Update README.md
Browse files
README.md
CHANGED
|
@@ -1,3 +1,219 @@
|
|
| 1 |
-
---
|
| 2 |
-
|
| 3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
language:
|
| 3 |
+
- en
|
| 4 |
+
license: apache-2.0
|
| 5 |
+
---
|
| 6 |
+
|
| 7 |
+
# Model Card for UniXcoder-base
|
| 8 |
+
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
# Model Details
|
| 12 |
+
|
| 13 |
+
## Model Description
|
| 14 |
+
UniXcoder is a unified cross-modal pre-trained model that leverages multimodal data (i.e. code comment and AST) to pretrain code representation.
|
| 15 |
+
|
| 16 |
+
- **Developed by:** Microsoft Team
|
| 17 |
+
- **Shared by [Optional]:** Hugging Face
|
| 18 |
+
- **Model type:** Feature Engineering
|
| 19 |
+
- **Language(s) (NLP):** en
|
| 20 |
+
- **License:** Apache-2.0
|
| 21 |
+
- **Related Models:**
|
| 22 |
+
- **Parent Model:** RoBERTa
|
| 23 |
+
- **Resources for more information:**
|
| 24 |
+
- [Associated Paper](https://arxiv.org/abs/2203.03850)
|
| 25 |
+
|
| 26 |
+
# Uses
|
| 27 |
+
|
| 28 |
+
## 1. Dependency
|
| 29 |
+
|
| 30 |
+
- pip install torch
|
| 31 |
+
- pip install transformers
|
| 32 |
+
|
| 33 |
+
## 2. Quick Tour
|
| 34 |
+
We implement a class to use UniXcoder and you can follow the code to build UniXcoder.
|
| 35 |
+
You can download the class by
|
| 36 |
+
```shell
|
| 37 |
+
wget https://raw.githubusercontent.com/microsoft/CodeBERT/master/UniXcoder/unixcoder.py
|
| 38 |
+
```
|
| 39 |
+
|
| 40 |
+
```python
|
| 41 |
+
import torch
|
| 42 |
+
from unixcoder import UniXcoder
|
| 43 |
+
|
| 44 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 45 |
+
model = UniXcoder("microsoft/unixcoder-base")
|
| 46 |
+
model.to(device)
|
| 47 |
+
```
|
| 48 |
+
|
| 49 |
+
In the following, we will give zero-shot examples for several tasks under different mode, including **code search (encoder-only)**, **code completion (decoder-only)**, **function name prediction (encoder-decoder)** , **API recommendation (encoder-decoder)**, **code summarization (encoder-decoder)**.
|
| 50 |
+
|
| 51 |
+
## 3. Encoder-only Mode
|
| 52 |
+
|
| 53 |
+
For encoder-only mode, we give an example of **code search**.
|
| 54 |
+
|
| 55 |
+
### 1) Code and NL Embeddings
|
| 56 |
+
|
| 57 |
+
Here, we give an example to obtain code fragment embedding from CodeBERT.
|
| 58 |
+
|
| 59 |
+
```python
|
| 60 |
+
# Encode maximum function
|
| 61 |
+
func = "def f(a,b): if a>b: return a else return b"
|
| 62 |
+
tokens_ids = model.tokenize([func],max_length=512,mode="<encoder-only>")
|
| 63 |
+
source_ids = torch.tensor(tokens_ids).to(device)
|
| 64 |
+
tokens_embeddings,max_func_embedding = model(source_ids)
|
| 65 |
+
|
| 66 |
+
# Encode minimum function
|
| 67 |
+
func = "def f(a,b): if a<b: return a else return b"
|
| 68 |
+
tokens_ids = model.tokenize([func],max_length=512,mode="<encoder-only>")
|
| 69 |
+
source_ids = torch.tensor(tokens_ids).to(device)
|
| 70 |
+
tokens_embeddings,min_func_embedding = model(source_ids)
|
| 71 |
+
|
| 72 |
+
# Encode NL
|
| 73 |
+
nl = "return maximum value"
|
| 74 |
+
tokens_ids = model.tokenize([nl],max_length=512,mode="<encoder-only>")
|
| 75 |
+
source_ids = torch.tensor(tokens_ids).to(device)
|
| 76 |
+
tokens_embeddings,nl_embedding = model(source_ids)
|
| 77 |
+
|
| 78 |
+
print(max_func_embedding.shape)
|
| 79 |
+
print(max_func_embedding)
|
| 80 |
+
```
|
| 81 |
+
|
| 82 |
+
```python
|
| 83 |
+
torch.Size([1, 768])
|
| 84 |
+
tensor([[ 8.6533e-01, -1.9796e+00, -8.6849e-01, 4.2652e-01, -5.3696e-01,
|
| 85 |
+
-1.5521e-01, 5.3770e-01, 3.4199e-01, 3.6305e-01, -3.9391e-01,
|
| 86 |
+
-1.1816e+00, 2.6010e+00, -7.7133e-01, 1.8441e+00, 2.3645e+00,
|
| 87 |
+
...,
|
| 88 |
+
-2.9188e+00, 1.2555e+00, -1.9953e+00, -1.9795e+00, 1.7279e+00,
|
| 89 |
+
6.4590e-01, -5.2769e-02, 2.4965e-01, 2.3962e-02, 5.9996e-02,
|
| 90 |
+
2.5659e+00, 3.6533e+00, 2.0301e+00]], device='cuda:0',
|
| 91 |
+
grad_fn=<DivBackward0>)
|
| 92 |
+
```
|
| 93 |
+
|
| 94 |
+
### 2) Similarity between code and NL
|
| 95 |
+
|
| 96 |
+
Now, we calculate cosine similarity between NL and two functions. Although the difference of two functions is only a operator (```<``` and ```>```), UniXcoder can distinguish them.
|
| 97 |
+
|
| 98 |
+
```python
|
| 99 |
+
# Normalize embedding
|
| 100 |
+
norm_max_func_embedding = torch.nn.functional.normalize(max_func_embedding, p=2, dim=1)
|
| 101 |
+
norm_min_func_embedding = torch.nn.functional.normalize(min_func_embedding, p=2, dim=1)
|
| 102 |
+
norm_nl_embedding = torch.nn.functional.normalize(nl_embedding, p=2, dim=1)
|
| 103 |
+
|
| 104 |
+
max_func_nl_similarity = torch.einsum("ac,bc->ab",norm_max_func_embedding,norm_nl_embedding)
|
| 105 |
+
min_func_nl_similarity = torch.einsum("ac,bc->ab",norm_min_func_embedding,norm_nl_embedding)
|
| 106 |
+
|
| 107 |
+
print(max_func_nl_similarity)
|
| 108 |
+
print(min_func_nl_similarity)
|
| 109 |
+
```
|
| 110 |
+
|
| 111 |
+
```python
|
| 112 |
+
tensor([[0.3002]], device='cuda:0', grad_fn=<ViewBackward>)
|
| 113 |
+
tensor([[0.1881]], device='cuda:0', grad_fn=<ViewBackward>)
|
| 114 |
+
```
|
| 115 |
+
|
| 116 |
+
## 3. Decoder-only Mode
|
| 117 |
+
|
| 118 |
+
For decoder-only mode, we give an example of **code completion**.
|
| 119 |
+
|
| 120 |
+
```python
|
| 121 |
+
context = """
|
| 122 |
+
def f(data,file_path):
|
| 123 |
+
# write json data into file_path in python language
|
| 124 |
+
"""
|
| 125 |
+
tokens_ids = model.tokenize([context],max_length=512,mode="<decoder-only>")
|
| 126 |
+
source_ids = torch.tensor(tokens_ids).to(device)
|
| 127 |
+
prediction_ids = model.generate(source_ids, decoder_only=True, beam_size=3, max_length=128)
|
| 128 |
+
predictions = model.decode(prediction_ids)
|
| 129 |
+
print(context+predictions[0][0])
|
| 130 |
+
```
|
| 131 |
+
|
| 132 |
+
```python
|
| 133 |
+
def f(data,file_path):
|
| 134 |
+
# write json data into file_path in python language
|
| 135 |
+
data = json.dumps(data)
|
| 136 |
+
with open(file_path, 'w') as f:
|
| 137 |
+
f.write(data)
|
| 138 |
+
```
|
| 139 |
+
|
| 140 |
+
## 4. Encoder-Decoder Mode
|
| 141 |
+
|
| 142 |
+
For encoder-decoder mode, we give two examples including: **function name prediction**, **API recommendation**, **code summarization**.
|
| 143 |
+
|
| 144 |
+
### 1) **Function Name Prediction**
|
| 145 |
+
|
| 146 |
+
```python
|
| 147 |
+
context = """
|
| 148 |
+
def <mask0>(data,file_path):
|
| 149 |
+
data = json.dumps(data)
|
| 150 |
+
with open(file_path, 'w') as f:
|
| 151 |
+
f.write(data)
|
| 152 |
+
"""
|
| 153 |
+
tokens_ids = model.tokenize([context],max_length=512,mode="<encoder-decoder>")
|
| 154 |
+
source_ids = torch.tensor(tokens_ids).to(device)
|
| 155 |
+
prediction_ids = model.generate(source_ids, decoder_only=False, beam_size=3, max_length=128)
|
| 156 |
+
predictions = model.decode(prediction_ids)
|
| 157 |
+
print([x.replace("<mask0>","").strip() for x in predictions[0]])
|
| 158 |
+
```
|
| 159 |
+
|
| 160 |
+
```python
|
| 161 |
+
['write_json', 'write_file', 'to_json']
|
| 162 |
+
```
|
| 163 |
+
|
| 164 |
+
### 2) API Recommendation
|
| 165 |
+
|
| 166 |
+
```python
|
| 167 |
+
context = """
|
| 168 |
+
def write_json(data,file_path):
|
| 169 |
+
data = <mask0>(data)
|
| 170 |
+
with open(file_path, 'w') as f:
|
| 171 |
+
f.write(data)
|
| 172 |
+
"""
|
| 173 |
+
tokens_ids = model.tokenize([context],max_length=512,mode="<encoder-decoder>")
|
| 174 |
+
source_ids = torch.tensor(tokens_ids).to(device)
|
| 175 |
+
prediction_ids = model.generate(source_ids, decoder_only=False, beam_size=3, max_length=128)
|
| 176 |
+
predictions = model.decode(prediction_ids)
|
| 177 |
+
print([x.replace("<mask0>","").strip() for x in predictions[0]])
|
| 178 |
+
```
|
| 179 |
+
|
| 180 |
+
```python
|
| 181 |
+
['json.dumps', 'json.loads', 'str']
|
| 182 |
+
```
|
| 183 |
+
|
| 184 |
+
### 3) Code Summarization
|
| 185 |
+
|
| 186 |
+
```python
|
| 187 |
+
context = """
|
| 188 |
+
# <mask0>
|
| 189 |
+
def write_json(data,file_path):
|
| 190 |
+
data = json.dumps(data)
|
| 191 |
+
with open(file_path, 'w') as f:
|
| 192 |
+
f.write(data)
|
| 193 |
+
"""
|
| 194 |
+
tokens_ids = model.tokenize([context],max_length=512,mode="<encoder-decoder>")
|
| 195 |
+
source_ids = torch.tensor(tokens_ids).to(device)
|
| 196 |
+
prediction_ids = model.generate(source_ids, decoder_only=False, beam_size=3, max_length=128)
|
| 197 |
+
predictions = model.decode(prediction_ids)
|
| 198 |
+
print([x.replace("<mask0>","").strip() for x in predictions[0]])
|
| 199 |
+
```
|
| 200 |
+
|
| 201 |
+
```python
|
| 202 |
+
['Write JSON to file', 'Write json to file', 'Write a json file']
|
| 203 |
+
```
|
| 204 |
+
|
| 205 |
+
|
| 206 |
+
|
| 207 |
+
|
| 208 |
+
# Reference
|
| 209 |
+
If you use this code or UniXcoder, please consider citing us.
|
| 210 |
+
|
| 211 |
+
<pre><code>@article{guo2022unixcoder,
|
| 212 |
+
title={UniXcoder: Unified Cross-Modal Pre-training for Code Representation},
|
| 213 |
+
author={Guo, Daya and Lu, Shuai and Duan, Nan and Wang, Yanlin and Zhou, Ming and Yin, Jian},
|
| 214 |
+
journal={arXiv preprint arXiv:2203.03850},
|
| 215 |
+
year={2022}
|
| 216 |
+
}</code></pre>
|
| 217 |
+
|
| 218 |
+
|
| 219 |
+
|