File size: 10,706 Bytes
6e7d4ba |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 |
import argparse
import os
import pickle
import sys
from collections import Counter, defaultdict
from pathlib import Path
import numpy as np
import pandas as pd
from rdkit import Chem
from scipy.stats import wasserstein_distance
from scipy.spatial.distance import jensenshannon
from tqdm import tqdm
basedir = Path(__file__).resolve().parent.parent.parent
sys.path.append(str(basedir))
from src.data.data_utils import atom_encoder, bond_encoder, encode_atom
from src.sbdd_metrics.evaluation import VALIDITY_METRIC_NAME, aggregated_metrics, collection_metrics, get_data_type
from src.sbdd_metrics.metrics import FullEvaluator
DATA_TYPES = data_types = FullEvaluator().dtypes
MEDCHEM_PROPS = [
'medchem.qed',
'medchem.sa',
'medchem.logp',
'medchem.lipinski',
'medchem.size',
'medchem.n_rotatable_bonds',
'energy.energy',
]
DOCKING_PROPS = [
'gnina.vina_score',
'gnina.gnina_score',
'gnina.vina_efficiency',
'gnina.gnina_efficiency',
]
RELEVANT_INTERACTIONS = [
'interactions.HBAcceptor',
'interactions.HBDonor',
'interactions.HB',
'interactions.PiStacking',
'interactions.Hydrophobic',
#
'interactions.HBAcceptor.normalized',
'interactions.HBDonor.normalized',
'interactions.HB.normalized',
'interactions.PiStacking.normalized',
'interactions.Hydrophobic.normalized'
]
def compute_discrete_distributions(smiles, name):
atom_counter = Counter()
bond_counter = Counter()
for smi in tqdm(smiles, desc=name):
mol = Chem.MolFromSmiles(smi)
mol = Chem.RemoveAllHs(mol, sanitize=False)
for atom in mol.GetAtoms():
try:
encoded_atom = encode_atom(atom, atom_encoder=atom_encoder)
except KeyError:
continue
atom_counter[encoded_atom] += 1
for bond in mol.GetBonds():
bond_counter[bond_encoder[str(bond.GetBondType())]] += 1
atom_distribution = np.zeros(len(atom_encoder))
bond_distribution = np.zeros(len(bond_encoder))
for k, v in atom_counter.items():
atom_distribution[k] = v
for k, v in bond_counter.items():
bond_distribution[k] = v
atom_distribution = atom_distribution / atom_distribution.sum()
bond_distribution = bond_distribution / bond_distribution.sum()
return atom_distribution, bond_distribution
def flatten_distribution(data, name, table):
aux = ['sample', 'sdf_file', 'pdb_file']
method_distributions = defaultdict(list)
sdf2sample2size = defaultdict(dict)
for _, row in table.iterrows():
sdf2sample2size[row['sdf_file']][int(row['sample'])] = row['medchem.size']
for item in tqdm(data, desc=name):
if item['medchem.valid'] is not True:
continue
if 'interactions.HBAcceptor' in item and 'interactions.HBDonor' in item:
item['interactions.HB'] = item['interactions.HBAcceptor'] + item['interactions.HBDonor']
new_entries = {}
for key, value in item.items():
if key.startswith('interactions'):
size = sdf2sample2size.get(item['sdf_file'], dict()).get(int(item['sample']))
if size is not None:
new_entries[key + '.normalized'] = value / size
item.update(new_entries)
for key, value in item.items():
if value is None:
continue
if key in aux:
continue
if key == 'energy.energy' and abs(value) > 1000:
continue
if get_data_type(key, DATA_TYPES, default=type(value)) == list:
method_distributions[key] += value
else:
method_distributions[key].append(value)
return method_distributions
def prepare_baseline_data(root_path, baseline_name):
metrics_detailed = pd.read_csv(f'{root_path}/metrics_detailed.csv')
metrics_detailed = metrics_detailed[metrics_detailed['medchem.valid']]
distributions = pickle.load(open(f'{root_path}/metrics_data.pkl', 'rb'))
distributions = flatten_distribution(distributions, name=baseline_name, table=metrics_detailed)
distributions['energy.energy'] = [v for v in distributions['energy.energy'] if -1000 <= v <= 1000]
for prop in MEDCHEM_PROPS + DOCKING_PROPS:
distributions[prop] = metrics_detailed[prop].dropna().values.tolist()
smiles = metrics_detailed['representation.smiles']
atom_distribution, bond_distribution = compute_discrete_distributions(smiles, name=baseline_name)
discrete_distributions = {
'atom_types': atom_distribution,
'bond_types': bond_distribution,
}
return distributions, discrete_distributions
if __name__ == '__main__':
p = argparse.ArgumentParser()
p.add_argument('--in_dir', type=Path, required=True, help='Directory with samples')
p.add_argument('--out_dir', type=str, required=True, help='Output directory')
p.add_argument('--n_samples', type=int, required=False, default=None, help='N samples per target')
p.add_argument('--reference_smiles', type=str, default=None, help='Path to the .npy file with reference SMILES (optional)')
p.add_argument('--crossdocked_dir', type=str, required=False, default=None, help='Crossdocked data dir for computing distances between distributions')
args = p.parse_args()
Path(args.out_dir).mkdir(parents=True, exist_ok=True)
print('Combining data')
data = []
for file_path in tqdm(Path(args.in_dir).glob('metrics_data_*.pkl')):
with open(file_path, 'rb') as f:
d = pickle.load(f)
if args.n_samples is not None:
d = d[:args.n_samples]
data += d
with open(Path(args.out_dir, 'metrics_data.pkl'), 'wb') as f:
pickle.dump(data, f)
print('Combining detailed metrics')
tables = []
for file_path in tqdm(Path(args.in_dir).glob('metrics_detailed_*.csv')):
table = pd.read_csv(file_path)
if args.n_samples is not None:
table = table.head(args.n_samples)
tables.append(table)
table_detailed = pd.concat(tables)
table_detailed.to_csv(Path(args.out_dir, 'metrics_detailed.csv'), index=False)
print('Computing aggregated metrics')
evaluator = FullEvaluator(gnina='gnina', reduce='reduce')
table_aggregated = aggregated_metrics(
table_detailed,
data_types=evaluator.dtypes,
validity_metric_name=VALIDITY_METRIC_NAME
)
if args.reference_smiles is not None:
reference_smiles = np.load(args.reference_smiles)
col_metrics = collection_metrics(
table=table_detailed,
reference_smiles=reference_smiles,
validity_metric_name=VALIDITY_METRIC_NAME,
exclude_evaluators=[],
)
table_aggregated = pd.concat([table_aggregated, col_metrics])
table_aggregated.to_csv(Path(args.out_dir, 'metrics_aggregated.csv'), index=False)
# Computing distributions
if args.crossdocked_dir is not None:
# Loading training data distributions
crossdocked_distributions = None
crossdocked_discrete_distributions = None
precomputed_distr_path = f'{args.crossdocked_dir}/crossdocked_distributions.pkl'
precomputed_discrete_distr_path = f'{args.crossdocked_dir}/crossdocked_discrete_distributions.pkl'
if os.path.exists(precomputed_distr_path) and os.path.exists(precomputed_discrete_distr_path):
# Use precomputed distributions in case they exist
with open(precomputed_distr_path, 'rb') as f:
crossdocked_distributions = pickle.load(f)
with open(precomputed_discrete_distr_path, 'rb') as f:
crossdocked_discrete_distributions = pickle.load(f)
else:
assert os.path.exists(f'{args.crossdocked_dir}/metrics_detailed.csv')
assert os.path.exists(f'{args.crossdocked_dir}/metrics_data.pkl')
crossdocked_distributions, crossdocked_discrete_distributions = prepare_baseline_data(
root_path=args.crossdocked_dir,
baseline_name='crossdocked'
)
# Save precomputed distributions for faster next runs
with open(precomputed_distr_path, 'wb') as f:
pickle.dump(crossdocked_distributions, f)
with open(precomputed_discrete_distr_path, 'wb') as f:
pickle.dump(crossdocked_discrete_distributions, f)
# Selecting top-5 most frequent atom types, bond types, angles and torsions
bonds = sorted([
(k, len(v)) for k, v in crossdocked_distributions.items()
if k.startswith('geometry.') and sum(s.isalpha() for s in k.split('.')[1]) == 2
], key=lambda t: t[1], reverse=True)[:5]
top_5_bonds = [t[0] for t in bonds]
angles = sorted([
(k, len(v)) for k, v in crossdocked_distributions.items()
if k.startswith('geometry.') and sum(s.isalpha() for s in k.split('.')[1]) == 3
], key=lambda t: t[1], reverse=True)[:5]
top_5_angles = [t[0] for t in angles]
# Loading distributions of samples
distributions, discrete_distributions = prepare_baseline_data(args.out_dir, 'samples')
# Computing distances between distributions
distances = {'method': 'method',}
relevant_columns = MEDCHEM_PROPS + DOCKING_PROPS + RELEVANT_INTERACTIONS + top_5_bonds + top_5_angles
for metric in distributions.keys():
if metric not in relevant_columns:
continue
ref = crossdocked_distributions.get(metric)
# cur = distributions.get(metric)
cur = [x for x in distributions.get(metric) if not pd.isna(x)]
if ref is not None and cur is not None and len(cur) > 0:
try:
distance = wasserstein_distance(ref, cur)
except:
from pdb import set_trace; set_trace()
num_ref = len(ref)
num_cur = len(cur)
distances[f'WD.{metric}'] = distance
for metric in crossdocked_discrete_distributions.keys():
ref = crossdocked_discrete_distributions.get(metric)
cur = discrete_distributions.get(metric)
if ref is not None and cur is not None:
distance = jensenshannon(p=ref, q=cur)
num_ref = len(ref)
num_cur = len(cur)
distances[f'JS.{metric}'] = distance
dist_table = pd.DataFrame([distances])
dist_table.to_csv(Path(args.out_dir, 'metrics_distances.csv'), index=False) |