midashenglm-7b-0804-fp32 / processing_midashenglm.py
zhoukz's picture
Warn when system prompt is modified
9b3e4ca unverified
import logging
from collections.abc import Mapping
from typing import Dict, List, Optional, Union, cast
import numpy as np
import torch
from transformers import Qwen2Tokenizer, Qwen2TokenizerFast, Wav2Vec2FeatureExtractor
from transformers.feature_extraction_utils import BatchFeature
from transformers.processing_utils import (
AllKwargsForChatTemplate,
ProcessingKwargs,
ProcessorMixin,
)
from typing_extensions import Unpack
class MiDashengLMProcessorKwargs(ProcessingKwargs):
_defaults = { # type: ignore
"text_kwargs": {
"padding": True,
"padding_side": "left",
},
"audio_kwargs": {},
}
def calculate_mel_frames_dasheng(
audio_length_samples: int,
n_fft: int = 512,
hop_size: int = 160,
dasheng_subsampling: int = 4,
center=True,
model_subsampling: int = 5,
) -> int:
"""Calculate the number of Mel-spectrogram frames."""
if center:
audio_length_samples = audio_length_samples + n_fft
return (
int(1 + ((audio_length_samples - n_fft) / hop_size))
// dasheng_subsampling
// model_subsampling
)
class MiDashengLMProcessor(ProcessorMixin):
attributes = ["feature_extractor", "tokenizer"]
valid_kwargs = [
"chat_template",
"audio_token",
"audio_bos_token",
"audio_eos_token",
]
feature_extractor_class = "Wav2Vec2FeatureExtractor"
tokenizer_class = ("Qwen2Tokenizer", "Qwen2TokenizerFast")
def __init__(
self,
feature_extractor: Wav2Vec2FeatureExtractor,
tokenizer: Union[Qwen2Tokenizer, Qwen2TokenizerFast],
model_subsampling: int = 5,
chat_template: Optional[Union[str, Dict[str, str]]] = None,
audio_token: Optional[str] = None,
audio_bos_token: Optional[str] = None,
audio_eos_token: Optional[str] = None,
):
assert audio_token is not None or hasattr(tokenizer, "audio_token"), (
"Either `audio_token` must be provided or tokenizer must have `audio_token` attribute."
)
assert audio_bos_token is not None or hasattr(tokenizer, "audio_bos_token"), (
"Either `audio_bos_token` must be provided or tokenizer must have `audio_bos_token` attribute."
)
assert audio_eos_token is not None or hasattr(tokenizer, "audio_eos_token"), (
"Either `audio_eos_token` must be provided or tokenizer must have `audio_eos_token` attribute."
)
assert not feature_extractor.do_normalize, (
"This model does not use normalization. Please set `do_normalize=False` in the feature extractor."
)
if chat_template is None:
chat_template = tokenizer.chat_template
def get_token(token_name: str) -> str:
if not hasattr(tokenizer, token_name):
raise ValueError(
f"Tokenizer does not have attribute `{token_name}`. "
"Please provide it as an argument to the processor."
)
token = getattr(tokenizer, token_name)
if not isinstance(token, str):
raise TypeError(
f"Expected token {token_name} to be a string, but got {type(token)}."
)
return token
self.audio_token = audio_token or get_token("audio_token")
self.audio_bos_token = audio_bos_token or get_token("audio_bos_token")
self.audio_eos_token = audio_eos_token or get_token("audio_eos_token")
self.audio_token_id = cast(
int, tokenizer.convert_tokens_to_ids(self.audio_token)
)
self.model_subsampling = model_subsampling
self.sampling_rate = feature_extractor.sampling_rate
super().__init__(feature_extractor, tokenizer, chat_template=chat_template)
self.feature_extractor: Wav2Vec2FeatureExtractor
self.tokenizer: Union[Qwen2Tokenizer, Qwen2TokenizerFast]
self.chat_template: Optional[Union[str, Dict[str, str]]]
def _process_messages_for_chat_template(
self,
conversation,
batch_images,
batch_videos,
batch_video_metadata,
**mm_load_kwargs,
):
if (sr := mm_load_kwargs.get("sampling_rate", None)) is not None:
if sr != self.sampling_rate:
raise ValueError(
f"This model is trained with a sampling rate of {self.sampling_rate}, "
f"but the sampling rate {sr} is used to load audio."
)
return super()._process_messages_for_chat_template(
conversation,
batch_images,
batch_videos,
batch_video_metadata,
**mm_load_kwargs,
)
@classmethod
def _validate_audio_sample(
cls,
sample: Union[np.ndarray, torch.Tensor],
) -> np.ndarray:
if isinstance(sample, torch.Tensor):
if sample.ndim != 1:
raise ValueError("Audio tensor must be 1D.")
return sample.numpy()
if isinstance(sample, np.ndarray):
if sample.ndim != 1:
raise ValueError("Audio array must be 1D.")
return sample
if isinstance(sample, str):
# When passing audio paths through `apply_chat_template`, transformers
# will attempt to load the audio file, but only succeeds if the path
# is a valid URL (starting with http:// or https://) or an existing local
# file. Otherwise, the string is passed as-is. This captures that case and
# raises an error to inform the user.
raise TypeError(
"Expected audio to be a numpy array or torch tensor, but got a string. "
"If you passed audios through `apply_chat_template`, "
"make sure the audio paths are valid URLs starting with http:// or https://, "
"or existing local files."
)
raise TypeError(
f"Expected audio to be a numpy array, torch tensor, or string, but got {type(sample)}."
)
def apply_chat_template(
self,
conversation: Union[list[dict[str, str]], list[list[dict[str, str]]]],
chat_template: Optional[str] = None,
**kwargs: Unpack[AllKwargsForChatTemplate],
) -> str:
if conversation:
first_msgs = (
[conversation[0]]
if isinstance(conversation[0], Mapping)
else [conv[0] for conv in conversation if conv]
)
for first_msg in first_msgs:
if first_msg["role"] != "system":
continue
system_prompt: str
if isinstance(first_msg["content"], str):
system_prompt = first_msg["content"]
elif isinstance(first_msg["content"], list):
for part in first_msg["content"]:
if isinstance(part, dict) and "text" in part:
system_prompt = part["text"]
break
else:
continue
else:
continue
if system_prompt != (
"You are Qwen, a virtual human developed by the Qwen Team, Alibaba Group, "
"capable of perceiving auditory and visual inputs, as well as generating text and speech."
):
logging.warning(
"The system prompt has been modified, which may reduce model performance. "
"Prefer using the default system prompt by omitting the system role from the input."
)
return super().apply_chat_template(conversation, chat_template, **kwargs)
def __call__(
self,
text: Optional[List[str]] = None,
audio: Optional[Union[List[np.ndarray], List[torch.Tensor]]] = None,
**kwargs: Unpack[MiDashengLMProcessorKwargs],
) -> BatchFeature:
if text is None:
raise ValueError("You need to specify `text` input to process.")
elif isinstance(text, str):
text = [text]
elif not isinstance(text, list) and not isinstance(text[0], str):
raise ValueError(
"Invalid input text. Please provide a string, or a list of strings"
)
if (
kwargs.get("images", None) is not None
or kwargs.get("videos", None) is not None
):
raise ValueError("This model does not support images or videos.")
output_kwargs = self._merge_kwargs(
MiDashengLMProcessorKwargs, # type: ignore # Bad type hint in transformers
tokenizer_init_kwargs=self.tokenizer.init_kwargs,
**kwargs,
)
if audio is not None:
audio = [self._validate_audio_sample(sample) for sample in audio]
# ensure we have as much audios as audio tokens
num_audio_tokens = sum(sample.count(self.audio_token) for sample in text)
num_audios = 1 if type(audio) is np.ndarray else len(audio)
if num_audio_tokens != num_audios:
raise ValueError(
f"Found {num_audio_tokens} {self.audio_token} token{'s' if num_audio_tokens > 1 else ''} in provided text but received {num_audios} audio{'s' if num_audios > 1 else ''}"
)
# Some kwargs should not be changed so we can expand text with audio tokens below
output_kwargs["audio_kwargs"]["return_attention_mask"] = True
output_kwargs["audio_kwargs"]["padding"] = True
output_kwargs["audio_kwargs"]["return_tensors"] = "pt"
# + Padding
audio_inputs = self.feature_extractor(
audio,
sampling_rate=self.sampling_rate,
**output_kwargs["audio_kwargs"],
)
# remove attention mask, dasheng uses lengths
audio_feature_mask = audio_inputs.pop("attention_mask")
expanded_text = []
audio_lengths = audio_feature_mask.sum(-1).tolist()
audio_inputs["audio_length"] = torch.tensor(audio_lengths).long()
for sample in text:
replace_str = []
while self.audio_token in sample:
audio_length = audio_lengths.pop(0)
num_audio_tokens = calculate_mel_frames_dasheng(
audio_length, model_subsampling=self.model_subsampling
)
expanded_audio_token = self.audio_token * num_audio_tokens
audio_token_start_idx = sample.find(self.audio_token)
audio_token_end_idx = audio_token_start_idx + len(self.audio_token)
has_bos = (
sample[
audio_token_start_idx
- len(self.audio_bos_token) : audio_token_start_idx
]
== self.audio_bos_token
)
has_eos = (
sample[
audio_token_end_idx : audio_token_end_idx
+ len(self.audio_eos_token)
]
== self.audio_eos_token
)
# Check if this audio token is surrounded by bos/eos tokens
if not has_bos and not has_eos:
expanded_audio_token = (
self.audio_bos_token
+ expanded_audio_token
+ self.audio_eos_token
)
replace_str.append(expanded_audio_token)
sample = sample.replace(self.audio_token, "<placeholder>", 1)
while "<placeholder>" in sample:
sample = sample.replace("<placeholder>", replace_str.pop(0), 1)
expanded_text.append(sample)
text = expanded_text
return_tensors = output_kwargs["text_kwargs"].pop("return_tensors", "pt")
inputs = self.tokenizer(text, **output_kwargs["text_kwargs"])
self._check_special_mm_tokens(
text,
BatchFeature(inputs), # type: ignore
modalities=["audio"],
)
if audio is not None:
inputs.update(audio_inputs)
return BatchFeature(data={**inputs}, tensor_type=return_tensors)
@property
def model_input_names(self):
tokenizer_input_names = self.tokenizer.model_input_names
feature_extractor_input_names = self.feature_extractor.model_input_names
return list(
dict.fromkeys(
tokenizer_input_names + feature_extractor_input_names + ["audio_length"]
)
)