patrickvonplaten commited on
Commit
a60832c
·
verified ·
1 Parent(s): 41f0ae2

Update README.md (#224)

Browse files

- Update README.md (fe95b00fbbd8d765d66350eba58a2c428f379ab9)

Files changed (1) hide show
  1. README.md +47 -39
README.md CHANGED
@@ -21,46 +21,54 @@ widget:
21
  > [!CAUTION]
22
  > ⚠️
23
  > The `transformers` tokenizer might give incorrect results as it has not been tested by the Mistral team. To make sure that your encoding and decoding is correct, please use mistral-common as shown below:
24
- >
25
- > ```py
26
- > from mistral_common.tokens.tokenizers.mistral import MistralTokenizer
27
- > from mistral_common.protocol.instruct.messages import UserMessage
28
- > from mistral_common.protocol.instruct.request import ChatCompletionRequest
29
- >
30
- > mistral_models_path = "MISTRAL_MODELS_PATH"
31
- >
32
- > tokenizer = MistralTokenizer.v1()
33
- >
34
- > completion_request = ChatCompletionRequest(messages=[UserMessage(content="Explain Machine Learning to me in a nutshell.")])
35
- >
36
- > tokens = tokenizer.encode_chat_completion(completion_request).tokens
37
- >
38
- > ## Inference with `mistral_inference`
39
- >
40
- > from mistral_inference.model import Transformer
41
- > from mistral_inference.generate import generate
42
- >
43
- > model = Transformer.from_folder(mistral_models_path)
44
- > out_tokens, _ = generate([tokens], model, max_tokens=64, temperature=0.0, eos_id=tokenizer.instruct_tokenizer.tokenizer.eos_id)
45
- > result = tokenizer.instruct_tokenizer.tokenizer.decode(out_tokens[0])
46
- >
47
- > print(result)
48
- >
49
- > ## Inference with hugging face `transformers`
50
- >
51
- > from transformers import AutoModelForCausalLM, AutoTokenizer
52
- >
53
- > device = "cuda"
54
- > model = AutoModelForCausalLM.from_pretrained(mistralai/Mixtral-8x7B-Instruct-v0.1)
55
- > model.to(device)
56
- >
57
- > generated_ids = model.generate(tokens, max_new_tokens=1000, do_sample=True)
58
- > decoded = tokenizer.batch_decode(generated_ids)
59
- > print(decoded[0])
60
- > ```
61
- >
 
 
 
 
 
 
 
 
62
  > PRs to correct the transformers tokenizer so that it gives 1-to-1 the same results as the mistral-common reference implementation are very welcome!
63
- >
64
 
65
  ---
66
  The Mixtral-8x7B Large Language Model (LLM) is a pretrained generative Sparse Mixture of Experts. The Mixtral-8x7B outperforms Llama 2 70B on most benchmarks we tested.
 
21
  > [!CAUTION]
22
  > ⚠️
23
  > The `transformers` tokenizer might give incorrect results as it has not been tested by the Mistral team. To make sure that your encoding and decoding is correct, please use mistral-common as shown below:
24
+
25
+
26
+ ```py
27
+ from mistral_common.tokens.tokenizers.mistral import MistralTokenizer
28
+ from mistral_common.protocol.instruct.messages import UserMessage
29
+ from mistral_common.protocol.instruct.request import ChatCompletionRequest
30
+
31
+ mistral_models_path = "MISTRAL_MODELS_PATH"
32
+
33
+ tokenizer = MistralTokenizer.v1()
34
+
35
+ completion_request = ChatCompletionRequest(messages=[UserMessage(content="Explain Machine Learning to me in a nutshell.")])
36
+
37
+ tokens = tokenizer.encode_chat_completion(completion_request).tokens
38
+ ```
39
+
40
+ ## Inference with `mistral_inference`
41
+
42
+ ```py
43
+ from mistral_inference.model import Transformer
44
+ from mistral_inference.generate import generate
45
+
46
+ model = Transformer.from_folder(mistral_models_path)
47
+ out_tokens, _ = generate([tokens], model, max_tokens=64, temperature=0.0, eos_id=tokenizer.instruct_tokenizer.tokenizer.eos_id)
48
+
49
+ result = tokenizer.decode(out_tokens[0])
50
+
51
+ print(result)
52
+ ```
53
+
54
+ ## Inference with hugging face `transformers`
55
+
56
+ ```py
57
+ from transformers import AutoModelForCausalLM
58
+
59
+ model = AutoModelForCausalLM.from_pretrained("mistralai/Mixtral-8x7B-Instruct-v0.1")
60
+ model.to("cuda")
61
+
62
+ generated_ids = model.generate(tokens, max_new_tokens=1000, do_sample=True)
63
+
64
+ # decode with mistral tokenizer
65
+ result = tokenizer.decode(generated_ids[0].tolist())
66
+ print(result)
67
+ ```
68
+
69
+ > [!TIP]
70
  > PRs to correct the transformers tokenizer so that it gives 1-to-1 the same results as the mistral-common reference implementation are very welcome!
71
+
72
 
73
  ---
74
  The Mixtral-8x7B Large Language Model (LLM) is a pretrained generative Sparse Mixture of Experts. The Mixtral-8x7B outperforms Llama 2 70B on most benchmarks we tested.