File size: 6,944 Bytes
6e7d4ba
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
import warnings

import torch
from rdkit import Chem
from rdkit.Chem import Draw, AllChem
from rdkit.Chem import SanitizeFlags
from src.analysis.metrics import check_mol
from src import utils
from src.data.molecule_builder import build_molecule
from src.data.misc import protein_letters_1to3


# def pocket_to_rdkit(pocket, pocket_representation, atom_encoder=None,
#                     atom_decoder=None, aa_decoder=None, residue_decoder=None,
#                     aa_atom_index=None):
#
#     rdpockets = []
#     for i in torch.unique(pocket['mask']):
#
#         node_coord = pocket['x'][pocket['mask'] == i]
#         h = pocket['one_hot'][pocket['mask'] == i]
#
#         if pocket_representation == 'side_chain_bead':
#             coord = node_coord
#
#             node_types = [residue_decoder[b] for b in h[:, -len(residue_decoder):].argmax(-1)]
#             atom_types = ['C' if r == 'CA' else 'F' for r in node_types]
#
#         elif pocket_representation == 'CA+':
#             aa_types = [aa_decoder[b] for b in h.argmax(-1)]
#             side_chain_vec = pocket['v'][pocket['mask'] == i]
#
#             coord = []
#             atom_types = []
#             for xyz, aa, vec in zip(node_coord, aa_types, side_chain_vec):
#                 # C_alpha
#                 coord.append(xyz)
#                 atom_types.append('C')
#
#                 # all other atoms
#                 for atom_name, idx in aa_atom_index[aa].items():
#                     coord.append(xyz + vec[idx])
#                     atom_types.append(atom_name[0])
#
#             coord = torch.stack(coord, dim=0)
#
#         else:
#             raise NotImplementedError(f"{pocket_representation} residue representation not supported")
#
#         atom_types = torch.tensor([atom_encoder[a] for a in atom_types])
#         rdpockets.append(build_molecule(coord, atom_types, atom_decoder=atom_decoder))
#
#     return rdpockets
def pocket_to_rdkit(pocket, pocket_representation, atom_encoder=None,
                    atom_decoder=None, aa_decoder=None, residue_decoder=None,
                    aa_atom_index=None):

    rdpockets = []
    for i in torch.unique(pocket['mask']):

        node_coord = pocket['x'][pocket['mask'] == i]
        h = pocket['one_hot'][pocket['mask'] == i]
        atom_mask = pocket['atom_mask'][pocket['mask'] == i]

        pdb_infos = []

        if pocket_representation == 'side_chain_bead':
            coord = node_coord

            node_types = [residue_decoder[b] for b in h[:, -len(residue_decoder):].argmax(-1)]
            atom_types = ['C' if r == 'CA' else 'F' for r in node_types]

        elif pocket_representation == 'CA+':
            aa_types = [aa_decoder[b] for b in h.argmax(-1)]
            side_chain_vec = pocket['v'][pocket['mask'] == i]

            coord = []
            atom_types = []
            for resi, (xyz, aa, vec, am) in enumerate(zip(node_coord, aa_types, side_chain_vec, atom_mask)):

                # CA not treated differently with updated atom dictionary
                for atom_name, idx in aa_atom_index[aa].items():

                    if ~am[idx]:
                        warnings.warn(f"Missing atom {atom_name} in {aa}:{resi}")
                        continue

                    coord.append(xyz + vec[idx])
                    atom_types.append(atom_name[0])

                    info = Chem.AtomPDBResidueInfo()
                    # info.SetChainId('A')
                    info.SetResidueName(protein_letters_1to3[aa])
                    info.SetResidueNumber(resi + 1)
                    info.SetOccupancy(1.0)
                    info.SetTempFactor(0.0)
                    info.SetName(f' {atom_name:<3}')
                    pdb_infos.append(info)

            coord = torch.stack(coord, dim=0)

        else:
            raise NotImplementedError(f"{pocket_representation} residue representation not supported")

        atom_types = torch.tensor([atom_encoder[a] for a in atom_types])
        rdmol = build_molecule(coord, atom_types, atom_decoder=atom_decoder)

        if len(pdb_infos) == len(rdmol.GetAtoms()):
            for a, info in zip(rdmol.GetAtoms(), pdb_infos):
                a.SetPDBResidueInfo(info)

        rdpockets.append(rdmol)

    return rdpockets


def mols_to_pdbfile(rdmols, filename, flavor=0):
    pdb_str = ""
    for i, mol in enumerate(rdmols):
        pdb_str += f"MODEL{i + 1:>9}\n"
        block = Chem.MolToPDBBlock(mol, flavor=flavor)
        block = "\n".join(block.split("\n")[:-2])  # remove END
        pdb_str += block + "\n"
        pdb_str += f"ENDMDL\n"
    pdb_str += f"END\n"

    with open(filename, 'w') as f:
        f.write(pdb_str)

    return pdb_str


def mol_as_pdb(rdmol, filename=None, bfactor=None):

    _rdmol = Chem.Mol(rdmol)  # copy
    for a in _rdmol.GetAtoms():
        a.SetIsAromatic(False)
    for b in _rdmol.GetBonds():
        b.SetIsAromatic(False)

    if bfactor is not None:
        for a in _rdmol.GetAtoms():
            val = a.GetPropsAsDict()[bfactor]

            info = Chem.AtomPDBResidueInfo()
            info.SetResidueName('UNL')
            info.SetResidueNumber(1)
            info.SetName(f' {a.GetSymbol():<3}')
            info.SetIsHeteroAtom(True)
            info.SetOccupancy(1.0)
            info.SetTempFactor(val)
            a.SetPDBResidueInfo(info)

    pdb_str = Chem.MolToPDBBlock(_rdmol)

    if filename is not None:
        with open(filename, 'w') as f:
            f.write(pdb_str)

    return pdb_str


def draw_grid(molecules, mols_per_row=5, fig_size=(200, 200),
              label=check_mol,
              highlight_atom=lambda atom: False,
              highlight_bond=lambda bond: False):

    draw_mols = []
    marked_atoms = []
    marked_bonds = []
    for mol in molecules:
        draw_mol = Chem.Mol(mol)  # copy
        Chem.SanitizeMol(draw_mol, sanitizeOps=SanitizeFlags.SANITIZE_NONE)
        AllChem.Compute2DCoords(draw_mol)
        draw_mol = Draw.rdMolDraw2D.PrepareMolForDrawing(draw_mol,
                                                         kekulize=False)
        draw_mols.append(draw_mol)
        marked_atoms.append([a.GetIdx() for a in draw_mol.GetAtoms() if highlight_atom(a)])
        marked_bonds.append([b.GetIdx() for b in draw_mol.GetBonds() if highlight_bond(b)])

    drawOptions = Draw.rdMolDraw2D.MolDrawOptions()
    drawOptions.prepareMolsBeforeDrawing = False
    drawOptions.highlightBondWidthMultiplier = 20

    return Draw.MolsToGridImage(draw_mols,
                                molsPerRow=mols_per_row,
                                subImgSize=fig_size,
                                drawOptions=drawOptions,
                                highlightAtomLists=marked_atoms,
                                highlightBondLists=marked_bonds,
                                legends=[f'[{i}] {label(mol)}' for
                                         i, mol in enumerate(draw_mols)])