from typing import Union, Iterable import numpy as np import torch import torch.nn.functional as F from rdkit import Chem import networkx as nx from networkx.algorithms import isomorphism from Bio.PDB.Polypeptide import is_aa class Queue(): def __init__(self, max_len=50): self.items = [] self.max_len = max_len def __len__(self): return len(self.items) def add(self, item): self.items.insert(0, item) if len(self) > self.max_len: self.items.pop() def mean(self): return np.mean(self.items) def std(self): return np.std(self.items) def reverse_tensor(x): return x[torch.arange(x.size(0) - 1, -1, -1)] ##### def get_grad_norm( parameters: Union[torch.Tensor, Iterable[torch.Tensor]], norm_type: float = 2.0) -> torch.Tensor: """ Adapted from: https://pytorch.org/docs/stable/_modules/torch/nn/utils/clip_grad.html#clip_grad_norm_ """ if isinstance(parameters, torch.Tensor): parameters = [parameters] parameters = [p for p in parameters if p.grad is not None] norm_type = float(norm_type) if len(parameters) == 0: return torch.tensor(0.) device = parameters[0].grad.device total_norm = torch.norm(torch.stack( [torch.norm(p.grad.detach(), norm_type).to(device) for p in parameters]), norm_type) return total_norm def write_xyz_file(coords, atom_types, filename): out = f"{len(coords)}\n\n" assert len(coords) == len(atom_types) for i in range(len(coords)): out += f"{atom_types[i]} {coords[i, 0]:.3f} {coords[i, 1]:.3f} {coords[i, 2]:.3f}\n" with open(filename, 'w') as f: f.write(out) def write_sdf_file(sdf_path, molecules): # NOTE Changed to be compatitble with more versions of rdkit #with Chem.SDWriter(str(sdf_path)) as w: # for mol in molecules: # w.write(mol) w = Chem.SDWriter(str(sdf_path)) w.SetKekulize(False) for m in molecules: if m is not None: w.write(m) # print(f'Wrote SDF file to {sdf_path}') def residues_to_atoms(x_ca, atom_encoder): x = x_ca one_hot = F.one_hot( torch.tensor(atom_encoder['C'], device=x_ca.device), num_classes=len(atom_encoder) ).repeat(*x_ca.shape[:-1], 1) return x, one_hot def get_residue_with_resi(pdb_chain, resi): res = [x for x in pdb_chain.get_residues() if x.id[1] == resi] assert len(res) == 1 return res[0] def get_pocket_from_ligand(pdb_model, ligand, dist_cutoff=8.0): if ligand.endswith(".sdf"): # ligand as sdf file rdmol = Chem.SDMolSupplier(str(ligand))[0] ligand_coords = torch.from_numpy(rdmol.GetConformer().GetPositions()).float() resi = None else: # ligand contained in PDB; given in : format chain, resi = ligand.split(':') ligand = get_residue_with_resi(pdb_model[chain], int(resi)) ligand_coords = torch.from_numpy( np.array([a.get_coord() for a in ligand.get_atoms()])) pocket_residues = [] for residue in pdb_model.get_residues(): if residue.id[1] == resi: continue # skip ligand itself res_coords = torch.from_numpy( np.array([a.get_coord() for a in residue.get_atoms()])) if is_aa(residue.get_resname(), standard=True) \ and torch.cdist(res_coords, ligand_coords).min() < dist_cutoff: pocket_residues.append(residue) return pocket_residues def batch_to_list(data, batch_mask): # data_list = [] # for i in torch.unique(batch_mask): # data_list.append(data[batch_mask == i]) # return data_list # make sure batch_mask is increasing idx = torch.argsort(batch_mask) batch_mask = batch_mask[idx] data = data[idx] chunk_sizes = torch.unique(batch_mask, return_counts=True)[1].tolist() return torch.split(data, chunk_sizes) def num_nodes_to_batch_mask(n_samples, num_nodes, device): assert isinstance(num_nodes, int) or len(num_nodes) == n_samples if isinstance(num_nodes, torch.Tensor): num_nodes = num_nodes.to(device) sample_inds = torch.arange(n_samples, device=device) return torch.repeat_interleave(sample_inds, num_nodes) def rdmol_to_nxgraph(rdmol): graph = nx.Graph() for atom in rdmol.GetAtoms(): # Add the atoms as nodes graph.add_node(atom.GetIdx(), atom_type=atom.GetAtomicNum()) # Add the bonds as edges for bond in rdmol.GetBonds(): graph.add_edge(bond.GetBeginAtomIdx(), bond.GetEndAtomIdx()) return graph def calc_rmsd(mol_a, mol_b): """ Calculate RMSD of two molecules with unknown atom correspondence. """ graph_a = rdmol_to_nxgraph(mol_a) graph_b = rdmol_to_nxgraph(mol_b) gm = isomorphism.GraphMatcher( graph_a, graph_b, node_match=lambda na, nb: na['atom_type'] == nb['atom_type']) isomorphisms = list(gm.isomorphisms_iter()) if len(isomorphisms) < 1: return None all_rmsds = [] for mapping in isomorphisms: atom_types_a = [atom.GetAtomicNum() for atom in mol_a.GetAtoms()] atom_types_b = [mol_b.GetAtomWithIdx(mapping[i]).GetAtomicNum() for i in range(mol_b.GetNumAtoms())] assert atom_types_a == atom_types_b conf_a = mol_a.GetConformer() coords_a = np.array([conf_a.GetAtomPosition(i) for i in range(mol_a.GetNumAtoms())]) conf_b = mol_b.GetConformer() coords_b = np.array([conf_b.GetAtomPosition(mapping[i]) for i in range(mol_b.GetNumAtoms())]) diff = coords_a - coords_b rmsd = np.sqrt(np.mean(np.sum(diff * diff, axis=1))) all_rmsds.append(rmsd) if len(isomorphisms) > 1: print("More than one isomorphism found. Returning minimum RMSD.") return min(all_rmsds) class AppendVirtualNodes: def __init__(self, max_ligand_size, atom_encoder, symbol): self.max_ligand_size = max_ligand_size self.atom_encoder = atom_encoder self.vidx = atom_encoder[symbol] def __call__(self, data): n_virt = self.max_ligand_size - data['num_lig_atoms'] mu = data['lig_coords'].mean(0, keepdim=True) sigma = data['lig_coords'].std(0).max() virt_coords = torch.randn(n_virt, 3) * sigma + mu # insert virtual atom column one_hot = torch.cat((data['lig_one_hot'][:, :self.vidx], torch.zeros(data['num_lig_atoms'])[:, None], data['lig_one_hot'][:, self.vidx:]), dim=1) virt_one_hot = torch.zeros(n_virt, len(self.atom_encoder)) virt_one_hot[:, self.vidx] = 1 virt_mask = torch.ones(n_virt) * data['lig_mask'][0] data['lig_coords'] = torch.cat((data['lig_coords'], virt_coords)) data['lig_one_hot'] = torch.cat((one_hot, virt_one_hot)) data['num_lig_atoms'] = self.max_ligand_size data['lig_mask'] = torch.cat((data['lig_mask'], virt_mask)) data['num_virtual_atoms'] = n_virt return data