import argparse from pathlib import Path import numpy as np import torch import torch.nn.functional as F from Bio.PDB import PDBParser from rdkit import Chem import pandas as pd import random from torch_scatter import scatter_mean from openbabel import openbabel openbabel.obErrorLog.StopLogging() # suppress OpenBabel messages import utils from lightning_modules import LigandPocketDDPM from constants import FLOAT_TYPE, INT_TYPE from analysis.molecule_builder import build_molecule, process_molecule from analysis.metrics import MoleculeProperties def prepare_from_sdf_files(sdf_files, atom_encoder): ligand_coords = [] atom_one_hot = [] for file in sdf_files: rdmol = Chem.SDMolSupplier(str(file), sanitize=False)[0] ligand_coords.append( torch.from_numpy(rdmol.GetConformer().GetPositions()).float() ) types = torch.tensor([atom_encoder[a.GetSymbol()] for a in rdmol.GetAtoms()]) atom_one_hot.append( F.one_hot(types, num_classes=len(atom_encoder)) ) return torch.cat(ligand_coords, dim=0), torch.cat(atom_one_hot, dim=0) def prepare_ligands_from_mols(mols, atom_encoder, device='cpu'): ligand_coords = [] atom_one_hots = [] masks = [] sizes = [] for i, mol in enumerate(mols): coord = torch.tensor(mol.GetConformer().GetPositions(), dtype=FLOAT_TYPE) types = torch.tensor([atom_encoder[a.GetSymbol()] for a in mol.GetAtoms()], dtype=INT_TYPE) one_hot = F.one_hot(types, num_classes=len(atom_encoder)) mask = torch.ones(len(types), dtype=INT_TYPE) * i ligand_coords.append(coord) atom_one_hots.append(one_hot) masks.append(mask) sizes.append(len(types)) ligand = { 'x': torch.cat(ligand_coords, dim=0).to(device), 'one_hot': torch.cat(atom_one_hots, dim=0).to(device), 'size': torch.tensor(sizes, dtype=INT_TYPE).to(device), 'mask': torch.cat(masks, dim=0).to(device), } return ligand def prepare_ligand_from_pdb(biopython_atoms, atom_encoder): coord = torch.tensor(np.array([a.get_coord() for a in biopython_atoms]), dtype=FLOAT_TYPE) types = torch.tensor([atom_encoder[a.element.capitalize()] for a in biopython_atoms]) one_hot = F.one_hot(types, num_classes=len(atom_encoder)) return coord, one_hot def prepare_substructure(ref_ligand, fix_atoms, pdb_model): if fix_atoms[0].endswith(".sdf"): # ligand as sdf file coord, one_hot = prepare_from_sdf_files(fix_atoms, model.lig_type_encoder) else: # ligand contained in PDB; given in : format chain, resi = ref_ligand.split(':') ligand = utils.get_residue_with_resi(pdb_model[chain], int(resi)) fixed_atoms = [a for a in ligand.get_atoms() if a.get_name() in set(fix_atoms)] coord, one_hot = prepare_ligand_from_pdb(fixed_atoms, model.lig_type_encoder) return coord, one_hot def diversify_ligands(model, pocket, mols, timesteps, sanitize=False, largest_frag=False, relax_iter=0): """ Diversify ligands for a specified pocket. Parameters: model: The model instance used for diversification. pocket: The pocket information including coordinates and types. mols: List of RDKit molecule objects to be diversified. timesteps: Number of denoising steps to apply during diversification. sanitize: If True, performs molecule sanitization post-generation (default: False). largest_frag: If True, only the largest fragment of the generated molecule is returned (default: False). relax_iter: Number of iterations for force field relaxation of the generated molecules (default: 0). Returns: A list of diversified RDKit molecule objects. """ ligand = prepare_ligands_from_mols(mols, model.lig_type_encoder, device=model.device) pocket_mask = pocket['mask'] lig_mask = ligand['mask'] # Pocket's center of mass pocket_com_before = scatter_mean(pocket['x'], pocket['mask'], dim=0) out_lig, out_pocket, _, _ = model.ddpm.diversify(ligand, pocket, noising_steps=timesteps) # Move generated molecule back to the original pocket position pocket_com_after = scatter_mean(out_pocket[:, :model.x_dims], pocket_mask, dim=0) out_pocket[:, :model.x_dims] += \ (pocket_com_before - pocket_com_after)[pocket_mask] out_lig[:, :model.x_dims] += \ (pocket_com_before - pocket_com_after)[lig_mask] # Build mol objects x = out_lig[:, :model.x_dims].detach().cpu() atom_type = out_lig[:, model.x_dims:].argmax(1).detach().cpu() molecules = [] for mol_pc in zip(utils.batch_to_list(x, lig_mask), utils.batch_to_list(atom_type, lig_mask)): mol = build_molecule(*mol_pc, model.dataset_info, add_coords=True) mol = process_molecule(mol, add_hydrogens=False, sanitize=sanitize, relax_iter=relax_iter, largest_frag=largest_frag) if mol is not None: molecules.append(mol) return molecules if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument('--checkpoint', type=Path, default='checkpoints/crossdocked_fullatom_cond.ckpt') parser.add_argument('--pdbfile', type=str, default='example/5ndu.pdb') parser.add_argument('--ref_ligand', type=str, default='example/5ndu_linked_mols.sdf') parser.add_argument('--objective', type=str, default='sa', choices={'qed', 'sa'}) parser.add_argument('--timesteps', type=int, default=100) parser.add_argument('--population_size', type=int, default=100) parser.add_argument('--evolution_steps', type=int, default=10) parser.add_argument('--top_k', type=int, default=7) parser.add_argument('--outfile', type=Path, default='output.sdf') parser.add_argument('--relax', action='store_true') args = parser.parse_args() pdb_id = Path(args.pdbfile).stem device = 'cuda' if torch.cuda.is_available() else 'cpu' population_size = args.population_size evolution_steps = args.evolution_steps top_k = args.top_k # Load model model = LigandPocketDDPM.load_from_checkpoint( args.checkpoint, map_location=device) model = model.to(device) # Prepare ligand + pocket # Load PDB pdb_model = PDBParser(QUIET=True).get_structure('', args.pdbfile)[0] # Define pocket based on reference ligand residues = utils.get_pocket_from_ligand(pdb_model, args.ref_ligand) pocket = model.prepare_pocket(residues, repeats=population_size) if args.objective == 'qed': objective_function = MoleculeProperties().calculate_qed elif args.objective == 'sa': objective_function = MoleculeProperties().calculate_sa else: ### IMPLEMENT YOUR OWN OBJECTIVE ### FUNCTIONS HERE raise ValueError(f"Objective function {args.objective} not recognized.") ref_mol = Chem.SDMolSupplier(args.ref_ligand)[0] # Store molecules in history dataframe buffer = pd.DataFrame(columns=['generation', 'score', 'fate' 'mol', 'smiles']) # Population initialization buffer = buffer.append({'generation': 0, 'score': objective_function(ref_mol), 'fate': 'initial', 'mol': ref_mol, 'smiles': Chem.MolToSmiles(ref_mol)}, ignore_index=True) for generation_idx in range(evolution_steps): if generation_idx == 0: molecules = buffer['mol'].tolist() * population_size else: # Select top k molecules from previous generation previous_gen = buffer[buffer['generation'] == generation_idx] top_k_molecules = previous_gen.nlargest(top_k, 'score')['mol'].tolist() molecules = top_k_molecules * (population_size // top_k) # Update the fate of selected top k molecules in the buffer buffer.loc[buffer['generation'] == generation_idx, 'fate'] = 'survived' # Ensure the right number of molecules if len(molecules) < population_size: molecules += [random.choice(molecules) for _ in range(population_size - len(molecules))] # Diversify molecules assert len(molecules) == population_size, f"Wrong number of molecules: {len(molecules)} when it should be {population_size}" print(f"Generation {generation_idx}, mean score: {np.mean([objective_function(mol) for mol in molecules])}") molecules = diversify_ligands(model, pocket, molecules, timesteps=args.timesteps, sanitize=True, relax_iter=(200 if args.relax else 0)) # Evaluate and save molecules for mol in molecules: buffer = buffer.append({'generation': generation_idx + 1, 'score': objective_function(mol), 'fate': 'purged', 'mol': mol, 'smiles': Chem.MolToSmiles(mol)}, ignore_index=True) # Make SDF files utils.write_sdf_file(args.outfile, molecules) # Save buffer buffer.drop(columns=['mol']) buffer.to_csv(args.outfile.with_suffix('.csv'))