_key_value_groups)
         | 
| 390 | 
            +
                    value_states = repeat_kv(value_states, self.num_key_value_groups)
         | 
| 391 | 
            +
             | 
| 392 | 
            +
                    attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
         | 
| 393 | 
            +
             | 
| 394 | 
            +
                    if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
         | 
| 395 | 
            +
                        raise ValueError(
         | 
| 396 | 
            +
                            f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is"
         | 
| 397 | 
            +
                            f" {attn_weights.size()}"
         | 
| 398 | 
            +
                        )
         | 
| 399 | 
            +
             | 
| 400 | 
            +
                    if attention_mask is not None:
         | 
| 401 | 
            +
                        if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
         | 
| 402 | 
            +
                            raise ValueError(
         | 
| 403 | 
            +
                                f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
         | 
| 404 | 
            +
                            )
         | 
| 405 | 
            +
             | 
| 406 | 
            +
                        attn_weights = attn_weights + attention_mask
         | 
| 407 | 
            +
             | 
| 408 | 
            +
                    # upcast attention to fp32
         | 
| 409 | 
            +
                    attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
         | 
| 410 | 
            +
                    attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout, training=self.training)
         | 
| 411 | 
            +
                    attn_output = torch.matmul(attn_weights, value_states)
         | 
| 412 | 
            +
             | 
| 413 | 
            +
                    if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
         | 
| 414 | 
            +
                        raise ValueError(
         | 
| 415 | 
            +
                            f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
         | 
| 416 | 
            +
                            f" {attn_output.size()}"
         | 
| 417 | 
            +
                        )
         | 
| 418 | 
            +
             | 
| 419 | 
            +
                    attn_output = attn_output.transpose(1, 2).contiguous()
         | 
| 420 | 
            +
                    attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
         | 
| 421 | 
            +
             | 
| 422 | 
            +
                    attn_output = self.o_proj(attn_output)
         | 
| 423 | 
            +
             | 
| 424 | 
            +
                    if not output_attentions:
         | 
| 425 | 
            +
                        attn_weights = None
         | 
| 426 | 
            +
             | 
| 427 | 
            +
                    return attn_output, attn_weights, past_key_value
         | 
| 428 | 
            +
             | 
| 429 | 
            +
             | 
| 430 | 
            +
             | 
| 431 | 
            +
            class PhiMoEFlashAttention2(PhiMoEAttention):
         | 
| 432 | 
            +
                """
         | 
| 433 | 
            +
                PhiMoE flash attention module. This module inherits from `PhiMoEAttention` as the weights of the module stays
         | 
| 434 | 
            +
                untouched. The only required change would be on the forward pass where it needs to correctly call the public API of
         | 
| 435 | 
            +
                flash attention and deal with padding tokens in case the input contains any of them.
         | 
| 436 | 
            +
                """
         | 
| 437 | 
            +
             | 
| 438 | 
            +
                # Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2.__init__
         | 
| 439 | 
            +
                def __init__(self, *args, **kwargs):
         | 
| 440 | 
            +
                    super().__init__(*args, **kwargs)
         | 
| 441 | 
            +
             | 
| 442 | 
            +
                    # TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1.
         | 
| 443 | 
            +
                    # flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0.
         | 
| 444 | 
            +
                    # Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left).
         | 
| 445 | 
            +
                    self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10()
         | 
| 446 | 
            +
             | 
| 447 | 
            +
                def forward(
         | 
| 448 | 
            +
                    self,
         | 
| 449 | 
            +
                    hidden_states: torch.Tensor,
         | 
| 450 | 
            +
                    attention_mask: Optional[torch.Tensor] = None,
         | 
| 451 | 
            +
                    position_ids: Optional[torch.LongTensor] = None,
         | 
| 452 | 
            +
                    past_key_value: Optional[Cache] = None,
         | 
| 453 | 
            +
                    output_attentions: bool = False,
         | 
| 454 | 
            +
                    use_cache: bool = False,
         | 
| 455 | 
            +
                    **kwargs,
         | 
| 456 | 
            +
                ):
         | 
| 457 | 
            +
                    if "padding_mask" in kwargs:
         | 
| 458 | 
            +
                        warnings.warn(
         | 
| 459 | 
            +
                            "Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
         | 
| 460 | 
            +
                        )
         | 
| 461 | 
            +
             | 
| 462 | 
            +
                        # overwrite attention_mask with padding_mask
         | 
| 463 | 
            +
                        attention_mask = kwargs.pop("padding_mask")
         | 
| 464 | 
            +
                    bsz, q_len, _ = hidden_states.size()
         | 
| 465 | 
            +
             | 
| 466 | 
            +
                    query_states = self.q_proj(hidden_states)
         | 
| 467 | 
            +
                    key_states = self.k_proj(hidden_states)
         | 
| 468 | 
            +
                    value_states = self.v_proj(hidden_states)
         | 
| 469 | 
            +
             | 
| 470 | 
            +
                    query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
         | 
| 471 | 
            +
                    key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
         | 
| 472 | 
            +
                    value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
         | 
| 473 | 
            +
             | 
| 474 | 
            +
                    kv_seq_len = key_states.shape[-2]
         | 
| 475 | 
            +
                    if past_key_value is not None:
         | 
| 476 | 
            +
                        if self.layer_idx is None:
         | 
| 477 | 
            +
                            raise ValueError(
         | 
| 478 | 
            +
                                f"The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} "
         | 
| 479 | 
            +
                                "for auto-regressive decoding with k/v caching, please make sure to initialize the attention class "
         | 
| 480 | 
            +
                                "with a layer index."
         | 
| 481 | 
            +
                            )
         | 
| 482 | 
            +
                        kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
         | 
| 483 | 
            +
             | 
| 484 | 
            +
                    # Because the input can be padded, the absolute sequence length depends on the max position id.
         | 
| 485 | 
            +
                    rotary_seq_len = max(kv_seq_len, position_ids[:, -1].max().item() + 1)
         | 
| 486 | 
            +
                    cos, sin = self.rotary_emb(value_states, seq_len=rotary_seq_len)
         | 
| 487 | 
            +
             | 
| 488 | 
            +
                    query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
         | 
| 489 | 
            +
             | 
| 490 | 
            +
                    use_sliding_windows = (
         | 
| 491 | 
            +
                        _flash_supports_window_size
         | 
| 492 | 
            +
                        and getattr(self.config, "sliding_window", None) is not None
         | 
| 493 | 
            +
                        and kv_seq_len > self.config.sliding_window
         | 
| 494 | 
            +
                    )
         | 
| 495 | 
            +
             | 
| 496 | 
            +
                    if not _flash_supports_window_size:
         | 
| 497 | 
            +
                        logger.warning_once(
         | 
| 498 | 
            +
                            "The current flash attention version does not support sliding window attention, for a more memory efficient implementation"
         | 
| 499 | 
            +
                            " make sure to upgrade flash-attn library."
         | 
| 500 | 
            +
                        )
         | 
| 501 | 
            +
             | 
| 502 | 
            +
                    if past_key_value is not None:
         | 
| 503 | 
            +
                        # Activate slicing cache only if the config has a value `sliding_windows` attribute
         | 
| 504 | 
            +
                        cache_has_contents = past_key_value.get_seq_length(self.layer_idx) > 0
         | 
| 505 | 
            +
                        if (
         | 
| 506 | 
            +
                            getattr(self.config, "sliding_window", None) is not None
         | 
| 507 | 
            +
                            and kv_seq_len > self.config.sliding_window
         | 
| 508 | 
            +
                            and cache_has_contents
         | 
| 509 | 
            +
                        ):
         | 
| 510 | 
            +
                            slicing_tokens = 1 - self.config.sliding_window
         | 
| 511 | 
            +
             | 
| 512 | 
            +
                            past_key = past_key_value[self.layer_idx][0]
         | 
| 513 | 
            +
                            past_value = past_key_value[self.layer_idx][1]
         | 
| 514 | 
            +
             | 
| 515 | 
            +
                            past_key = past_key[:, :, slicing_tokens:, :].contiguous()
         | 
| 516 | 
            +
                            past_value = past_value[:, :, slicing_tokens:, :].contiguous()
         | 
| 517 | 
            +
             | 
| 518 | 
            +
                            if past_key.shape[-2] != self.config.sliding_window - 1:
         | 
| 519 | 
            +
                                raise ValueError(
         | 
| 520 | 
            +
                                    f"past key must have a shape of (`batch_size, num_heads, self.config.sliding_window-1, head_dim`), got"
         | 
| 521 | 
            +
                                    f" {past_key.shape}"
         | 
| 522 | 
            +
                                )
         | 
| 523 | 
            +
             | 
| 524 | 
            +
                            if attention_mask is not None:
         | 
| 525 | 
            +
                                attention_mask = attention_mask[:, slicing_tokens:]
         | 
| 526 | 
            +
                                attention_mask = torch.cat([attention_mask, torch.ones_like(attention_mask[:, -1:])], dim=-1)
         | 
| 527 | 
            +
             | 
| 528 | 
            +
                        cache_kwargs = {"sin": sin, "cos": cos}  # Specific to RoPE models
         | 
| 529 | 
            +
                        key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
         | 
| 530 | 
            +
             | 
| 531 | 
            +
                    # repeat k/v heads if n_kv_heads < n_heads
         | 
| 532 | 
            +
                    key_states = repeat_kv(key_states, self.num_key_value_groups)
         | 
| 533 | 
            +
                    value_states = repeat_kv(value_states, self.num_key_value_groups)
         | 
| 534 | 
            +
                    dropout_rate = 0.0 if not self.training else self.attention_dropout
         | 
| 535 | 
            +
             | 
| 536 | 
            +
                    # In PEFT, usually we cast the layer norms in float32 for training stability reasons
         | 
| 537 | 
            +
                    # therefore the input hidden states gets silently casted in float32. Hence, we need
         | 
| 538 | 
            +
                    # cast them back in float16 just to be sure everything works as expected.
         | 
| 539 | 
            +
                    input_dtype = query_states.dtype
         | 
| 540 | 
            +
                    if input_dtype == torch.float32:
         | 
| 541 | 
            +
                        if torch.is_autocast_enabled():
         | 
| 542 | 
            +
                            target_dtype = torch.get_autocast_gpu_dtype()
         | 
| 543 | 
            +
                        # Handle the case where the model is quantized
         | 
| 544 | 
            +
                        elif hasattr(self.config, "_pre_quantization_dtype"):
         | 
| 545 | 
            +
                            target_dtype = self.config._pre_quantization_dtype
         | 
| 546 | 
            +
                        else:
         | 
| 547 | 
            +
                            target_dtype = self.q_proj.weight.dtype
         | 
| 548 | 
            +
             | 
| 549 | 
            +
                        logger.warning_once(
         | 
| 550 | 
            +
                            f"The input hidden states seems to be silently casted in float32, this might be related to"
         | 
| 551 | 
            +
                            f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in"
         | 
| 552 | 
            +
                            f" {target_dtype}."
         | 
| 553 | 
            +
                        )
         | 
| 554 | 
            +
             | 
| 555 | 
            +
                        query_states = query_states.to(target_dtype)
         | 
| 556 | 
            +
                        key_states = key_states.to(target_dtype)
         | 
| 557 | 
            +
                        value_states = value_states.to(target_dtype)
         | 
| 558 | 
            +
             | 
| 559 | 
            +
                    # Reashape to the expected shape for Flash Attention
         | 
| 560 | 
            +
                    query_states = query_states.transpose(1, 2)
         | 
| 561 | 
            +
                    key_states = key_states.transpose(1, 2)
         | 
| 562 | 
            +
                    value_states = value_states.transpose(1, 2)
         | 
| 563 | 
            +
             | 
| 564 | 
            +
                    attn_output = self._flash_attention_forward(
         | 
| 565 | 
            +
                        query_states,
         | 
| 566 | 
            +
                        key_states,
         | 
| 567 | 
            +
                        value_states,
         | 
| 568 | 
            +
                        attention_mask,
         | 
| 569 | 
            +
                        q_len,
         | 
| 570 | 
            +
                        dropout=dropout_rate,
         | 
| 571 | 
            +
                        use_sliding_windows=use_sliding_windows,
         | 
| 572 | 
            +
                    )
         | 
| 573 | 
            +
             | 
| 574 | 
            +
                    attn_output = attn_output.reshape(bsz, q_len, self.hidden_size).contiguous()
         | 
| 575 | 
            +
                    attn_output = self.o_proj(attn_output)
         | 
| 576 | 
            +
             | 
| 577 | 
            +
                    if not output_attentions:
         | 
| 578 | 
            +
                        attn_weights = None
         | 
| 579 | 
            +
             | 
| 580 | 
            +
                    return attn_output, attn_weights, past_key_value
         | 
| 581 | 
            +
             | 
| 582 | 
            +
                def _flash_attention_forward(
         | 
| 583 | 
            +
                    self,
         | 
| 584 | 
            +
                    query_states,
         | 
| 585 | 
            +
                    key_states,
         | 
| 586 | 
            +
                    value_states,
         | 
| 587 | 
            +
                    attention_mask,
         | 
| 588 | 
            +
                    query_length,
         | 
| 589 | 
            +
                    dropout=0.0,
         | 
| 590 | 
            +
                    softmax_scale=None,
         | 
| 591 | 
            +
                    use_sliding_windows=False,
         | 
| 592 | 
            +
                ):
         | 
| 593 | 
            +
                    """
         | 
| 594 | 
            +
                    Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token
         | 
| 595 | 
            +
                    first unpad the input, then computes the attention scores and pad the final attention scores.
         | 
| 596 | 
            +
             | 
| 597 | 
            +
                    Args:
         | 
| 598 | 
            +
                        query_states (`torch.Tensor`):
         | 
| 599 | 
            +
                            Input query states to be passed to Flash Attention API
         | 
| 600 | 
            +
                        key_states (`torch.Tensor`):
         | 
| 601 | 
            +
                            Input key states to be passed to Flash Attention API
         | 
| 602 | 
            +
                        value_states (`torch.Tensor`):
         | 
| 603 | 
            +
                            Input value states to be passed to Flash Attention API
         | 
| 604 | 
            +
                        attention_mask (`torch.Tensor`):
         | 
| 605 | 
            +
                            The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the
         | 
| 606 | 
            +
                            position of padding tokens and 1 for the position of non-padding tokens.
         | 
| 607 | 
            +
                        dropout (`float`):
         | 
| 608 | 
            +
                            Attention dropout
         | 
| 609 | 
            +
                        softmax_scale (`float`, *optional*):
         | 
| 610 | 
            +
                            The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim)
         | 
| 611 | 
            +
                        use_sliding_windows (`bool`, *optional*):
         | 
| 612 | 
            +
                            Whether to activate sliding window attention.
         | 
| 613 | 
            +
                    """
         | 
| 614 | 
            +
                    if not self._flash_attn_uses_top_left_mask:
         | 
| 615 | 
            +
                        causal = self.is_causal
         | 
| 616 | 
            +
                    else:
         | 
| 617 | 
            +
                        # TODO: Remove the `query_length != 1` check once Flash Attention for RoCm is bumped to 2.1. For details, please see the comment in LlamaFlashAttention2 __init__.
         | 
| 618 | 
            +
                        causal = self.is_causal and query_length != 1
         | 
| 619 | 
            +
             | 
| 620 | 
            +
                    # Contains at least one padding token in the sequence
         | 
| 621 | 
            +
                    if attention_mask is not None:
         | 
| 622 | 
            +
                        batch_size = query_states.shape[0]
         | 
| 623 | 
            +
                        query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._upad_input(
         | 
| 624 | 
            +
                            query_states, key_states, value_states, attention_mask, query_length
         | 
| 625 | 
            +
                        )
         | 
| 626 | 
            +
             | 
| 627 | 
            +
                        cu_seqlens_q, cu_seqlens_k = cu_seq_lens
         | 
| 628 | 
            +
                        max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens
         | 
| 629 | 
            +
             | 
| 630 | 
            +
                        if not use_sliding_windows:
         | 
| 631 | 
            +
                            attn_output_unpad = flash_attn_varlen_func(
         | 
| 632 | 
            +
                                query_states,
         | 
| 633 | 
            +
                                key_states,
         | 
| 634 | 
            +
                                value_states,
         | 
| 635 | 
            +
                                cu_seqlens_q=cu_seqlens_q,
         | 
| 636 | 
            +
                                cu_seqlens_k=cu_seqlens_k,
         | 
| 637 | 
            +
                                max_seqlen_q=max_seqlen_in_batch_q,
         | 
| 638 | 
            +
                                max_seqlen_k=max_seqlen_in_batch_k,
         | 
| 639 | 
            +
                                dropout_p=dropout,
         | 
| 640 | 
            +
                                softmax_scale=softmax_scale,
         | 
| 641 | 
            +
                                causal=causal,
         | 
| 642 | 
            +
                            )
         | 
| 643 | 
            +
                        else:
         | 
| 644 | 
            +
                            attn_output_unpad = flash_attn_varlen_func(
         | 
| 645 | 
            +
                                query_states,
         | 
| 646 | 
            +
                                key_states,
         | 
| 647 | 
            +
                                value_states,
         | 
| 648 | 
            +
                                cu_seqlens_q=cu_seqlens_q,
         | 
| 649 | 
            +
                                cu_seqlens_k=cu_seqlens_k,
         | 
| 650 | 
            +
                                max_seqlen_q=max_seqlen_in_batch_q,
         | 
| 651 | 
            +
                                max_seqlen_k=max_seqlen_in_batch_k,
         | 
| 652 | 
            +
                                dropout_p=dropout,
         | 
| 653 | 
            +
                                softmax_scale=softmax_scale,
         | 
| 654 | 
            +
                                causal=causal,
         | 
| 655 | 
            +
                                window_size=(self.config.sliding_window, 0),
         | 
| 656 | 
            +
                            )
         | 
| 657 | 
            +
             | 
| 658 | 
            +
                        attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length)
         | 
| 659 | 
            +
                    else:
         | 
| 660 | 
            +
                        if not use_sliding_windows:
         | 
| 661 | 
            +
                            attn_output = flash_attn_func(
         | 
| 662 | 
            +
                                query_states,
         | 
| 663 | 
            +
                                key_states,
         | 
| 664 | 
            +
                                value_states,
         | 
| 665 | 
            +
                                dropout,
         | 
| 666 | 
            +
                                softmax_scale=softmax_scale,
         | 
| 667 | 
            +
                                causal=causal,
         | 
| 668 | 
            +
                            )
         | 
| 669 | 
            +
                        else:
         | 
| 670 | 
            +
                            attn_output = flash_attn_func(
         | 
| 671 | 
            +
                                query_states,
         | 
| 672 | 
            +
                                key_states,
         | 
| 673 | 
            +
                                value_states,
         | 
| 674 | 
            +
                                dropout,
         | 
| 675 | 
            +
                                softmax_scale=softmax_scale,
         | 
| 676 | 
            +
                                causal=causal,
         | 
| 677 | 
            +
                                window_size=(self.config.sliding_window, 0),
         | 
| 678 | 
            +
                            )
         | 
| 679 | 
            +
             | 
| 680 | 
            +
                    return attn_output
         | 
| 681 | 
            +
             | 
| 682 | 
            +
                def _upad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length):
         | 
| 683 | 
            +
                    batch_size, kv_seq_len, num_heads, head_dim = key_layer.shape
         | 
| 684 | 
            +
             | 
| 685 | 
            +
                    # On the first iteration we need to properly re-create the padding mask
         | 
| 686 | 
            +
                    # by slicing it on the proper place
         | 
| 687 | 
            +
                    if kv_seq_len != attention_mask.shape[-1]:
         | 
| 688 | 
            +
                        attention_mask_num_tokens = attention_mask.shape[-1]
         | 
| 689 | 
            +
                        attention_mask = attention_mask[:, attention_mask_num_tokens - kv_seq_len :]
         | 
| 690 | 
            +
             | 
| 691 | 
            +
                    indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask)
         | 
| 692 | 
            +
             | 
| 693 | 
            +
                    key_layer = index_first_axis(key_layer.reshape(batch_size * kv_seq_len, num_heads, head_dim), indices_k)
         | 
| 694 | 
            +
                    value_layer = index_first_axis(value_layer.reshape(batch_size * kv_seq_len, num_heads, head_dim), indices_k)
         | 
| 695 | 
            +
             | 
| 696 | 
            +
                    if query_length == kv_seq_len:
         | 
| 697 | 
            +
                        query_layer = index_first_axis(
         | 
| 698 | 
            +
                            query_layer.reshape(batch_size * kv_seq_len, num_heads, head_dim), indices_k
         | 
| 699 | 
            +
                        )
         | 
| 700 | 
            +
                        cu_seqlens_q = cu_seqlens_k
         | 
| 701 | 
            +
                        max_seqlen_in_batch_q = max_seqlen_in_batch_k
         | 
| 702 | 
            +
                        indices_q = indices_k
         | 
| 703 | 
            +
                    elif query_length == 1:
         | 
| 704 | 
            +
                        max_seqlen_in_batch_q = 1
         | 
| 705 | 
            +
                        cu_seqlens_q = torch.arange(
         | 
| 706 | 
            +
                            batch_size + 1, dtype=torch.int32, device=query_layer.device
         | 
| 707 | 
            +
                        )  # There is a memcpy here, that is very bad.
         | 
| 708 | 
            +
                        indices_q = cu_seqlens_q[:-1]
         | 
| 709 | 
            +
                        query_layer = query_layer.squeeze(1)
         | 
| 710 | 
            +
                    else:
         | 
| 711 | 
            +
                        # The -q_len: slice assumes left padding.
         | 
| 712 | 
            +
                        attention_mask = attention_mask[:, -query_length:]
         | 
| 713 | 
            +
                        query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask)
         | 
| 714 | 
            +
             | 
| 715 | 
            +
                    return (
         | 
| 716 | 
            +
                        query_layer,
         | 
| 717 | 
            +
                        key_layer,
         | 
| 718 | 
            +
                        value_layer,
         | 
| 719 | 
            +
                        indices_q,
         | 
| 720 | 
            +
                        (cu_seqlens_q, cu_seqlens_k),
         | 
| 721 | 
            +
                        (max_seqlen_in_batch_q, max_seqlen_in_batch_k),
         | 
| 722 | 
            +
                    )
         | 
| 723 | 
            +
             | 
| 724 | 
            +
             | 
| 725 | 
            +
             | 
| 726 | 
            +
            class PhiMoESdpaAttention(PhiMoEAttention):
         | 
| 727 | 
            +
                """
         | 
| 728 | 
            +
                PhiMoE attention module using torch.nn.functional.scaled_dot_product_attention. This module inherits from
         | 
| 729 | 
            +
                `PhiMoEAttention` as the weights of the module stays untouched. The only changes are on the forward pass to adapt to
         | 
| 730 | 
            +
                SDPA API.
         | 
| 731 | 
            +
                """
         | 
| 732 | 
            +
             | 
| 733 | 
            +
                # Adapted from PhiMoEAttention.forward
         | 
| 734 | 
            +
                def forward(
         | 
| 735 | 
            +
                    self,
         | 
| 736 | 
            +
                    hidden_states: torch.Tensor,
         | 
| 737 | 
            +
                    attention_mask: Optional[torch.Tensor] = None,
         | 
| 738 | 
            +
                    position_ids: Optional[torch.LongTensor] = None,
         | 
| 739 | 
            +
                    past_key_value: Optional[Cache] = None,
         | 
| 740 | 
            +
                    output_attentions: bool = False,
         | 
| 741 | 
            +
                    use_cache: bool = False,
         | 
| 742 | 
            +
                ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
         | 
| 743 | 
            +
                    if output_attentions:
         | 
| 744 | 
            +
                        # TODO: Improve this warning with e.g. `model.config.attn_implementation = "manual"` once this is implemented.
         | 
| 745 | 
            +
                        logger.warning_once(
         | 
| 746 | 
            +
                            "PhiMoEModel is using PhiMoESdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to the manual attention implementation, "
         | 
| 747 | 
            +
                            'but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
         | 
| 748 | 
            +
                        )
         | 
| 749 | 
            +
                        return super().forward(
         | 
| 750 | 
            +
                            hidden_states=hidden_states,
         | 
| 751 | 
            +
                            attention_mask=attention_mask,
         | 
| 752 | 
            +
                            position_ids=position_ids,
         | 
| 753 | 
            +
                            past_key_value=past_key_value,
         | 
| 754 | 
            +
                            output_attentions=output_attentions,
         | 
| 755 | 
            +
                            use_cache=use_cache,
         | 
| 756 | 
            +
                        )
         | 
| 757 | 
            +
             | 
| 758 | 
            +
                    bsz, q_len, _ = hidden_states.size()
         | 
| 759 | 
            +
             | 
| 760 | 
            +
                    query_states = self.q_proj(hidden_states)
         | 
| 761 | 
            +
                    key_states = self.k_proj(hidden_states)
         | 
| 762 | 
            +
                    value_states = self.v_proj(hidden_states)
         | 
| 763 | 
            +
             | 
| 764 | 
            +
                    query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
         | 
| 765 | 
            +
                    key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
         | 
| 766 | 
            +
                    value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
         | 
| 767 | 
            +
             | 
| 768 | 
            +
                    kv_seq_len = key_states.shape[-2]
         | 
| 769 | 
            +
                    if past_key_value is not None:
         | 
| 770 | 
            +
                        kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
         | 
| 771 | 
            +
                    cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
         | 
| 772 | 
            +
             | 
| 773 | 
            +
                    query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
         | 
| 774 | 
            +
             | 
| 775 | 
            +
                    if past_key_value is not None:
         | 
| 776 | 
            +
                        cache_kwargs = {"sin": sin, "cos": cos}  # Specific to RoPE models
         | 
| 777 | 
            +
                        key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
         | 
| 778 | 
            +
             | 
| 779 | 
            +
                    key_states = repeat_kv(key_states, self.num_key_value_groups)
         | 
| 780 | 
            +
                    value_states = repeat_kv(value_states, self.num_key_value_groups)
         | 
| 781 | 
            +
             | 
| 782 | 
            +
                    if attention_mask is not None:
         | 
| 783 | 
            +
                        if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
         | 
| 784 | 
            +
                            raise ValueError(
         | 
| 785 | 
            +
                                f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
         | 
| 786 | 
            +
                            )
         | 
| 787 | 
            +
             | 
| 788 | 
            +
                    # SDPA with memory-efficient backend is currently (torch==2.1.2) bugged with non-contiguous inputs with custom attn_mask,
         | 
| 789 | 
            +
                    # Reference: https://github.com/pytorch/pytorch/issues/112577.
         | 
| 790 | 
            +
                    if query_states.device.type == "cuda" and attention_mask is not None:
         | 
| 791 | 
            +
                        query_states = query_states.contiguous()
         | 
| 792 | 
            +
                        key_states = key_states.contiguous()
         | 
| 793 | 
            +
                        value_states = value_states.contiguous()
         | 
| 794 | 
            +
             | 
| 795 | 
            +
                    attn_output = torch.nn.functional.scaled_dot_product_attention(
         | 
| 796 | 
            +
                        query_states,
         | 
| 797 | 
            +
                        key_states,
         | 
| 798 | 
            +
                        value_states,
         | 
| 799 | 
            +
                        attn_mask=attention_mask,
         | 
| 800 | 
            +
                        dropout_p=self.attention_dropout if self.training else 0.0,
         | 
| 801 | 
            +
                        # The q_len > 1 is necessary to match with AttentionMaskConverter.to_causal_4d that does not create a causal mask in case q_len == 1.
         | 
| 802 | 
            +
                        is_causal=self.is_causal and attention_mask is None and q_len > 1,
         | 
| 803 | 
            +
                    )
         | 
| 804 | 
            +
             | 
| 805 | 
            +
                    attn_output = attn_output.transpose(1, 2).contiguous()
         | 
| 806 | 
            +
                    attn_output = attn_output.view(bsz, q_len, self.hidden_size)
         | 
| 807 | 
            +
             | 
| 808 | 
            +
                    attn_output = self.o_proj(attn_output)
         | 
| 809 | 
            +
             | 
| 810 | 
            +
                    return attn_output, None, past_key_value
         | 
| 811 | 
            +
             | 
| 812 | 
            +
             | 
| 813 | 
            +
            PHIMOE_ATTENTION_CLASSES = {
         | 
| 814 | 
            +
                "eager": PhiMoEAttention,
         | 
| 815 | 
            +
                "flash_attention_2": PhiMoEFlashAttention2,
         | 
| 816 | 
            +
                "sdpa": PhiMoESdpaAttention,
         | 
| 817 | 
            +
            }
         | 
| 818 | 
            +
             | 
| 819 | 
            +
             | 
| 820 | 
            +
            class PhiMoEBlockSparseTop2MLP(nn.Module):
         | 
| 821 | 
            +
                def __init__(self, config: PhiMoEConfig):
         | 
| 822 | 
            +
                    super().__init__()
         | 
| 823 | 
            +
                    self.ffn_dim = config.intermediate_size
         | 
| 824 | 
            +
                    self.hidden_dim = config.hidden_size
         | 
| 825 | 
            +
             | 
| 826 | 
            +
                    self.w1 = nn.Linear(self.hidden_dim, self.ffn_dim, bias=False)
         | 
| 827 | 
            +
                    self.w2 = nn.Linear(self.ffn_dim, self.hidden_dim, bias=False)
         | 
| 828 | 
            +
                    self.w3 = nn.Linear(self.hidden_dim, self.ffn_dim, bias=False)
         | 
| 829 | 
            +
             | 
| 830 | 
            +
                    self.act_fn = ACT2FN[config.hidden_act]
         | 
| 831 | 
            +
             | 
| 832 | 
            +
                def forward(self, hidden_states):
         | 
| 833 | 
            +
                    current_hidden_states = self.act_fn(self.w1(hidden_states)) * self.w3(hidden_states)
         | 
| 834 | 
            +
                    current_hidden_states = self.w2(current_hidden_states)
         | 
| 835 | 
            +
                    return current_hidden_states
         | 
| 836 | 
            +
             | 
| 837 | 
            +
             | 
| 838 | 
            +
            class PhiMoEBLockSparseTop2MLP(PhiMoEBlockSparseTop2MLP):
         | 
| 839 | 
            +
                def __init__(self, *args, **kwargs):
         | 
| 840 | 
            +
                    logger.warning_once(
         | 
| 841 | 
            +
                        "PhiMoEBLockSparseTop2MLP is deprecated by PhiMoEBlockSparseTop2MLP and will be removed in v4.40."
         | 
| 842 | 
            +
                    )
         | 
| 843 | 
            +
                    super().__init__(*args, **kwargs)
         | 
| 844 | 
            +
             | 
| 845 | 
            +
             | 
| 846 | 
            +
            class mp(torch.autograd.Function):
         | 
| 847 | 
            +
                @staticmethod
         | 
| 848 | 
            +
                def forward(
         | 
| 849 | 
            +
                    ctx, 
         | 
| 850 | 
            +
                    scores: torch.Tensor, 
         | 
| 851 | 
            +
                    multiplier: torch.Tensor, 
         | 
| 852 | 
            +
                    selected_experts: torch.Tensor,
         | 
| 853 | 
            +
                    masked_gates: torch.Tensor,
         | 
| 854 | 
            +
                    mask_for_one: torch.Tensor,
         | 
| 855 | 
            +
                ):
         | 
| 856 | 
            +
                    ctx.save_for_backward(multiplier, selected_experts, masked_gates)
         | 
| 857 | 
            +
                    return multiplier * mask_for_one
         | 
| 858 | 
            +
                    
         | 
| 859 | 
            +
                @staticmethod
         | 
| 860 | 
            +
                def backward(
         | 
| 861 | 
            +
                    ctx, 
         | 
| 862 | 
            +
                    grad_at_output: torch.Tensor, 
         | 
| 863 | 
            +
                ):
         | 
| 864 | 
            +
                    multiplier, selected_experts, masked_gates = ctx.saved_tensors
         | 
| 865 | 
            +
                    
         | 
| 866 | 
            +
                    grad_at_output = grad_at_output * multiplier
         | 
| 867 | 
            +
                    
         | 
| 868 | 
            +
                    grad_at_scores_expaned = masked_gates * grad_at_output.mul(-1)
         | 
| 869 | 
            +
                    grad_at_scores_expaned.scatter_add_(
         | 
| 870 | 
            +
                        dim=-1,
         | 
| 871 | 
            +
                        index=selected_experts,
         | 
| 872 | 
            +
                        src=grad_at_output,
         | 
| 873 | 
            +
                    )
         | 
| 874 | 
            +
                    
         | 
| 875 | 
            +
                    return (
         | 
| 876 | 
            +
                        grad_at_scores_expaned, 
         | 
| 877 | 
            +
                        None, 
         | 
| 878 | 
            +
                        None, 
         | 
| 879 | 
            +
                        None, 
         | 
| 880 | 
            +
                        None, 
         | 
| 881 | 
            +
                    )
         | 
| 882 | 
            +
                
         | 
| 883 | 
            +
            def sparsemixer(scores, top_k, jitter_eps, training):
         | 
| 884 | 
            +
                assert top_k == 2
         | 
| 885 | 
            +
                
         | 
| 886 | 
            +
                ################ first expert ################
         | 
| 887 | 
            +
                
         | 
| 888 | 
            +
                with torch.no_grad():
         | 
| 889 | 
            +
                    # compute mask for sparsity
         | 
| 890 | 
            +
                    mask_logits_threshold, max_ind = scores.max(dim=-1, keepdim=True)
         | 
| 891 | 
            +
                    factor = scores.abs().clamp(min=mask_logits_threshold)
         | 
| 892 | 
            +
                    mask_logits_threshold = (
         | 
| 893 | 
            +
                        (mask_logits_threshold - scores) / factor
         | 
| 894 | 
            +
                    ) > (2 * jitter_eps)
         | 
| 895 | 
            +
             | 
| 896 | 
            +
                # apply mask 
         | 
| 897 | 
            +
                masked_gates = scores.masked_fill(mask_logits_threshold, float('-inf'))
         | 
| 898 | 
            +
                if training:
         | 
| 899 | 
            +
                    selected_experts = (
         | 
| 900 | 
            +
                        masked_gates - torch.empty_like(masked_gates, memory_format=torch.legacy_contiguous_format).exponential_().log()
         | 
| 901 | 
            +
                    ).max(dim=-1)[1].unsqueeze(-1) # gumbel sampling, more robust than than the multinomial method
         | 
| 902 | 
            +
                else:
         | 
| 903 | 
            +
                    selected_experts = max_ind
         | 
| 904 | 
            +
                    
         | 
| 905 | 
            +
                # compute scores for gradients
         | 
| 906 | 
            +
                masked_gates = torch.softmax(masked_gates, dim=-1)
         | 
| 907 | 
            +
                multiplier_o = masked_gates.gather(dim=-1, index=selected_experts)
         | 
| 908 | 
            +
                
         | 
| 909 | 
            +
                if training:
         | 
| 910 | 
            +
                    # compute midpoint mask 
         | 
| 911 | 
            +
                    max_scores, max_ind = masked_gates.max(dim=-1, keepdim=True)
         | 
| 912 | 
            +
                    mask_for_one = torch.logical_or(
         | 
| 913 | 
            +
                        selected_experts == max_ind,
         | 
| 914 | 
            +
                        torch.rand_like(max_scores) > 0.75 # Heun's third-order method: f(x) - f(0) = .25 f'(x) + .75 f'(x/3.)
         | 
| 915 | 
            +
                    ) 
         | 
| 916 | 
            +
                    # 1 -> 1.0 & 0 -> 1./3: lambda x: (x + 0.5) / 1.5
         | 
| 917 | 
            +
                    mask_for_one = torch.add(0.3333, mask_for_one, alpha=0.6667).type_as(masked_gates)
         | 
| 918 | 
            +
             | 
| 919 | 
            +
                    multiplier = mp.apply(
         | 
| 920 | 
            +
                        scores, 
         | 
| 921 | 
            +
                        multiplier_o, 
         | 
| 922 | 
            +
                        selected_experts, 
         | 
| 923 | 
            +
                        masked_gates, 
         | 
| 924 | 
            +
                        mask_for_one,
         | 
| 925 | 
            +
                    )
         | 
| 926 | 
            +
                else:
         | 
| 927 | 
            +
                    multiplier = multiplier_o
         | 
| 928 | 
            +
             | 
| 929 | 
            +
                # masked out first expert 
         | 
| 930 | 
            +
                masked_scores = torch.scatter(
         | 
| 931 | 
            +
                    scores,
         | 
| 932 | 
            +
                    -1,
         | 
| 933 | 
            +
                    selected_experts,
         | 
| 934 | 
            +
                    float('-inf'),
         | 
| 935 | 
            +
                )
         | 
| 936 | 
            +
                with torch.no_grad():
         | 
| 937 | 
            +
                    # compute mask for sparsity
         | 
| 938 | 
            +
                    mask_logits_threshold, max_ind = masked_scores.max(dim=-1, keepdim=True)
         | 
| 939 | 
            +
                    factor = scores.abs().clamp(min=mask_logits_threshold)
         | 
| 940 | 
            +
                    mask_logits_threshold = (
         | 
| 941 | 
            +
                        (mask_logits_threshold - scores) / factor
         | 
| 942 | 
            +
                    ) > (2 * jitter_eps)
         | 
| 943 | 
            +
             | 
| 944 | 
            +
                # apply mask 
         | 
| 945 | 
            +
                masked_gates_top2 = masked_scores.masked_fill(mask_logits_threshold, float('-inf'))
         | 
| 946 | 
            +
                if training:
         | 
| 947 | 
            +
                    selected_experts_top2 = (
         | 
| 948 | 
            +
                        masked_gates_top2 - torch.empty_like(masked_gates_top2, memory_format=torch.legacy_contiguous_format).exponential_().log()
         | 
| 949 | 
            +
                    ).max(dim=-1)[1].unsqueeze(-1) # gumbel sampling, more robust than than the multinomial method
         | 
| 950 | 
            +
                else:
         | 
| 951 | 
            +
                    selected_experts_top2 = max_ind
         | 
| 952 | 
            +
                # compute scores for gradients
         | 
| 953 | 
            +
                masked_gates_top2 = torch.softmax(masked_gates_top2, dim=-1)
         | 
| 954 | 
            +
                multiplier_top2_o = masked_gates_top2.gather(dim=-1, index=selected_experts_top2)
         | 
| 955 | 
            +
                
         | 
| 956 | 
            +
                if training: 
         | 
| 957 | 
            +
                    # compute midpoint mask 
         | 
| 958 | 
            +
                    max_scores, max_ind = masked_gates_top2.max(dim=-1, keepdim=True)
         | 
| 959 | 
            +
                    mask_for_one_top2 = torch.logical_or(
         | 
| 960 | 
            +
                        selected_experts_top2 == max_ind,
         | 
| 961 | 
            +
                        torch.rand_like(max_scores).uniform_() > 0.75 # Heun's third-order method: f(x) - f(0) = .25 f'(x) + .75 f'(x/3.)
         | 
| 962 | 
            +
                    ) 
         | 
| 963 | 
            +
                    # 1 -> 1.0 & 0 -> 1./3: lambda x: (x + 0.5) / 1.5
         | 
| 964 | 
            +
                    mask_for_one_top2 = torch.add(0.3333, mask_for_one_top2, alpha=0.6667).type_as(masked_gates_top2)
         | 
| 965 | 
            +
             | 
| 966 | 
            +
                    multiplier_top2 = mp.apply(
         | 
| 967 | 
            +
                        scores, 
         | 
| 968 | 
            +
                        multiplier_top2_o, 
         | 
| 969 | 
            +
                        selected_experts_top2, 
         | 
| 970 | 
            +
                        masked_gates_top2, 
         | 
| 971 | 
            +
                        mask_for_one_top2,
         | 
| 972 | 
            +
                    )
         | 
| 973 | 
            +
                else:
         | 
| 974 | 
            +
                    multiplier_top2 = multiplier_top2_o
         | 
| 975 | 
            +
                
         | 
| 976 | 
            +
                multiplier = torch.concat((multiplier, multiplier_top2), dim=-1)
         | 
| 977 | 
            +
                selected_experts = torch.concat((selected_experts, selected_experts_top2), dim=-1)
         | 
| 978 | 
            +
                
         | 
| 979 | 
            +
                return (
         | 
| 980 | 
            +
                    multiplier, 
         | 
| 981 | 
            +
                    selected_experts,
         | 
| 982 | 
            +
                )
         | 
| 983 | 
            +
             | 
| 984 | 
            +
            iterations = 0
         | 
| 985 | 
            +
            class PhiMoESparseMoeBlock(nn.Module):
         | 
| 986 | 
            +
                """
         | 
| 987 | 
            +
                This implementation is
         | 
| 988 | 
            +
                strictly equivalent to standard MoE with full capacity (no
         | 
| 989 | 
            +
                dropped tokens). It's faster since it formulates MoE operations
         | 
| 990 | 
            +
                in terms of block-sparse operations to accomodate imbalanced
         | 
| 991 | 
            +
                assignments of tokens to experts, whereas standard MoE either
         | 
| 992 | 
            +
                (1) drop tokens at the cost of reduced performance or (2) set
         | 
| 993 | 
            +
                capacity factor to number of experts and thus waste computation
         | 
| 994 | 
            +
                and memory on padding.
         | 
| 995 | 
            +
                """
         | 
| 996 | 
            +
             | 
| 997 | 
            +
                def __init__(self, config):
         | 
| 998 | 
            +
                    super().__init__()
         | 
| 999 | 
            +
                    self.hidden_dim = config.hidden_size
         | 
| 1000 | 
            +
                    self.ffn_dim = config.intermediate_size
         | 
| 1001 | 
            +
                    self.num_experts = config.num_local_experts
         | 
| 1002 | 
            +
                    self.top_k = config.num_experts_per_tok
         | 
| 1003 | 
            +
                    global iterations
         | 
| 1004 | 
            +
                    iterations +=1
         | 
| 1005 | 
            +
                    self.iter = iterations
         | 
| 1006 | 
            +
                    # gating
         | 
| 1007 | 
            +
                    self.gate = nn.Linear(self.hidden_dim, self.num_experts, bias=False)
         | 
| 1008 | 
            +
             | 
| 1009 | 
            +
                    self.experts = nn.ModuleList([PhiMoEBlockSparseTop2MLP(config) for _ in range(self.num_experts)])
         | 
| 1010 | 
            +
             | 
| 1011 | 
            +
                    # Jitter parameters
         | 
| 1012 | 
            +
                    self.router_jitter_noise = config.router_jitter_noise
         | 
| 1013 | 
            +
                    self.input_jitter_noise = config.input_jitter_noise
         | 
| 1014 | 
            +
                    
         | 
| 1015 | 
            +
                def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
         | 
| 1016 | 
            +
                    """ """
         | 
| 1017 | 
            +
                    batch_size, sequence_length, hidden_dim = hidden_states.shape
         | 
| 1018 | 
            +
                    if self.training and self.input_jitter_noise > 0:
         | 
| 1019 | 
            +
                        hidden_states *= torch.empty_like(hidden_states).uniform_(1.0 - self.input_jitter_noise, 1.0 + self.input_jitter_noise)
         | 
| 1020 | 
            +
                    hidden_states = hidden_states.view(-1, hidden_dim)
         | 
| 1021 | 
            +
                    # router_logits: (batch * sequence_length, n_experts)
         | 
| 1022 | 
            +
                    # print ( 'moe', self.iter, torch.norm(hidden_states).item())
         | 
| 1023 | 
            +
                    router_logits = self.gate(hidden_states)
         | 
| 1024 | 
            +
             | 
| 1025 | 
            +
                    routing_weights, selected_experts = sparsemixer(
         | 
| 1026 | 
            +
                        router_logits, 
         | 
| 1027 | 
            +
                        top_k=2, 
         | 
| 1028 | 
            +
                        jitter_eps=self.router_jitter_noise, 
         | 
| 1029 | 
            +
                        training=self.training,
         | 
| 1030 | 
            +
                    )
         | 
| 1031 | 
            +
             | 
| 1032 | 
            +
                    final_hidden_states = torch.zeros(
         | 
| 1033 | 
            +
                        (batch_size * sequence_length, hidden_dim), dtype=hidden_states.dtype, device=hidden_states.device
         | 
| 1034 | 
            +
                    )
         | 
| 1035 | 
            +
             | 
| 1036 | 
            +
                    # One hot encode the selected experts to create an expert mask
         | 
| 1037 | 
            +
                    # this will be used to easily index which expert is going to be sollicitated
         | 
| 1038 | 
            +
                    expert_mask = torch.nn.functional.one_hot(selected_experts, num_classes=self.num_experts).permute(2, 1, 0)
         | 
| 1039 | 
            +
             | 
| 1040 | 
            +
                    # Loop over all available experts in the model and perform the computation on each expert
         | 
| 1041 | 
            +
                    for expert_idx in range(self.num_experts):
         | 
| 1042 | 
            +
                        expert_layer = self.experts[expert_idx]
         | 
| 1043 | 
            +
                        idx, top_x = torch.where(expert_mask[expert_idx])
         | 
| 1044 | 
            +
             | 
| 1045 | 
            +
                        if top_x.shape[0] == 0:
         | 
| 1046 | 
            +
                            continue
         | 
| 1047 | 
            +
             | 
| 1048 | 
            +
                        # in torch it is faster to index using lists than torch tensors
         | 
| 1049 | 
            +
                        top_x_list = top_x.tolist()
         | 
| 1050 | 
            +
                        idx_list = idx.tolist()
         | 
| 1051 | 
            +
             | 
| 1052 | 
            +
                        # Index the correct hidden states and compute the expert hidden state for
         | 
| 1053 | 
            +
                        # the current expert. We need to make sure to multiply the output hidden
         | 
| 1054 | 
            +
                        # states by `routing_weights` on the corresponding tokens (top-1 and top-2)
         | 
| 1055 | 
            +
                        current_state = hidden_states[None, top_x_list].reshape(-1, hidden_dim)
         | 
| 1056 | 
            +
                        current_hidden_states = expert_layer(current_state) * routing_weights[top_x_list, idx_list, None]
         | 
| 1057 | 
            +
             | 
| 1058 | 
            +
                        # However `index_add_` only support torch tensors for indexing so we'll use
         | 
| 1059 | 
            +
                        # the `top_x` tensor here.
         | 
| 1060 | 
            +
                        final_hidden_states.index_add_(0, top_x, current_hidden_states.to(hidden_states.dtype))
         | 
| 1061 | 
            +
                    final_hidden_states = final_hidden_states.reshape(batch_size, sequence_length, hidden_dim)
         | 
| 1062 | 
            +
                    # print ( 'moe', self.iter, torch.norm(final_hidden_states).item())
         | 
| 1063 | 
            +
                    return final_hidden_states, router_logits
         | 
| 1064 | 
            +
             | 
| 1065 | 
            +
             | 
| 1066 | 
            +
            class PhiMoEDecoderLayer(nn.Module):
         | 
| 1067 | 
            +
                def __init__(self, config: PhiMoEConfig, layer_idx: int):
         | 
| 1068 | 
            +
                    super().__init__()
         | 
| 1069 | 
            +
                    self.hidden_size = config.hidden_size
         | 
| 1070 | 
            +
             | 
| 1071 | 
            +
                    self.self_attn = PHIMOE_ATTENTION_CLASSES[config._attn_implementation](config, layer_idx)
         | 
| 1072 | 
            +
             | 
| 1073 | 
            +
                    self.block_sparse_moe = PhiMoESparseMoeBlock(config)
         | 
| 1074 | 
            +
                    self.input_layernorm = nn.LayerNorm(config.hidden_size, eps=config.rms_norm_eps, elementwise_affine=True)
         | 
| 1075 | 
            +
                    self.post_attention_layernorm = nn.LayerNorm(config.hidden_size, eps=config.rms_norm_eps, elementwise_affine=True)
         | 
| 1076 | 
            +
             | 
| 1077 | 
            +
                def forward(
         | 
| 1078 | 
            +
                    self,
         | 
| 1079 | 
            +
                    hidden_states: torch.Tensor,
         | 
| 1080 | 
            +
                    attention_mask: Optional[torch.Tensor] = None,
         | 
| 1081 | 
            +
                    position_ids: Optional[torch.LongTensor] = None,
         | 
| 1082 | 
            +
                    past_key_value: Optional[Tuple[torch.Tensor]] = None,
         | 
| 1083 | 
            +
                    output_attentions: Optional[bool] = False,
         | 
| 1084 | 
            +
                    output_router_logits: Optional[bool] = False,
         | 
| 1085 | 
            +
                    use_cache: Optional[bool] = False,
         | 
| 1086 | 
            +
                    **kwargs,
         | 
| 1087 | 
            +
                ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
         | 
| 1088 | 
            +
                    if "padding_mask" in kwargs:
         | 
| 1089 | 
            +
                        warnings.warn(
         | 
| 1090 | 
            +
                            "Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
         | 
| 1091 | 
            +
                        )
         | 
| 1092 | 
            +
                    """
         | 
| 1093 | 
            +
                    Args:
         | 
| 1094 | 
            +
                        hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
         | 
| 1095 | 
            +
                        attention_mask (`torch.FloatTensor`, *optional*): attention mask of size
         | 
| 1096 | 
            +
                            `(batch, sequence_length)` where padding elements are indicated by 0.
         | 
| 1097 | 
            +
                        past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
         | 
| 1098 | 
            +
                        output_attentions (`bool`, *optional*):
         | 
| 1099 | 
            +
                            Whether or not to return the attentions tensors of all attention layers. See `attentions` under
         | 
| 1100 | 
            +
                            returned tensors for more detail.
         | 
| 1101 | 
            +
                        output_router_logits (`bool`, *optional*):
         | 
| 1102 | 
            +
                            Whether or not to return the logits of all the routers. They are useful for computing the router loss, and
         | 
| 1103 | 
            +
                            should not be returned during inference.
         | 
| 1104 | 
            +
                        use_cache (`bool`, *optional*):
         | 
| 1105 | 
            +
                            If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
         | 
| 1106 | 
            +
                            (see `past_key_values`).
         | 
| 1107 | 
            +
                    """
         | 
| 1108 | 
            +
             | 
| 1109 | 
            +
                    residual = hidden_states
         | 
| 1110 | 
            +
             | 
| 1111 | 
            +
                    hidden_states = self.input_layernorm(hidden_states)
         | 
| 1112 | 
            +
             | 
| 1113 | 
            +
                    # Self Attention
         | 
| 1114 | 
            +
                    hidden_states, self_attn_weights, present_key_value = self.self_attn(
         | 
| 1115 | 
            +
                        hidden_states=hidden_states,
         | 
| 1116 | 
            +
                        attention_mask=attention_mask,
         | 
| 1117 | 
            +
                        position_ids=position_ids,
         | 
| 1118 | 
            +
                        past_key_value=past_key_value,
         | 
| 1119 | 
            +
                        output_attentions=output_attentions,
         | 
| 1120 | 
            +
                        use_cache=use_cache,
         | 
| 1121 | 
            +
                    )
         | 
| 1122 | 
            +
                    hidden_states = residual + hidden_states
         | 
| 1123 | 
            +
             | 
| 1124 | 
            +
                    # Fully Connected
         | 
| 1125 | 
            +
                    residual = hidden_states
         | 
| 1126 | 
            +
                    hidden_states = self.post_attention_layernorm(hidden_states)
         | 
| 1127 | 
            +
                    hidden_states, router_logits = self.block_sparse_moe(hidden_states)
         | 
| 1128 | 
            +
                    hidden_states = residual + hidden_states
         | 
| 1129 | 
            +
             | 
| 1130 | 
            +
                    outputs = (hidden_states,)
         | 
| 1131 | 
            +
             | 
| 1132 | 
            +
                    if output_attentions:
         | 
| 1133 | 
            +
                        outputs += (self_attn_weights,)
         | 
| 1134 | 
            +
             | 
| 1135 | 
            +
                    if use_cache:
         | 
| 1136 | 
            +
                        outputs += (present_key_value,)
         | 
| 1137 | 
            +
             | 
| 1138 | 
            +
                    if output_router_logits:
         | 
| 1139 | 
            +
                        outputs += (router_logits,)
         | 
| 1140 | 
            +
             | 
| 1141 | 
            +
                    return outputs
         | 
| 1142 | 
            +
             | 
| 1143 | 
            +
             | 
| 1144 | 
            +
            PHIMOE_START_DOCSTRING = r"""
         | 
| 1145 | 
            +
                This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
         | 
| 1146 | 
            +
                library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
         | 
| 1147 | 
            +
                etc.)
         | 
| 1148 | 
            +
             | 
| 1149 | 
            +
                This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
         | 
| 1150 | 
            +
                Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
         | 
| 1151 | 
            +
                and behavior.
         | 
| 1152 | 
            +
             | 
| 1153 | 
            +
                Parameters:
         | 
| 1154 | 
            +
                    config ([`PhiMoEConfig`]):
         | 
| 1155 | 
            +
                        Model configuration class with all the parameters of the model. Initializing with a config file does not
         | 
| 1156 | 
            +
                        load the weights associated with the model, only the configuration. Check out the
         | 
| 1157 | 
            +
                        [`~PreTrainedModel.from_pretrained`] method to load the model weights.
         | 
| 1158 | 
            +
            """
         | 
| 1159 | 
            +
             | 
| 1160 | 
            +
             | 
| 1161 | 
            +
            @add_start_docstrings(
         | 
| 1162 | 
            +
                "The bare PhiMoE Model outputting raw hidden-states without any specific head on top.",
         | 
| 1163 | 
            +
                PHIMOE_START_DOCSTRING,
         | 
| 1164 | 
            +
            )
         | 
| 1165 | 
            +
             | 
| 1166 | 
            +
            class PhiMoEPreTrainedModel(PreTrainedModel):
         | 
| 1167 | 
            +
                config_class = PhiMoEConfig
         | 
| 1168 | 
            +
                base_model_prefix = "model"
         | 
| 1169 | 
            +
                supports_gradient_checkpointing = True
         | 
| 1170 | 
            +
                _no_split_modules = ["PhiMoEDecoderLayer"]
         | 
| 1171 | 
            +
                _skip_keys_device_placement = "past_key_values"
         | 
| 1172 | 
            +
                _supports_flash_attn_2 = True
         | 
| 1173 | 
            +
                _supports_sdpa = True
         | 
| 1174 | 
            +
                _supports_cache_class = True
         | 
| 1175 | 
            +
             | 
| 1176 | 
            +
                def _init_weights(self, module):
         | 
| 1177 | 
            +
                    pass
         | 
| 1178 | 
            +
                    # std = self.config.initializer_range
         | 
| 1179 | 
            +
                    # if isinstance(module, nn.Linear):
         | 
| 1180 | 
            +
                    #     module.weight.data.normal_(mean=0.0, std=std)
         | 
| 1181 | 
            +
                    #     if module.bias is not None:
         | 
| 1182 | 
            +
                    #         module.bias.data.zero_()
         | 
| 1183 | 
            +
                    # elif isinstance(module, nn.Embedding):
         | 
| 1184 | 
            +
                    #     module.weight.data.normal_(mean=0.0, std=std)
         | 
| 1185 | 
            +
                    #     if module.padding_idx is not None:
         | 
| 1186 | 
            +
                    #         module.weight.data[module.padding_idx].zero_()
         | 
| 1187 | 
            +
             | 
| 1188 | 
            +
             | 
| 1189 | 
            +
            PHIMOE_INPUTS_DOCSTRING = r"""
         | 
| 1190 | 
            +
                Args:
         | 
| 1191 | 
            +
                    input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
         | 
| 1192 | 
            +
                        Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
         | 
| 1193 | 
            +
                        it.
         | 
| 1194 | 
            +
             | 
| 1195 | 
            +
                        Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
         | 
| 1196 | 
            +
                        [`PreTrainedTokenizer.__call__`] for details.
         | 
| 1197 | 
            +
             | 
| 1198 | 
            +
                        [What are input IDs?](../glossary#input-ids)
         | 
| 1199 | 
            +
                    attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
         | 
| 1200 | 
            +
                        Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
         | 
| 1201 | 
            +
             | 
| 1202 | 
            +
                        - 1 for tokens that are **not masked**,
         | 
| 1203 | 
            +
                        - 0 for tokens that are **masked**.
         | 
| 1204 | 
            +
             | 
| 1205 | 
            +
                        [What are attention masks?](../glossary#attention-mask)
         | 
| 1206 | 
            +
             | 
| 1207 | 
            +
                        Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
         | 
| 1208 | 
            +
                        [`PreTrainedTokenizer.__call__`] for details.
         | 
| 1209 | 
            +
             | 
| 1210 | 
            +
                        If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see
         | 
| 1211 | 
            +
                        `past_key_values`).
         | 
| 1212 | 
            +
             | 
| 1213 | 
            +
                        If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
         | 
| 1214 | 
            +
                        and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
         | 
| 1215 | 
            +
                        information on the default strategy.
         | 
| 1216 | 
            +
             | 
| 1217 | 
            +
                        - 1 indicates the head is **not masked**,
         | 
| 1218 | 
            +
                        - 0 indicates the head is **masked**.
         | 
| 1219 | 
            +
                    position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
         | 
| 1220 | 
            +
                        Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
         | 
| 1221 | 
            +
                        config.n_positions - 1]`.
         | 
| 1222 | 
            +
             | 
| 1223 | 
            +
                        [What are position IDs?](../glossary#position-ids)
         | 
| 1224 | 
            +
                    past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
         | 
| 1225 | 
            +
                        Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
         | 
| 1226 | 
            +
                        `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape
         | 
| 1227 | 
            +
                        `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`.
         | 
| 1228 | 
            +
             | 
| 1229 | 
            +
                        Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
         | 
| 1230 | 
            +
                        blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
         | 
| 1231 | 
            +
             | 
| 1232 | 
            +
                        If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
         | 
| 1233 | 
            +
                        don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
         | 
| 1234 | 
            +
                        `decoder_input_ids` of shape `(batch_size, sequence_length)`.
         | 
| 1235 | 
            +
                    inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
         | 
| 1236 | 
            +
                        Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
         | 
| 1237 | 
            +
                        is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
         | 
| 1238 | 
            +
                        model's internal embedding lookup matrix.
         | 
| 1239 | 
            +
                    use_cache (`bool`, *optional*):
         | 
| 1240 | 
            +
                        If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
         | 
| 1241 | 
            +
                        `past_key_values`).
         | 
| 1242 | 
            +
                    output_attentions (`bool`, *optional*):
         | 
| 1243 | 
            +
                        Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
         | 
| 1244 | 
            +
                        tensors for more detail.
         | 
| 1245 | 
            +
                    output_hidden_states (`bool`, *optional*):
         | 
| 1246 | 
            +
                        Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
         | 
| 1247 | 
            +
                        more detail.
         | 
| 1248 | 
            +
                    output_router_logits (`bool`, *optional*):
         | 
| 1249 | 
            +
                        Whether or not to return the logits of all the routers. They are useful for computing the router loss, and
         | 
| 1250 | 
            +
                        should not be returned during inference.
         | 
| 1251 | 
            +
                    return_dict (`bool`, *optional*):
         | 
| 1252 | 
            +
                        Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
         | 
| 1253 | 
            +
            """
         | 
| 1254 | 
            +
             | 
| 1255 | 
            +
             | 
| 1256 | 
            +
            @add_start_docstrings(
         | 
| 1257 | 
            +
                "The bare PhiMoE Model outputting raw hidden-states without any specific head on top.",
         | 
| 1258 | 
            +
                PHIMOE_START_DOCSTRING,
         | 
| 1259 | 
            +
            )
         | 
| 1260 | 
            +
             | 
| 1261 | 
            +
            class PhiMoEModel(PhiMoEPreTrainedModel):
         | 
| 1262 | 
            +
                """
         | 
| 1263 | 
            +
                Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`PhiMoEDecoderLayer`]
         | 
| 1264 | 
            +
             | 
| 1265 | 
            +
                Args:
         | 
| 1266 | 
            +
                    config: PhiMoEConfig
         | 
| 1267 | 
            +
                """
         | 
| 1268 | 
            +
             | 
| 1269 | 
            +
                def __init__(self, config: PhiMoEConfig):
         | 
| 1270 | 
            +
                    super().__init__(config)
         | 
| 1271 | 
            +
                    self.padding_idx = config.pad_token_id
         | 
| 1272 | 
            +
                    self.vocab_size = config.vocab_size
         | 
| 1273 | 
            +
             | 
| 1274 | 
            +
                    self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
         | 
| 1275 | 
            +
                    self.layers = nn.ModuleList(
         | 
| 1276 | 
            +
                        [PhiMoEDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
         | 
| 1277 | 
            +
                    )
         | 
| 1278 | 
            +
                    self._attn_implementation = config._attn_implementation
         | 
| 1279 | 
            +
                    self.norm = nn.LayerNorm(config.hidden_size, eps=config.rms_norm_eps, elementwise_affine=True)
         | 
| 1280 | 
            +
             | 
| 1281 | 
            +
                    self.gradient_checkpointing = False
         | 
| 1282 | 
            +
                    # Initialize weights and apply final processing
         | 
| 1283 | 
            +
                    self.post_init()
         | 
| 1284 | 
            +
             | 
| 1285 | 
            +
                def get_input_embeddings(self):
         | 
| 1286 | 
            +
                    return self.embed_tokens
         | 
| 1287 | 
            +
             | 
| 1288 | 
            +
                def set_input_embeddings(self, value):
         | 
| 1289 | 
            +
                    self.embed_tokens = value
         | 
| 1290 | 
            +
             | 
| 1291 | 
            +
                # Ignore copy
         | 
| 1292 | 
            +
                @add_start_docstrings_to_model_forward(PHIMOE_INPUTS_DOCSTRING)
         | 
| 1293 | 
            +
                def forward(
         | 
| 1294 | 
            +
                    self,
         | 
| 1295 | 
            +
                    input_ids: torch.LongTensor = None,
         | 
| 1296 | 
            +
                    attention_mask: Optional[torch.Tensor] = None,
         | 
| 1297 | 
            +
                    position_ids: Optional[torch.LongTensor] = None,
         | 
| 1298 | 
            +
                    past_key_values: Optional[List[torch.FloatTensor]] = None,
         | 
| 1299 | 
            +
                    inputs_embeds: Optional[torch.FloatTensor] = None,
         | 
| 1300 | 
            +
                    use_cache: Optional[bool] = None,
         | 
| 1301 | 
            +
                    output_attentions: Optional[bool] = None,
         | 
| 1302 | 
            +
                    output_hidden_states: Optional[bool] = None,
         | 
| 1303 | 
            +
                    output_router_logits: Optional[bool] = None,
         | 
| 1304 | 
            +
                    return_dict: Optional[bool] = None,
         | 
| 1305 | 
            +
                ) -> Union[Tuple, MoeModelOutputWithPast]:
         | 
| 1306 | 
            +
                    output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
         | 
| 1307 | 
            +
                    output_router_logits = (
         | 
| 1308 | 
            +
                        output_router_logits if output_router_logits is not None else self.config.output_router_logits
         | 
| 1309 | 
            +
                    )
         | 
| 1310 | 
            +
                    output_hidden_states = (
         | 
| 1311 | 
            +
                        output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
         | 
| 1312 | 
            +
                    )
         | 
| 1313 | 
            +
                    use_cache = use_cache if use_cache is not None else self.config.use_cache
         | 
| 1314 | 
            +
             | 
| 1315 | 
            +
                    return_dict = return_dict if return_dict is not None else self.config.use_return_dict
         | 
| 1316 | 
            +
             | 
| 1317 | 
            +
                    # retrieve input_ids and inputs_embeds
         | 
| 1318 | 
            +
                    if input_ids is not None and inputs_embeds is not None:
         | 
| 1319 | 
            +
                        raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time")
         | 
| 1320 | 
            +
                    elif input_ids is not None:
         | 
| 1321 | 
            +
                        batch_size, seq_length = input_ids.shape
         | 
| 1322 | 
            +
                    elif inputs_embeds is not None:
         | 
| 1323 | 
            +
                        batch_size, seq_length, _ = inputs_embeds.shape
         | 
| 1324 | 
            +
                    else:
         | 
| 1325 | 
            +
                        raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds")
         | 
| 1326 | 
            +
             | 
| 1327 | 
            +
                    past_key_values_length = 0
         | 
| 1328 | 
            +
             | 
| 1329 | 
            +
                    if self.gradient_checkpointing and self.training:
         | 
| 1330 | 
            +
                        if use_cache:
         | 
| 1331 | 
            +
                            logger.warning_once(
         | 
| 1332 | 
            +
                                "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`transformers."
         | 
| 1333 | 
            +
                            )
         | 
| 1334 | 
            +
                            use_cache = False
         | 
| 1335 | 
            +
             | 
| 1336 | 
            +
                    if use_cache:
         | 
| 1337 | 
            +
                        use_legacy_cache = not isinstance(past_key_values, Cache)
         | 
| 1338 | 
            +
                        if use_legacy_cache:
         | 
| 1339 | 
            +
                            past_key_values = DynamicCache.from_legacy_cache(past_key_values)
         | 
| 1340 | 
            +
                        past_key_values_length = past_key_values.get_usable_length(seq_length)
         | 
| 1341 | 
            +
             | 
| 1342 | 
            +
                    if position_ids is None:
         | 
| 1343 | 
            +
                        device = input_ids.device if input_ids is not None else inputs_embeds.device
         | 
| 1344 | 
            +
                        position_ids = torch.arange(
         | 
| 1345 | 
            +
                            past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device
         | 
| 1346 | 
            +
                        )
         | 
| 1347 | 
            +
                        position_ids = position_ids.unsqueeze(0).view(-1, seq_length)
         | 
| 1348 | 
            +
                    else:
         | 
| 1349 | 
            +
                        position_ids = position_ids.view(-1, seq_length).long()
         | 
| 1350 | 
            +
             | 
| 1351 | 
            +
                    if inputs_embeds is None:
         | 
| 1352 | 
            +
                        inputs_embeds = self.embed_tokens(input_ids)
         | 
| 1353 | 
            +
             | 
| 1354 | 
            +
                    if attention_mask is not None and self._attn_implementation == "flash_attention_2" and use_cache:
         | 
| 1355 | 
            +
                        is_padding_right = attention_mask[:, -1].sum().item() != batch_size
         | 
| 1356 | 
            +
                        if is_padding_right:
         | 
| 1357 | 
            +
                            raise ValueError(
         | 
| 1358 | 
            +
                                "You are attempting to perform batched generation with padding_side='right'"
         | 
| 1359 | 
            +
                                " this may lead to unexpected behaviour for Flash Attention version of PhiMoE. Make sure to "
         | 
| 1360 | 
            +
                                " call `tokenizer.padding_side  = 'left'` before tokenizing the input. "
         | 
| 1361 | 
            +
                            )
         | 
| 1362 | 
            +
             | 
| 1363 | 
            +
                    if self._attn_implementation == "flash_attention_2":
         | 
| 1364 | 
            +
                        # 2d mask is passed through the layers
         | 
| 1365 | 
            +
                        attention_mask = attention_mask if (attention_mask is not None and 0 in attention_mask) else None
         | 
| 1366 | 
            +
                    elif self._attn_implementation == "sdpa" and not output_attentions:
         | 
| 1367 | 
            +
                        # output_attentions=True can not be supported when using SDPA, and we fall back on
         | 
| 1368 | 
            +
                        # the manual implementation that requires a 4D causal mask in all cases.
         | 
| 1369 | 
            +
                        attention_mask = _prepare_4d_causal_attention_mask_for_sdpa(
         | 
| 1370 | 
            +
                            attention_mask,
         | 
| 1371 | 
            +
                            (batch_size, seq_length),
         | 
| 1372 | 
            +
                            inputs_embeds,
         | 
| 1373 | 
            +
                            past_key_values_length,
         | 
| 1374 | 
            +
                        )
         | 
| 1375 | 
            +
                    else:
         | 
| 1376 | 
            +
                        # 4d mask is passed through the layers
         | 
| 1377 | 
            +
                        attention_mask = _prepare_4d_causal_attention_mask(
         | 
| 1378 | 
            +
                            attention_mask,
         | 
| 1379 | 
            +
                            (batch_size, seq_length),
         | 
| 1380 | 
            +
                            inputs_embeds,
         | 
| 1381 | 
            +
                            past_key_values_length,
         | 
| 1382 | 
            +
                            sliding_window=self.config.sliding_window,
         | 
| 1383 | 
            +
                        )
         | 
| 1384 | 
            +
             | 
| 1385 | 
            +
                    hidden_states = inputs_embeds
         | 
| 1386 | 
            +
             | 
| 1387 | 
            +
                    # decoder layers
         | 
| 1388 | 
            +
                    all_hidden_states = () if output_hidden_states else None
         | 
| 1389 | 
            +
                    all_self_attns = () if output_attentions else None
         | 
| 1390 | 
            +
                    all_router_logits = () if output_router_logits else None
         | 
| 1391 | 
            +
                    next_decoder_cache = None
         | 
| 1392 | 
            +
             | 
| 1393 | 
            +
                    for decoder_layer in self.layers:
         | 
| 1394 | 
            +
                        if output_hidden_states:
         | 
| 1395 | 
            +
                            all_hidden_states += (hidden_states,)
         | 
| 1396 | 
            +
             | 
| 1397 | 
            +
                        if self.gradient_checkpointing and self.training:
         | 
| 1398 | 
            +
                            layer_outputs = self._gradient_checkpointing_func(
         | 
| 1399 | 
            +
                                decoder_layer.__call__,
         | 
| 1400 | 
            +
                                hidden_states,
         | 
| 1401 | 
            +
                                attention_mask,
         | 
| 1402 | 
            +
                                position_ids,
         | 
| 1403 | 
            +
                                past_key_values,
         | 
| 1404 | 
            +
                                output_attentions,
         | 
| 1405 | 
            +
                                output_router_logits,
         | 
| 1406 | 
            +
                                use_cache,
         | 
| 1407 | 
            +
                            )
         | 
| 1408 | 
            +
                        else:
         | 
| 1409 | 
            +
                            layer_outputs = decoder_layer(
         | 
| 1410 | 
            +
                                hidden_states,
         | 
| 1411 | 
            +
                                attention_mask=attention_mask,
         | 
| 1412 | 
            +
                                position_ids=position_ids,
         | 
| 1413 | 
            +
                                past_key_value=past_key_values,
         | 
| 1414 | 
            +
                                output_attentions=output_attentions,
         | 
| 1415 | 
            +
                                output_router_logits=output_router_logits,
         | 
| 1416 | 
            +
                                use_cache=use_cache,
         | 
| 1417 | 
            +
                            )
         | 
| 1418 | 
            +
             | 
| 1419 | 
            +
                        hidden_states = layer_outputs[0]
         | 
| 1420 | 
            +
             | 
| 1421 | 
            +
                        if use_cache:
         | 
| 1422 | 
            +
                            next_decoder_cache = layer_outputs[2 if output_attentions else 1]
         | 
| 1423 | 
            +
             | 
| 1424 | 
            +
                        if output_attentions:
         | 
| 1425 | 
            +
                            all_self_attns += (layer_outputs[1],)
         | 
| 1426 | 
            +
             | 
| 1427 | 
            +
                        if output_router_logits:
         | 
| 1428 | 
            +
                            all_router_logits += (layer_outputs[-1],)
         | 
| 1429 | 
            +
             | 
| 1430 | 
            +
                    hidden_states = self.norm(hidden_states)
         | 
| 1431 | 
            +
             | 
| 1432 | 
            +
                    # add hidden states from the last decoder layer
         | 
| 1433 | 
            +
                    if output_hidden_states:
         | 
| 1434 | 
            +
                        all_hidden_states += (hidden_states,)
         | 
| 1435 | 
            +
             | 
| 1436 | 
            +
                    next_cache = None
         | 
| 1437 | 
            +
                    if use_cache:
         | 
| 1438 | 
            +
                        next_cache = next_decoder_cache.to_legacy_cache() if use_legacy_cache else next_decoder_cache
         | 
| 1439 | 
            +
             | 
| 1440 | 
            +
                    if not return_dict:
         | 
| 1441 | 
            +
                        return tuple(
         | 
| 1442 | 
            +
                            v
         | 
| 1443 | 
            +
                            for v in [hidden_states, next_cache, all_hidden_states, all_self_attns, all_router_logits]
         | 
| 1444 | 
            +
                            if v is not None
         | 
| 1445 | 
            +
                        )
         | 
| 1446 | 
            +
                    return MoeModelOutputWithPast(
         | 
| 1447 | 
            +
                        last_hidden_state=hidden_states,
         | 
| 1448 | 
            +
                        past_key_values=next_cache,
         | 
| 1449 | 
            +
                        hidden_states=all_hidden_states,
         | 
| 1450 | 
            +
                        attentions=all_self_attns,
         | 
| 1451 | 
            +
                        router_logits=all_router_logits,
         | 
| 1452 | 
            +
                    )
         | 
| 1453 | 
            +
             | 
| 1454 | 
            +
             | 
| 1455 | 
            +
            class PhiMoEForCausalLM(PhiMoEPreTrainedModel):
         | 
| 1456 | 
            +
                _tied_weights_keys = ["lm_head.weight"]
         | 
| 1457 | 
            +
             | 
| 1458 | 
            +
                def __init__(self, config):
         | 
| 1459 | 
            +
                    super().__init__(config)
         | 
| 1460 | 
            +
                    self.model = PhiMoEModel(config)
         | 
| 1461 | 
            +
                    self.vocab_size = config.vocab_size
         | 
| 1462 | 
            +
                    self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=self.config.lm_head_bias)
         | 
| 1463 | 
            +
                    self.router_aux_loss_coef = config.router_aux_loss_coef
         | 
| 1464 | 
            +
                    self.num_experts = config.num_local_experts
         | 
| 1465 | 
            +
                    self.num_experts_per_tok = config.num_experts_per_tok
         | 
| 1466 | 
            +
                    # Initialize weights and apply final processing
         | 
| 1467 | 
            +
                    self.post_init()
         | 
| 1468 | 
            +
             | 
| 1469 | 
            +
                def get_input_embeddings(self):
         | 
| 1470 | 
            +
                    return self.model.embed_tokens
         | 
| 1471 | 
            +
             | 
| 1472 | 
            +
                def set_input_embeddings(self, value):
         | 
| 1473 | 
            +
                    self.model.embed_tokens = value
         | 
| 1474 | 
            +
             | 
| 1475 | 
            +
                def get_output_embeddings(self):
         | 
| 1476 | 
            +
                    return self.lm_head
         | 
| 1477 | 
            +
             | 
| 1478 | 
            +
                def set_output_embeddings(self, new_embeddings):
         | 
| 1479 | 
            +
                    self.lm_head = new_embeddings
         | 
| 1480 | 
            +
             | 
| 1481 | 
            +
                def set_decoder(self, decoder):
         | 
| 1482 | 
            +
                    self.model = decoder
         | 
| 1483 | 
            +
             | 
| 1484 | 
            +
                def get_decoder(self):
         | 
| 1485 | 
            +
                    return self.model
         | 
| 1486 | 
            +
             | 
| 1487 | 
            +
                @add_start_docstrings_to_model_forward(PHIMOE_INPUTS_DOCSTRING)
         | 
| 1488 | 
            +
                @replace_return_docstrings(output_type=MoeCausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
         | 
| 1489 | 
            +
                # Ignore copy
         | 
| 1490 | 
            +
                def forward(
         | 
| 1491 | 
            +
                    self,
         | 
| 1492 | 
            +
                    input_ids: torch.LongTensor = None,
         | 
| 1493 | 
            +
                    attention_mask: Optional[torch.Tensor] = None,
         | 
| 1494 | 
            +
                    position_ids: Optional[torch.LongTensor] = None,
         | 
| 1495 | 
            +
                    past_key_values: Optional[List[torch.FloatTensor]] = None,
         | 
| 1496 | 
            +
                    inputs_embeds: Optional[torch.FloatTensor] = None,
         | 
| 1497 | 
            +
                    labels: Optional[torch.LongTensor] = None,
         | 
| 1498 | 
            +
                    use_cache: Optional[bool] = None,
         | 
| 1499 | 
            +
                    output_attentions: Optional[bool] = None,
         | 
| 1500 | 
            +
                    output_hidden_states: Optional[bool] = None,
         | 
| 1501 | 
            +
                    output_router_logits: Optional[bool] = None,
         | 
| 1502 | 
            +
                    return_dict: Optional[bool] = None,
         | 
| 1503 | 
            +
                ) -> Union[Tuple, MoeCausalLMOutputWithPast]:
         | 
| 1504 | 
            +
                    r"""
         | 
| 1505 | 
            +
                    Args:
         | 
| 1506 | 
            +
                        labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
         | 
| 1507 | 
            +
                            Labels for computing the masked language modeling loss. Indices should either be in `[0, transformers.,
         | 
| 1508 | 
            +
                            config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
         | 
| 1509 | 
            +
                            (masked), the loss is only computed for the tokens with labels in `[0, transformers., config.vocab_size]`.
         | 
| 1510 | 
            +
             | 
| 1511 | 
            +
                    Returns:
         | 
| 1512 | 
            +
             | 
| 1513 | 
            +
                    Example:
         | 
| 1514 | 
            +
             | 
| 1515 | 
            +
                    ```python
         | 
| 1516 | 
            +
                    >>> from transformers import AutoTokenizer, PhiMoEForCausalLM
         | 
| 1517 | 
            +
             | 
| 1518 | 
            +
                    >>> model = PhiMoEForCausalLM.from_pretrained("microsoft/Phi-3.5-moe-instruct")
         | 
| 1519 | 
            +
                    >>> tokenizer = AutoTokenizer.from_pretrained("microsoft/Phi-3.5-moe-instruct")
         | 
| 1520 | 
            +
             | 
| 1521 | 
            +
                    >>> prompt = "Hey, are you conscious? Can you talk to me?"
         | 
| 1522 | 
            +
                    >>> inputs = tokenizer(prompt, return_tensors="pt")
         | 
| 1523 | 
            +
             | 
| 1524 | 
            +
                    >>> # Generate
         | 
| 1525 | 
            +
                    >>> generate_ids = model.generate(inputs.input_ids, max_length=30)
         | 
| 1526 | 
            +
                    >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
         | 
| 1527 | 
            +
                    "Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
         | 
| 1528 | 
            +
                    ```"""
         | 
| 1529 | 
            +
             | 
| 1530 | 
            +
                    output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
         | 
| 1531 | 
            +
                    output_router_logits = (
         | 
| 1532 | 
            +
                        output_router_logits if output_router_logits is not None else self.config.output_router_logits
         | 
| 1533 | 
            +
                    )
         | 
| 1534 | 
            +
             | 
| 1535 | 
            +
                    output_hidden_states = (
         | 
| 1536 | 
            +
                        output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
         | 
| 1537 | 
            +
                    )
         | 
| 1538 | 
            +
                    return_dict = return_dict if return_dict is not None else self.config.use_return_dict
         | 
| 1539 | 
            +
             | 
| 1540 | 
            +
                    # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
         | 
| 1541 | 
            +
                    outputs = self.model(
         | 
| 1542 | 
            +
                        input_ids=input_ids,
         | 
| 1543 | 
            +
                        attention_mask=attention_mask,
         | 
| 1544 | 
            +
                        position_ids=position_ids,
         | 
| 1545 | 
            +
                        past_key_values=past_key_values,
         | 
| 1546 | 
            +
                        inputs_embeds=inputs_embeds,
         | 
| 1547 | 
            +
                        use_cache=use_cache,
         | 
| 1548 | 
            +
                        output_attentions=output_attentions,
         | 
| 1549 | 
            +
                        output_hidden_states=output_hidden_states,
         | 
| 1550 | 
            +
                        output_router_logits=output_router_logits,
         | 
| 1551 | 
            +
                        return_dict=return_dict,
         | 
| 1552 | 
            +
                    )
         | 
| 1553 | 
            +
             | 
| 1554 | 
            +
                    hidden_states = outputs[0]
         | 
| 1555 | 
            +
                    logits = self.lm_head(hidden_states)
         | 
| 1556 | 
            +
                    logits = logits.float()
         | 
| 1557 | 
            +
             | 
| 1558 | 
            +
                    loss = None
         | 
| 1559 | 
            +
                    if labels is not None:
         | 
| 1560 | 
            +
                        # Shift so that tokens < n predict n
         | 
| 1561 | 
            +
                        shift_logits = logits[..., :-1, :].contiguous()
         | 
| 1562 | 
            +
                        shift_labels = labels[..., 1:].contiguous()
         | 
| 1563 | 
            +
                        # Flatten the tokens
         | 
| 1564 | 
            +
                        loss_fct = CrossEntropyLoss()
         | 
| 1565 | 
            +
                        shift_logits = shift_logits.view(-1, self.config.vocab_size)
         | 
| 1566 | 
            +
                        shift_labels = shift_labels.view(-1)
         | 
| 1567 | 
            +
                        # Enable model parallelism
         | 
| 1568 | 
            +
                        shift_labels = shift_labels.to(shift_logits.device)
         | 
| 1569 | 
            +
                        loss = loss_fct(shift_logits, shift_labels)
         | 
| 1570 | 
            +
             | 
| 1571 | 
            +
                    aux_loss = None
         | 
| 1572 | 
            +
                    if output_router_logits:
         | 
| 1573 | 
            +
                        aux_loss = load_balancing_loss_func(
         | 
| 1574 | 
            +
                            outputs.router_logits if return_dict else outputs[-1],
         | 
| 1575 | 
            +
                            self.num_experts,
         | 
| 1576 | 
            +
                            self.num_experts_per_tok,
         | 
| 1577 | 
            +
                            attention_mask,
         | 
| 1578 | 
            +
                        )
         | 
| 1579 | 
            +
                        if labels is not None:
         | 
| 1580 | 
            +
                            loss += self.router_aux_loss_coef * aux_loss.to(loss.device)  # make sure to reside in the same device
         | 
| 1581 | 
            +
             | 
| 1582 | 
            +
                    if not return_dict:
         | 
| 1583 | 
            +
                        output = (logits,) + outputs[1:]
         | 
| 1584 | 
            +
                        if output_router_logits:
         | 
| 1585 | 
            +
                            output = (aux_loss,) + output
         | 
| 1586 | 
            +
                        return (loss,) + output if loss is not None else output
         | 
| 1587 | 
            +
             | 
| 1588 | 
            +
                    return MoeCausalLMOutputWithPast(
         | 
| 1589 | 
            +
                        loss=loss,
         | 
| 1590 | 
            +
                        aux_loss=aux_loss,
         | 
| 1591 | 
            +
                        logits=logits,
         | 
| 1592 | 
            +
                        past_key_values=outputs.past_key_values,
         | 
| 1593 | 
            +
                        hidden_states=outputs.hidden_states,
         | 
| 1594 | 
            +
                        attentions=outputs.attentions,
         | 
| 1595 | 
            +
                        router_logits=outputs.router_logits,
         | 
| 1596 | 
            +
                    )
         | 
| 1597 | 
            +
             | 
| 1598 | 
            +
                def prepare_inputs_for_generation(
         | 
| 1599 | 
            +
                    self,
         | 
| 1600 | 
            +
                    input_ids,
         | 
| 1601 | 
            +
                    past_key_values=None,
         | 
| 1602 | 
            +
                    attention_mask=None,
         | 
| 1603 | 
            +
                    inputs_embeds=None,
         | 
| 1604 | 
            +
                    output_router_logits=False,
         | 
| 1605 | 
            +
                    **kwargs,
         | 
| 1606 | 
            +
                ):
         | 
| 1607 | 
            +
                    # When the first time input length reached long and short factor switching point, enforce re-compute cache
         | 
| 1608 | 
            +
                    # It will cause downside of slower at this single token position, however, better than current failure.
         | 
| 1609 | 
            +
                    if past_key_values and self.config.rope_scaling and input_ids.shape[1] >= self.config.original_max_position_embeddings + 1:
         | 
| 1610 | 
            +
                        past_length = past_key_values.seen_tokens if isinstance(past_key_values, Cache) else past_key_values[0][0].shape[2]
         | 
| 1611 | 
            +
                        if past_length <= self.config.original_max_position_embeddings:
         | 
| 1612 | 
            +
                            past_key_values = None
         | 
| 1613 | 
            +
                    
         | 
| 1614 | 
            +
                    # Omit tokens covered by past_key_values
         | 
| 1615 | 
            +
                    if past_key_values is not None:
         | 
| 1616 | 
            +
                        if isinstance(past_key_values, Cache):
         | 
| 1617 | 
            +
                            cache_length = past_key_values.get_seq_length()
         | 
| 1618 | 
            +
                            past_length = past_key_values.seen_tokens
         | 
| 1619 | 
            +
                            max_cache_length = past_key_values.get_max_length()
         | 
| 1620 | 
            +
                        else:
         | 
| 1621 | 
            +
                            cache_length = past_length = past_key_values[0][0].shape[2]
         | 
| 1622 | 
            +
                            max_cache_length = None
         | 
| 1623 | 
            +
             | 
| 1624 | 
            +
                        # Keep only the unprocessed tokens:
         | 
| 1625 | 
            +
                        # 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where
         | 
| 1626 | 
            +
                        # some of the inputs are exclusively passed as part of the cache (e.g. when passing input_embeds as
         | 
| 1627 | 
            +
                        # input)
         | 
| 1628 | 
            +
                        if attention_mask is not None and attention_mask.shape[1] > input_ids.shape[1]:
         | 
| 1629 | 
            +
                            input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :]
         | 
| 1630 | 
            +
                        # 2 - If the past_length is smaller than input_ids', then input_ids holds all input tokens. We can discard
         | 
| 1631 | 
            +
                        # input_ids based on the past_length.
         | 
| 1632 | 
            +
                        elif past_length < input_ids.shape[1]:
         | 
| 1633 | 
            +
                            input_ids = input_ids[:, past_length:]
         | 
| 1634 | 
            +
                        # 3 - Otherwise (past_length >= input_ids.shape[1]), let's assume input_ids only has unprocessed tokens.
         | 
| 1635 | 
            +
             | 
| 1636 | 
            +
                        # If we are about to go beyond the maximum cache length, we need to crop the input attention mask.
         | 
| 1637 | 
            +
                        if (
         | 
| 1638 | 
            +
                            max_cache_length is not None
         | 
| 1639 | 
            +
                            and attention_mask is not None
         | 
| 1640 | 
            +
                            and cache_length + input_ids.shape[1] > max_cache_length
         | 
| 1641 | 
            +
                        ):
         | 
| 1642 | 
            +
                            attention_mask = attention_mask[:, -max_cache_length:]
         | 
| 1643 | 
            +
             | 
| 1644 | 
            +
                    position_ids = kwargs.get("position_ids", None)
         | 
| 1645 | 
            +
                    if attention_mask is not None and position_ids is None:
         | 
| 1646 | 
            +
                        # create position_ids on the fly for batch generation
         | 
| 1647 | 
            +
                        position_ids = attention_mask.long().cumsum(-1) - 1
         | 
| 1648 | 
            +
                        position_ids.masked_fill_(attention_mask == 0, 1)
         | 
| 1649 | 
            +
                        if past_key_values:
         | 
| 1650 | 
            +
                            position_ids = position_ids[:, -input_ids.shape[1] :]
         | 
| 1651 | 
            +
             | 
| 1652 | 
            +
                    # if `inputs_embeds` are passed, we only want to use them in the 1st generation step
         | 
| 1653 | 
            +
                    if inputs_embeds is not None and past_key_values is None:
         | 
| 1654 | 
            +
                        model_inputs = {"inputs_embeds": inputs_embeds}
         | 
| 1655 | 
            +
                    else:
         | 
| 1656 | 
            +
                        model_inputs = {"input_ids": input_ids}
         | 
| 1657 | 
            +
             | 
| 1658 | 
            +
                    model_inputs.update(
         | 
| 1659 | 
            +
                        {
         | 
| 1660 | 
            +
                            "position_ids": position_ids,
         | 
| 1661 | 
            +
                            "past_key_values": past_key_values,
         | 
| 1662 | 
            +
                            "use_cache": kwargs.get("use_cache"),
         | 
| 1663 | 
            +
                            "attention_mask": attention_mask,
         | 
| 1664 | 
            +
                            "output_router_logits": output_router_logits,
         | 
| 1665 | 
            +
                        }
         | 
| 1666 | 
            +
                    )
         | 
| 1667 | 
            +
                    return model_inputs
         | 
| 1668 | 
            +
             | 
| 1669 | 
            +
                @staticmethod
         | 
| 1670 | 
            +
                def _reorder_cache(past_key_values, beam_idx):
         | 
| 1671 | 
            +
                    reordered_past = ()
         | 
| 1672 | 
            +
                    for layer_past in past_key_values:
         | 
| 1673 | 
            +
                        reordered_past += (
         | 
| 1674 | 
            +
                            tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
         | 
| 1675 | 
            +
                        )
         | 
| 1676 | 
            +
                    return reordered_past
         | 
| 1677 | 
            +
             | 
| 1678 | 
            +
             | 
| 1679 | 
            +
            @add_start_docstrings(
         | 
| 1680 | 
            +
                """
         | 
| 1681 | 
            +
                The PhiMoE Model transformer with a sequence classification head on top (linear layer).
         | 
| 1682 | 
            +
             | 
| 1683 | 
            +
                [`PhiMoEForSequenceClassification`] uses the last token in order to do the classification, as other causal models
         | 
| 1684 | 
            +
                (e.g. GPT-2) do.
         | 
| 1685 | 
            +
             | 
| 1686 | 
            +
                Since it does classification on the last token, it requires to know the position of the last token. If a
         | 
| 1687 | 
            +
                `pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
         | 
| 1688 | 
            +
                no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
         | 
| 1689 | 
            +
                padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
         | 
| 1690 | 
            +
                each row of the batch).
         | 
| 1691 | 
            +
                """,
         | 
| 1692 | 
            +
                PHIMOE_START_DOCSTRING,
         | 
| 1693 | 
            +
            )
         | 
| 1694 | 
            +
            # Copied from transformers.models.llama.modeling_llama.LlamaForSequenceClassification with Llama->PhiMoE, LLAMA->PHIMOE
         | 
| 1695 | 
            +
            class PhiMoEForSequenceClassification(PhiMoEPreTrainedModel):
         | 
| 1696 | 
            +
                def __init__(self, config):
         | 
| 1697 | 
            +
                    super().__init__(config)
         | 
| 1698 | 
            +
                    self.num_labels = config.num_labels
         | 
| 1699 | 
            +
                    self.model = PhiMoEModel(config)
         | 
| 1700 | 
            +
                    self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)
         | 
| 1701 | 
            +
             | 
| 1702 | 
            +
                    # Initialize weights and apply final processing
         | 
| 1703 | 
            +
                    self.post_init()
         | 
| 1704 | 
            +
             | 
| 1705 | 
            +
                def get_input_embeddings(self):
         | 
| 1706 | 
            +
                    return self.model.embed_tokens
         | 
| 1707 | 
            +
             | 
| 1708 | 
            +
                def set_input_embeddings(self, value):
         | 
| 1709 | 
            +
                    self.model.embed_tokens = value
         | 
| 1710 | 
            +
             | 
| 1711 | 
            +
                @add_start_docstrings_to_model_forward(PHIMOE_INPUTS_DOCSTRING)
         | 
| 1712 | 
            +
                def forward(
         | 
| 1713 | 
            +
                    self,
         | 
| 1714 | 
            +
                    input_ids: torch.LongTensor = None,
         | 
| 1715 | 
            +
                    attention_mask: Optional[torch.Tensor] = None,
         | 
| 1716 | 
            +
                    position_ids: Optional[torch.LongTensor] = None,
         | 
| 1717 | 
            +
                    past_key_values: Optional[List[torch.FloatTensor]] = None,
         | 
| 1718 | 
            +
                    inputs_embeds: Optional[torch.FloatTensor] = None,
         | 
| 1719 | 
            +
                    labels: Optional[torch.LongTensor] = None,
         | 
| 1720 | 
            +
                    use_cache: Optional[bool] = None,
         | 
| 1721 | 
            +
                    output_attentions: Optional[bool] = None,
         | 
| 1722 | 
            +
                    output_hidden_states: Optional[bool] = None,
         | 
| 1723 | 
            +
                    return_dict: Optional[bool] = None,
         | 
| 1724 | 
            +
                ) -> Union[Tuple, SequenceClassifierOutputWithPast]:
         | 
| 1725 | 
            +
                    r"""
         | 
| 1726 | 
            +
                    labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
         | 
| 1727 | 
            +
                        Labels for computing the sequence classification/regression loss. Indices should be in `[0, transformers.,
         | 
| 1728 | 
            +
                        config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
         | 
| 1729 | 
            +
                        `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
         | 
| 1730 | 
            +
                    """
         | 
| 1731 | 
            +
                    return_dict = return_dict if return_dict is not None else self.config.use_return_dict
         | 
| 1732 | 
            +
             | 
| 1733 | 
            +
                    transformer_outputs = self.model(
         | 
| 1734 | 
            +
                        input_ids,
         | 
| 1735 | 
            +
                        attention_mask=attention_mask,
         | 
| 1736 | 
            +
                        position_ids=position_ids,
         | 
| 1737 | 
            +
                        past_key_values=past_key_values,
         | 
| 1738 | 
            +
                        inputs_embeds=inputs_embeds,
         | 
| 1739 | 
            +
                        use_cache=use_cache,
         | 
| 1740 | 
            +
                        output_attentions=output_attentions,
         | 
| 1741 | 
            +
                        output_hidden_states=output_hidden_states,
         | 
| 1742 | 
            +
                        return_dict=return_dict,
         | 
| 1743 | 
            +
                    )
         | 
| 1744 | 
            +
                    hidden_states = transformer_outputs[0]
         | 
| 1745 | 
            +
                    logits = self.score(hidden_states)
         | 
| 1746 | 
            +
             | 
| 1747 | 
            +
                    if input_ids is not None:
         | 
| 1748 | 
            +
                        batch_size = input_ids.shape[0]
         | 
| 1749 | 
            +
                    else:
         | 
| 1750 | 
            +
                        batch_size = inputs_embeds.shape[0]
         | 
| 1751 | 
            +
             | 
| 1752 | 
            +
                    if self.config.pad_token_id is None and batch_size != 1:
         | 
| 1753 | 
            +
                        raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.")
         | 
| 1754 | 
            +
                    if self.config.pad_token_id is None:
         | 
| 1755 | 
            +
                        sequence_lengths = -1
         | 
| 1756 | 
            +
                    else:
         | 
| 1757 | 
            +
                        if input_ids is not None:
         | 
| 1758 | 
            +
                            # if no pad token found, use modulo instead of reverse indexing for ONNX compatibility
         | 
| 1759 | 
            +
                            sequence_lengths = torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1
         | 
| 1760 | 
            +
                            sequence_lengths = sequence_lengths % input_ids.shape[-1]
         | 
| 1761 | 
            +
                            sequence_lengths = sequence_lengths.to(logits.device)
         | 
| 1762 | 
            +
                        else:
         | 
| 1763 | 
            +
                            sequence_lengths = -1
         | 
| 1764 | 
            +
             | 
| 1765 | 
            +
                    pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths]
         | 
| 1766 | 
            +
             | 
| 1767 | 
            +
                    loss = None
         | 
| 1768 | 
            +
                    if labels is not None:
         | 
| 1769 | 
            +
                        labels = labels.to(logits.device)
         | 
| 1770 | 
            +
                        if self.config.problem_type is None:
         | 
| 1771 | 
            +
                            if self.num_labels == 1:
         | 
| 1772 | 
            +
                                self.config.problem_type = "regression"
         | 
| 1773 | 
            +
                            elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
         | 
| 1774 | 
            +
                                self.config.problem_type = "single_label_classification"
         | 
| 1775 | 
            +
                            else:
         | 
| 1776 | 
            +
                                self.config.problem_type = "multi_label_classification"
         | 
| 1777 | 
            +
             | 
| 1778 | 
            +
                        if self.config.problem_type == "regression":
         | 
| 1779 | 
            +
                            loss_fct = MSELoss()
         | 
| 1780 | 
            +
                            if self.num_labels == 1:
         | 
| 1781 | 
            +
                                loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
         | 
| 1782 | 
            +
                            else:
         | 
| 1783 | 
            +
                                loss = loss_fct(pooled_logits, labels)
         | 
| 1784 | 
            +
                        elif self.config.problem_type == "single_label_classification":
         | 
| 1785 | 
            +
                            loss_fct = CrossEntropyLoss()
         | 
| 1786 | 
            +
                            loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1))
         | 
| 1787 | 
            +
                        elif self.config.problem_type == "multi_label_classification":
         | 
| 1788 | 
            +
                            loss_fct = BCEWithLogitsLoss()
         | 
| 1789 | 
            +
                            loss = loss_fct(pooled_logits, labels)
         | 
| 1790 | 
            +
                    if not return_dict:
         | 
| 1791 | 
            +
                        output = (pooled_logits,) + transformer_outputs[1:]
         | 
| 1792 | 
            +
                        return ((loss,) + output) if loss is not None else output
         | 
| 1793 | 
            +
             | 
| 1794 | 
            +
                    return SequenceClassifierOutputWithPast(
         | 
| 1795 | 
            +
                        loss=loss,
         | 
| 1796 | 
            +
                        logits=pooled_logits,
         | 
| 1797 | 
            +
                        past_key_values=transformer_outputs.past_key_values,
         | 
| 1798 | 
            +
                        hidden_states=transformer_outputs.hidden_states,
         | 
| 1799 | 
            +
                        attentions=transformer_outputs.attentions,
         | 
| 1800 | 
            +
                    )
         | 
    	
        sample_finetune.py
    ADDED
    
    | @@ -0,0 +1,224 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            import sys
         | 
| 2 | 
            +
            import logging
         | 
| 3 | 
            +
             | 
| 4 | 
            +
            import deepspeed
         | 
| 5 | 
            +
            import datasets
         | 
| 6 | 
            +
            from datasets import load_dataset
         | 
| 7 | 
            +
            from peft import LoraConfig
         | 
| 8 | 
            +
            import torch
         | 
| 9 | 
            +
            import transformers
         | 
| 10 | 
            +
            from trl import SFTTrainer
         | 
| 11 | 
            +
            from transformers import AutoModelForCausalLM, AutoTokenizer, TrainingArguments
         | 
| 12 | 
            +
             | 
| 13 | 
            +
            """
         | 
| 14 | 
            +
            A simple example on using SFTTrainer and Accelerate to finetune Phi-3 models. For
         | 
| 15 | 
            +
            a more advanced example, please follow HF alignment-handbook/scripts/run_sft.py.
         | 
| 16 | 
            +
            This example has utilized DeepSpeed ZeRO3 offload to reduce the memory usage. The
         | 
| 17 | 
            +
            script can be run on A100 or later generation GPUs. Here are some suggestions on 
         | 
| 18 | 
            +
            futher reducing memory consumption:
         | 
| 19 | 
            +
                - reduce batch size
         | 
| 20 | 
            +
                - decrease lora dimension
         | 
| 21 | 
            +
                - restrict lora target modules
         | 
| 22 | 
            +
            Please follow these steps to run the script:
         | 
| 23 | 
            +
            1. Install dependencies: 
         | 
| 24 | 
            +
                conda install -c conda-forge accelerate
         | 
| 25 | 
            +
                pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu121
         | 
| 26 | 
            +
                pip3 install -i https://pypi.org/simple/ bitsandbytes
         | 
| 27 | 
            +
                pip3 install peft trl transformers datasets
         | 
| 28 | 
            +
                pip3 install deepspeed
         | 
| 29 | 
            +
            2. Setup accelerate and deepspeed config based on the machine used:
         | 
| 30 | 
            +
                accelerate config
         | 
| 31 | 
            +
            Here is a sample config for deepspeed zero3:
         | 
| 32 | 
            +
                compute_environment: LOCAL_MACHINE
         | 
| 33 | 
            +
                debug: false
         | 
| 34 | 
            +
                deepspeed_config:
         | 
| 35 | 
            +
                  gradient_accumulation_steps: 1
         | 
| 36 | 
            +
                  offload_optimizer_device: none
         | 
| 37 | 
            +
                  offload_param_device: none
         | 
| 38 | 
            +
                  zero3_init_flag: true
         | 
| 39 | 
            +
                  zero3_save_16bit_model: true
         | 
| 40 | 
            +
                  zero_stage: 3
         | 
| 41 | 
            +
                distributed_type: DEEPSPEED
         | 
| 42 | 
            +
                downcast_bf16: 'no'
         | 
| 43 | 
            +
                enable_cpu_affinity: false
         | 
| 44 | 
            +
                machine_rank: 0
         | 
| 45 | 
            +
                main_training_function: main
         | 
| 46 | 
            +
                mixed_precision: bf16
         | 
| 47 | 
            +
                num_machines: 1
         | 
| 48 | 
            +
                num_processes: 2
         | 
| 49 | 
            +
                rdzv_backend: static
         | 
| 50 | 
            +
                same_network: true
         | 
| 51 | 
            +
                tpu_env: []
         | 
| 52 | 
            +
                tpu_use_cluster: false
         | 
| 53 | 
            +
                tpu_use_sudo: false
         | 
| 54 | 
            +
                use_cpu: false
         | 
| 55 | 
            +
            3. check accelerate config:
         | 
| 56 | 
            +
                accelerate env
         | 
| 57 | 
            +
            4. Run the code, and make sure to use accelerate launch alongside with
         | 
| 58 | 
            +
                at least 2 A100 80GB GPUs:
         | 
| 59 | 
            +
                
         | 
| 60 | 
            +
                accelerate launch sample_finetune.py
         | 
| 61 | 
            +
            """
         | 
| 62 | 
            +
             | 
| 63 | 
            +
            logger = logging.getLogger(__name__)
         | 
| 64 | 
            +
             | 
| 65 | 
            +
             | 
| 66 | 
            +
            ###################
         | 
| 67 | 
            +
            # Hyper-parameters
         | 
| 68 | 
            +
            ###################
         | 
| 69 | 
            +
            training_config = {
         | 
| 70 | 
            +
                "bf16": True,
         | 
| 71 | 
            +
                "do_eval": False,
         | 
| 72 | 
            +
                "learning_rate": 5.0e-06,
         | 
| 73 | 
            +
                "log_level": "info",
         | 
| 74 | 
            +
                "logging_steps": 20,
         | 
| 75 | 
            +
                "logging_strategy": "steps",
         | 
| 76 | 
            +
                "lr_scheduler_type": "cosine",
         | 
| 77 | 
            +
                "num_train_epochs": 1,
         | 
| 78 | 
            +
                "max_steps": -1,
         | 
| 79 | 
            +
                "output_dir": "./checkpoint_dir",
         | 
| 80 | 
            +
                "overwrite_output_dir": True,
         | 
| 81 | 
            +
                "per_device_eval_batch_size": 4,
         | 
| 82 | 
            +
                "per_device_train_batch_size": 4,
         | 
| 83 | 
            +
                "remove_unused_columns": True,
         | 
| 84 | 
            +
                "save_steps": 100,
         | 
| 85 | 
            +
                "save_total_limit": 1,
         | 
| 86 | 
            +
                "seed": 0,
         | 
| 87 | 
            +
                "gradient_checkpointing": True,
         | 
| 88 | 
            +
                "gradient_checkpointing_kwargs":{"use_reentrant": False},
         | 
| 89 | 
            +
                "gradient_accumulation_steps": 1,
         | 
| 90 | 
            +
                "warmup_ratio": 0.2,
         | 
| 91 | 
            +
                }
         | 
| 92 | 
            +
             | 
| 93 | 
            +
            peft_config = {
         | 
| 94 | 
            +
                "r": 16,
         | 
| 95 | 
            +
                "lora_alpha": 32,
         | 
| 96 | 
            +
                "lora_dropout": 0.05,
         | 
| 97 | 
            +
                "bias": "none",
         | 
| 98 | 
            +
                "task_type": "CAUSAL_LM",
         | 
| 99 | 
            +
                "target_modules": "all-linear",
         | 
| 100 | 
            +
                "modules_to_save": None,
         | 
| 101 | 
            +
            }
         | 
| 102 | 
            +
            train_conf = TrainingArguments(**training_config)
         | 
| 103 | 
            +
            peft_conf = LoraConfig(**peft_config)
         | 
| 104 | 
            +
             | 
| 105 | 
            +
             | 
| 106 | 
            +
            ###############
         | 
| 107 | 
            +
            # Setup logging
         | 
| 108 | 
            +
            ###############
         | 
| 109 | 
            +
            logging.basicConfig(
         | 
| 110 | 
            +
                format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
         | 
| 111 | 
            +
                datefmt="%Y-%m-%d %H:%M:%S",
         | 
| 112 | 
            +
                handlers=[logging.StreamHandler(sys.stdout)],
         | 
| 113 | 
            +
            )
         | 
| 114 | 
            +
            log_level = train_conf.get_process_log_level()
         | 
| 115 | 
            +
            logger.setLevel(log_level)
         | 
| 116 | 
            +
            datasets.utils.logging.set_verbosity(log_level)
         | 
| 117 | 
            +
            transformers.utils.logging.set_verbosity(log_level)
         | 
| 118 | 
            +
            transformers.utils.logging.enable_default_handler()
         | 
| 119 | 
            +
            transformers.utils.logging.enable_explicit_format()
         | 
| 120 | 
            +
             | 
| 121 | 
            +
            # Log on each process a small summary
         | 
| 122 | 
            +
            logger.warning(
         | 
| 123 | 
            +
                f"Process rank: {train_conf.local_rank}, device: {train_conf.device}, n_gpu: {train_conf.n_gpu}"
         | 
| 124 | 
            +
                + f" distributed training: {bool(train_conf.local_rank != -1)}, 16-bits training: {train_conf.fp16}"
         | 
| 125 | 
            +
            )
         | 
| 126 | 
            +
            logger.info(f"Training/evaluation parameters {train_conf}")
         | 
| 127 | 
            +
            logger.info(f"PEFT parameters {peft_conf}")
         | 
| 128 | 
            +
             | 
| 129 | 
            +
             | 
| 130 | 
            +
            ################
         | 
| 131 | 
            +
            # Model Loading
         | 
| 132 | 
            +
            ################
         | 
| 133 | 
            +
            checkpoint_path = "microsoft/Phi-3.5-moe-instruct"
         | 
| 134 | 
            +
            model_kwargs = dict(
         | 
| 135 | 
            +
                use_cache=False,
         | 
| 136 | 
            +
                trust_remote_code=True,
         | 
| 137 | 
            +
                attn_implementation="flash_attention_2",  # loading the model with flash-attenstion support
         | 
| 138 | 
            +
                torch_dtype=torch.bfloat16,
         | 
| 139 | 
            +
                device_map=None
         | 
| 140 | 
            +
            )
         | 
| 141 | 
            +
            model = AutoModelForCausalLM.from_pretrained(checkpoint_path, **model_kwargs)
         | 
| 142 | 
            +
            tokenizer = AutoTokenizer.from_pretrained(checkpoint_path)
         | 
| 143 | 
            +
            tokenizer.model_max_length = 2048
         | 
| 144 | 
            +
            tokenizer.pad_token = tokenizer.unk_token  # use unk rather than eos token to prevent endless generation
         | 
| 145 | 
            +
            tokenizer.pad_token_id = tokenizer.convert_tokens_to_ids(tokenizer.pad_token)
         | 
| 146 | 
            +
            tokenizer.padding_side = 'right'
         | 
| 147 | 
            +
             | 
| 148 | 
            +
            for m in model.modules():
         | 
| 149 | 
            +
                # https://github.com/microsoft/DeepSpeed/pull/4966
         | 
| 150 | 
            +
                if "PhiMoESparseMoeBlock" in m.__class__.__name__:
         | 
| 151 | 
            +
                    deepspeed.utils.set_z3_leaf_modules(model, [m.__class__])
         | 
| 152 | 
            +
                    logger.info(f"Setting zero3 leaf for model on class with name: {m.__class__.__name__}")
         | 
| 153 | 
            +
                    break
         | 
| 154 | 
            +
             | 
| 155 | 
            +
             | 
| 156 | 
            +
            ##################
         | 
| 157 | 
            +
            # Data Processing
         | 
| 158 | 
            +
            ##################
         | 
| 159 | 
            +
            def apply_chat_template(
         | 
| 160 | 
            +
                example,
         | 
| 161 | 
            +
                tokenizer,
         | 
| 162 | 
            +
            ):
         | 
| 163 | 
            +
                messages = example["messages"]
         | 
| 164 | 
            +
                example["text"] = tokenizer.apply_chat_template(
         | 
| 165 | 
            +
                    messages, tokenize=False, add_generation_prompt=False)
         | 
| 166 | 
            +
                return example
         | 
| 167 | 
            +
             | 
| 168 | 
            +
            raw_dataset = load_dataset("HuggingFaceH4/ultrachat_200k")
         | 
| 169 | 
            +
            train_dataset = raw_dataset["train_sft"]
         | 
| 170 | 
            +
            test_dataset = raw_dataset["test_sft"]
         | 
| 171 | 
            +
            column_names = list(train_dataset.features)
         | 
| 172 | 
            +
             | 
| 173 | 
            +
            processed_train_dataset = train_dataset.map(
         | 
| 174 | 
            +
                apply_chat_template,
         | 
| 175 | 
            +
                fn_kwargs={"tokenizer": tokenizer},
         | 
| 176 | 
            +
                num_proc=10,
         | 
| 177 | 
            +
                remove_columns=column_names,
         | 
| 178 | 
            +
                desc="Applying chat template to train_sft",
         | 
| 179 | 
            +
            )
         | 
| 180 | 
            +
             | 
| 181 | 
            +
            processed_test_dataset = test_dataset.map(
         | 
| 182 | 
            +
                apply_chat_template,
         | 
| 183 | 
            +
                fn_kwargs={"tokenizer": tokenizer},
         | 
| 184 | 
            +
                num_proc=10,
         | 
| 185 | 
            +
                remove_columns=column_names,
         | 
| 186 | 
            +
                desc="Applying chat template to test_sft",
         | 
| 187 | 
            +
            )
         | 
| 188 | 
            +
             | 
| 189 | 
            +
             | 
| 190 | 
            +
            ###########
         | 
| 191 | 
            +
            # Training
         | 
| 192 | 
            +
            ###########
         | 
| 193 | 
            +
            trainer = SFTTrainer(
         | 
| 194 | 
            +
                model=model,
         | 
| 195 | 
            +
                args=train_conf,
         | 
| 196 | 
            +
                peft_config=peft_conf,
         | 
| 197 | 
            +
                train_dataset=processed_train_dataset,
         | 
| 198 | 
            +
                eval_dataset=processed_test_dataset,
         | 
| 199 | 
            +
                max_seq_length=2048,
         | 
| 200 | 
            +
                dataset_text_field="text",
         | 
| 201 | 
            +
                tokenizer=tokenizer,
         | 
| 202 | 
            +
                packing=True
         | 
| 203 | 
            +
            )
         | 
| 204 | 
            +
            train_result = trainer.train()
         | 
| 205 | 
            +
            metrics = train_result.metrics
         | 
| 206 | 
            +
            trainer.log_metrics("train", metrics)
         | 
| 207 | 
            +
            trainer.save_metrics("train", metrics)
         | 
| 208 | 
            +
            trainer.save_state()
         | 
| 209 | 
            +
             | 
| 210 | 
            +
             | 
| 211 | 
            +
            #############
         | 
| 212 | 
            +
            # Evaluation
         | 
| 213 | 
            +
            #############
         | 
| 214 | 
            +
            tokenizer.padding_side = 'left'
         | 
| 215 | 
            +
            metrics = trainer.evaluate()
         | 
| 216 | 
            +
            metrics["eval_samples"] = len(processed_test_dataset)
         | 
| 217 | 
            +
            trainer.log_metrics("eval", metrics)
         | 
| 218 | 
            +
            trainer.save_metrics("eval", metrics)
         | 
| 219 | 
            +
             | 
| 220 | 
            +
             | 
| 221 | 
            +
            # ############
         | 
| 222 | 
            +
            # # Save model
         | 
| 223 | 
            +
            # ############
         | 
| 224 | 
            +
            trainer.save_model(train_conf.output_dir)
         | 
    	
        special_tokens_map.json
    ADDED
    
    | @@ -0,0 +1,30 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            {
         | 
| 2 | 
            +
              "bos_token": {
         | 
| 3 | 
            +
                "content": "<s>",
         | 
| 4 | 
            +
                "lstrip": false,
         | 
| 5 | 
            +
                "normalized": false,
         | 
| 6 | 
            +
                "rstrip": false,
         | 
| 7 | 
            +
                "single_word": false
         | 
| 8 | 
            +
              },
         | 
| 9 | 
            +
              "eos_token": {
         | 
| 10 | 
            +
                "content": "<|endoftext|>",
         | 
| 11 | 
            +
                "lstrip": false,
         | 
| 12 | 
            +
                "normalized": false,
         | 
| 13 | 
            +
                "rstrip": false,
         | 
| 14 | 
            +
                "single_word": false
         | 
| 15 | 
            +
              },
         | 
| 16 | 
            +
              "pad_token": {
         | 
| 17 | 
            +
                "content": "<|endoftext|>",
         | 
| 18 | 
            +
                "lstrip": false,
         | 
| 19 | 
            +
                "normalized": false,
         | 
| 20 | 
            +
                "rstrip": false,
         | 
| 21 | 
            +
                "single_word": false
         | 
| 22 | 
            +
              },
         | 
| 23 | 
            +
              "unk_token": {
         | 
| 24 | 
            +
                "content": "<unk>",
         | 
| 25 | 
            +
                "lstrip": false,
         | 
| 26 | 
            +
                "normalized": false,
         | 
| 27 | 
            +
                "rstrip": false,
         | 
| 28 | 
            +
                "single_word": false
         | 
| 29 | 
            +
              }
         | 
| 30 | 
            +
            }
         | 
    	
        tokenizer.json
    ADDED
    
    | The diff for this file is too large to render. 
		See raw diff | 
|  | 
    	
        tokenizer.model
    ADDED
    
    | @@ -0,0 +1,3 @@ | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            version https://git-lfs.github.com/spec/v1
         | 
| 2 | 
            +
            oid sha256:9e556afd44213b6bd1be2b850ebbbd98f5481437a8021afaf58ee7fb1818d347
         | 
| 3 | 
            +
            size 499723
         | 
    	
        tokenizer_config.json
    ADDED
    
    | @@ -0,0 +1,130 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            {
         | 
| 2 | 
            +
                "add_bos_token": false,
         | 
| 3 | 
            +
                "add_eos_token": false,
         | 
| 4 | 
            +
                "added_tokens_decoder": {
         | 
| 5 | 
            +
                    "0": {
         | 
| 6 | 
            +
                        "content": "<unk>",
         | 
| 7 | 
            +
                        "lstrip": false,
         | 
| 8 | 
            +
                        "normalized": false,
         | 
| 9 | 
            +
                        "rstrip": false,
         | 
| 10 | 
            +
                        "single_word": false,
         | 
| 11 | 
            +
                        "special": true
         | 
| 12 | 
            +
                    },
         | 
| 13 | 
            +
                    "1": {
         | 
| 14 | 
            +
                        "content": "<s>",
         | 
| 15 | 
            +
                        "lstrip": false,
         | 
| 16 | 
            +
                        "normalized": false,
         | 
| 17 | 
            +
                        "rstrip": false,
         | 
| 18 | 
            +
                        "single_word": false,
         | 
| 19 | 
            +
                        "special": true
         | 
| 20 | 
            +
                    },
         | 
| 21 | 
            +
                    "2": {
         | 
| 22 | 
            +
                        "content": "</s>",
         | 
| 23 | 
            +
                        "lstrip": false,
         | 
| 24 | 
            +
                        "normalized": false,
         | 
| 25 | 
            +
                        "rstrip": true,
         | 
| 26 | 
            +
                        "single_word": false,
         | 
| 27 | 
            +
                        "special": false
         | 
| 28 | 
            +
                    },
         | 
| 29 | 
            +
                    "32000": {
         | 
| 30 | 
            +
                        "content": "<|endoftext|>",
         | 
| 31 | 
            +
                        "lstrip": false,
         | 
| 32 | 
            +
                        "normalized": false,
         | 
| 33 | 
            +
                        "rstrip": false,
         | 
| 34 | 
            +
                        "single_word": false,
         | 
| 35 | 
            +
                        "special": true
         | 
| 36 | 
            +
                    },
         | 
| 37 | 
            +
                    "32001": {
         | 
| 38 | 
            +
                        "content": "<|assistant|>",
         | 
| 39 | 
            +
                        "lstrip": false,
         | 
| 40 | 
            +
                        "normalized": false,
         | 
| 41 | 
            +
                        "rstrip": true,
         | 
| 42 | 
            +
                        "single_word": false,
         | 
| 43 | 
            +
                        "special": true
         | 
| 44 | 
            +
                    },
         | 
| 45 | 
            +
                    "32002": {
         | 
| 46 | 
            +
                        "content": "<|placeholder1|>",
         | 
| 47 | 
            +
                        "lstrip": false,
         | 
| 48 | 
            +
                        "normalized": false,
         | 
| 49 | 
            +
                        "rstrip": true,
         | 
| 50 | 
            +
                        "single_word": false,
         | 
| 51 | 
            +
                        "special": true
         | 
| 52 | 
            +
                    },
         | 
| 53 | 
            +
                    "32003": {
         | 
| 54 | 
            +
                        "content": "<|placeholder2|>",
         | 
| 55 | 
            +
                        "lstrip": false,
         | 
| 56 | 
            +
                        "normalized": false,
         | 
| 57 | 
            +
                        "rstrip": true,
         | 
| 58 | 
            +
                        "single_word": false,
         | 
| 59 | 
            +
                        "special": true
         | 
| 60 | 
            +
                    },
         | 
| 61 | 
            +
                    "32004": {
         | 
| 62 | 
            +
                        "content": "<|placeholder3|>",
         | 
| 63 | 
            +
                        "lstrip": false,
         | 
| 64 | 
            +
                        "normalized": false,
         | 
| 65 | 
            +
                        "rstrip": true,
         | 
| 66 | 
            +
                        "single_word": false,
         | 
| 67 | 
            +
                        "special": true
         | 
| 68 | 
            +
                    },
         | 
| 69 | 
            +
                    "32005": {
         | 
| 70 | 
            +
                        "content": "<|placeholder4|>",
         | 
| 71 | 
            +
                        "lstrip": false,
         | 
| 72 | 
            +
                        "normalized": false,
         | 
| 73 | 
            +
                        "rstrip": true,
         | 
| 74 | 
            +
                        "single_word": false,
         | 
| 75 | 
            +
                        "special": true
         | 
| 76 | 
            +
                    },
         | 
| 77 | 
            +
                    "32006": {
         | 
| 78 | 
            +
                        "content": "<|system|>",
         | 
| 79 | 
            +
                        "lstrip": false,
         | 
| 80 | 
            +
                        "normalized": false,
         | 
| 81 | 
            +
                        "rstrip": true,
         | 
| 82 | 
            +
                        "single_word": false,
         | 
| 83 | 
            +
                        "special": true
         | 
| 84 | 
            +
                    },
         | 
| 85 | 
            +
                    "32007": {
         | 
| 86 | 
            +
                        "content": "<|end|>",
         | 
| 87 | 
            +
                        "lstrip": false,
         | 
| 88 | 
            +
                        "normalized": false,
         | 
| 89 | 
            +
                        "rstrip": true,
         | 
| 90 | 
            +
                        "single_word": false,
         | 
| 91 | 
            +
                        "special": true
         | 
| 92 | 
            +
                    },
         | 
| 93 | 
            +
                    "32008": {
         | 
| 94 | 
            +
                        "content": "<|placeholder5|>",
         | 
| 95 | 
            +
                        "lstrip": false,
         | 
| 96 | 
            +
                        "normalized": false,
         | 
| 97 | 
            +
                        "rstrip": true,
         | 
| 98 | 
            +
                        "single_word": false,
         | 
| 99 | 
            +
                        "special": true
         | 
| 100 | 
            +
                    },
         | 
| 101 | 
            +
                    "32009": {
         | 
| 102 | 
            +
                        "content": "<|placeholder6|>",
         | 
| 103 | 
            +
                        "lstrip": false,
         | 
| 104 | 
            +
                        "normalized": false,
         | 
| 105 | 
            +
                        "rstrip": true,
         | 
| 106 | 
            +
                        "single_word": false,
         | 
| 107 | 
            +
                        "special": true
         | 
| 108 | 
            +
                    },
         | 
| 109 | 
            +
                    "32010": {
         | 
| 110 | 
            +
                        "content": "<|user|>",
         | 
| 111 | 
            +
                        "lstrip": false,
         | 
| 112 | 
            +
                        "normalized": false,
         | 
| 113 | 
            +
                        "rstrip": true,
         | 
| 114 | 
            +
                        "single_word": false,
         | 
| 115 | 
            +
                        "special": true
         | 
| 116 | 
            +
                    }
         | 
| 117 | 
            +
                },
         | 
| 118 | 
            +
                "bos_token": "<s>",
         | 
| 119 | 
            +
                "chat_template": "{% for message in messages %}{% if message['role'] == 'system' and message['content'] %}{{'<|system|>\n' + message['content'] + '<|end|>\n'}}{% elif message['role'] == 'user' %}{{'<|user|>\n' + message['content'] + '<|end|>\n'}}{% elif message['role'] == 'assistant' %}{{'<|assistant|>\n' + message['content'] + '<|end|>\n'}}{% endif %}{% endfor %}{% if add_generation_prompt %}{{ '<|assistant|>\n' }}{% else %}{{ eos_token }}{% endif %}",
         | 
| 120 | 
            +
                "clean_up_tokenization_spaces": false,
         | 
| 121 | 
            +
                "eos_token": "<|endoftext|>",
         | 
| 122 | 
            +
                "legacy": false,
         | 
| 123 | 
            +
                "model_max_length": 131072,
         | 
| 124 | 
            +
                "pad_token": "<|endoftext|>",
         | 
| 125 | 
            +
                "padding_side": "left",
         | 
| 126 | 
            +
                "sp_model_kwargs": {},
         | 
| 127 | 
            +
                "tokenizer_class": "LlamaTokenizer",
         | 
| 128 | 
            +
                "unk_token": "<unk>",
         | 
| 129 | 
            +
                "use_default_system_prompt": false
         | 
| 130 | 
            +
            }
         | 
