File size: 32,785 Bytes
6e7d4ba |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 |
import io
from itertools import accumulate, chain
from copy import deepcopy
import random
import torch
import torch.nn.functional as F
import numpy as np
from rdkit import Chem
from torch_scatter import scatter_mean
from Bio.PDB import StructureBuilder, Chain, Model, Structure
from Bio.PDB.PICIO import read_PIC, write_PIC
from scipy.ndimage import gaussian_filter
from pdb import set_trace
from src.constants import FLOAT_TYPE, INT_TYPE
from src.constants import atom_encoder, bond_encoder, aa_encoder, residue_encoder, residue_bond_encoder, aa_atom_index
from src import utils
from src.data.misc import protein_letters_3to1, is_aa
from src.data.normal_modes import pdb_to_normal_modes
from src.data.nerf import get_nerf_params, ic_to_coords
import src.data.so3_utils as so3
class TensorDict(dict):
def __init__(self, **kwargs):
super(TensorDict, self).__init__(**kwargs)
def _apply(self, func: str, *args, **kwargs):
""" Apply function to all tensors. """
for k, v in self.items():
if torch.is_tensor(v):
self[k] = getattr(v, func)(*args, **kwargs)
return self
# def to(self, device):
# for k, v in self.items():
# if torch.is_tensor(v):
# self[k] = v.to(device)
# return self
def cuda(self):
return self.to('cuda')
def cpu(self):
return self.to('cpu')
def to(self, device):
return self._apply("to", device)
def detach(self):
return self._apply("detach")
def __repr__(self):
def val_to_str(val):
if isinstance(val, torch.Tensor):
# if val.isnan().any():
# return "(!nan)"
return "%r" % list(val.size())
if isinstance(val, list):
return "[%r,]" % len(val)
else:
return "?"
return f"{type(self).__name__}({', '.join(f'{k}={val_to_str(v)}' for k, v in self.items())})"
def collate_entity(batch):
out = {}
for prop in batch[0].keys():
if prop == 'name':
out[prop] = [x[prop] for x in batch]
elif prop == 'size' or prop == 'n_bonds':
out[prop] = torch.tensor([x[prop] for x in batch])
elif prop == 'bonds':
# index offset
offset = list(accumulate([x['size'] for x in batch], initial=0))
out[prop] = torch.cat([x[prop] + offset[i] for i, x in enumerate(batch)], dim=1)
elif prop == 'residues':
out[prop] = list(chain.from_iterable(x[prop] for x in batch))
elif prop in {'mask', 'bond_mask'}:
pass # batch masks will be written later
else:
out[prop] = torch.cat([x[prop] for x in batch], dim=0)
# Create batch masks
# make sure indices in batch start at zero (needed for torch_scatter)
if prop == 'x':
out['mask'] = torch.cat([i * torch.ones(len(x[prop]), dtype=torch.int64, device=x[prop].device)
for i, x in enumerate(batch)], dim=0)
if prop == 'bond_one_hot':
# TODO: this is not necessary as it can be computed on-the-fly as bond_mask = mask[bonds[0]] or bond_mask = mask[bonds[1]]
out['bond_mask'] = torch.cat([i * torch.ones(len(x[prop]), dtype=torch.int64, device=x[prop].device)
for i, x in enumerate(batch)], dim=0)
return out
def split_entity(
batch,
*,
index_types={'bonds'},
edge_types={'bond_one_hot', 'bond_mask'},
no_split={'name', 'size', 'n_bonds'},
skip={'fragments'},
batch_mask=None,
edge_mask=None
):
""" Splits a batch into items and returns a list. """
batch_mask = batch["mask"] if batch_mask is None else batch_mask
edge_mask = batch["bond_mask"] if edge_mask is None else edge_mask
sizes = batch['size'] if 'size' in batch else torch.unique(batch_mask, return_counts=True)[1].tolist()
batch_size = len(torch.unique(batch['mask']))
out = {}
for prop in batch.keys():
if prop in skip:
continue
if prop in no_split:
out[prop] = batch[prop] # already a list
elif prop in index_types:
offsets = list(accumulate(sizes[:-1], initial=0))
out[prop] = utils.batch_to_list_for_indices(batch[prop], edge_mask, offsets)
elif prop in edge_types:
out[prop] = utils.batch_to_list(batch[prop], edge_mask)
else:
out[prop] = utils.batch_to_list(batch[prop], batch_mask)
out = [{k: v[i] for k, v in out.items()} for i in range(batch_size)]
return out
def repeat_items(batch, repeats):
batch_list = split_entity(batch)
out = collate_entity([x for _ in range(repeats) for x in batch_list])
return type(batch)(**out)
def get_side_chain_bead_coord(biopython_residue):
"""
Places side chain bead at the location of the farthest side chain atom.
"""
if biopython_residue.get_resname() == 'GLY':
return None
if biopython_residue.get_resname() == 'ALA':
return biopython_residue['CB'].get_coord()
ca_coord = biopython_residue['CA'].get_coord()
side_chain_atoms = [a for a in biopython_residue.get_atoms() if
a.id not in {'N', 'CA', 'C', 'O'} and a.element != 'H']
side_chain_coords = np.stack([a.get_coord() for a in side_chain_atoms])
atom_idx = np.argmax(np.sum((side_chain_coords - ca_coord[None, :]) ** 2, axis=-1))
return side_chain_coords[atom_idx, :]
def get_side_chain_vectors(res, index_dict, size=None):
if size is None:
size = max([x for aa in index_dict.values() for x in aa.values()]) + 1
resname = protein_letters_3to1[res.get_resname()]
out = np.zeros((size, 3))
for atom in res.get_atoms():
if atom.get_name() in index_dict[resname]:
idx = index_dict[resname][atom.get_name()]
out[idx] = atom.get_coord() - res['CA'].get_coord()
# else:
# if atom.get_name() != 'CA' and not atom.get_name().startswith('H'):
# print(resname, atom.get_name())
return out
def get_normal_modes(res, normal_mode_dict):
nm = normal_mode_dict[(res.get_parent().id, res.id[1], 'CA')] # (n_modes, 3)
return nm
def get_torsion_angles(res, device=None):
"""
Return the five chi angles. Missing angles are filled with zeros.
"""
ANGLES = ['chi1', 'chi2', 'chi3', 'chi4', 'chi5']
ic_res = res.internal_coord
chi_angles = [ic_res.get_angle(chi) for chi in ANGLES]
chi_angles = [chi if chi is not None else float('nan') for chi in chi_angles]
return torch.tensor(chi_angles, device=device) * np.pi / 180
def apply_torsion_angles(res, chi_angles):
"""
Set side chain torsion angles of a biopython residue object with
internal coordinates.
"""
ANGLES = ['chi1', 'chi2', 'chi3', 'chi4', 'chi5']
chi_angles = chi_angles * 180 / np.pi
# res.parent.internal_coord.build_atomArray() # rebuild atom pointers
ic_res = res.internal_coord
for chi, angle in zip(ANGLES, chi_angles):
if ic_res.pick_angle(chi) is None:
continue
ic_res.bond_set(chi, angle)
res.parent.internal_to_atom_coordinates(verbose=False)
# res.parent.internal_coord.init_atom_coords()
# res.internal_coord.assemble()
return res
def prepare_internal_coord(res):
# Make new structure with a single residue
new_struct = Structure.Structure('X')
new_struct.header = {}
new_model = Model.Model(0)
new_struct.add(new_model)
new_chain = Chain.Chain('X')
new_model.add(new_chain)
new_chain.add(res)
res.set_parent(new_chain) # update pointer
# Compute internal coordinates
new_chain.atom_to_internal_coordinates()
pic_io = io.StringIO()
write_PIC(new_struct, pic_io)
return pic_io.getvalue()
def residue_from_internal_coord(ic_string):
pic_io = io.StringIO(ic_string)
struct = read_PIC(pic_io, quick=True)
res = struct.child_list[0].child_list[0].child_list[0]
res.parent.internal_to_atom_coordinates(verbose=False)
return res
def prepare_pocket(biopython_residues, amino_acid_encoder, residue_encoder,
residue_bond_encoder, pocket_representation='side_chain_bead',
compute_nerf_params=False, compute_bb_frames=False,
nma_input=None):
assert nma_input is None or pocket_representation == 'CA+', \
"vector features are only supported for CA+ pockets"
# sort residues
biopython_residues = sorted(biopython_residues, key=lambda x: (x.parent.id, x.id[1]))
if nma_input is not None:
# preprocessed normal mode eigenvectors
if isinstance(nma_input, dict):
nma_dict = nma_input
# PDB file
else:
nma_dict = pdb_to_normal_modes(str(nma_input))
if pocket_representation == 'side_chain_bead':
ca_coords = np.zeros((len(biopython_residues), 3))
ca_types = np.zeros(len(biopython_residues), dtype='int64')
side_chain_coords = []
side_chain_aa_types = []
edges = [] # CA-CA and CA-side_chain
edge_types = []
last_res_id = None
for i, res in enumerate(biopython_residues):
aa = amino_acid_encoder[protein_letters_3to1[res.get_resname()]]
ca_coords[i, :] = res['CA'].get_coord()
ca_types[i] = aa
side_chain_coord = get_side_chain_bead_coord(res)
if side_chain_coord is not None:
side_chain_coords.append(side_chain_coord)
side_chain_aa_types.append(aa)
edges.append((i, len(ca_coords) + len(side_chain_coords) - 1))
edge_types.append(residue_bond_encoder['CA-SS'])
# add edges between contiguous CA atoms
if i > 0 and res.id[1] == last_res_id + 1:
edges.append((i - 1, i))
edge_types.append(residue_bond_encoder['CA-CA'])
last_res_id = res.id[1]
# Coordinates
side_chain_coords = np.stack(side_chain_coords)
pocket_coords = np.concatenate([ca_coords, side_chain_coords], axis=0)
pocket_coords = torch.from_numpy(pocket_coords)
# Features
amino_acid_onehot = F.one_hot(
torch.cat([torch.from_numpy(ca_types), torch.tensor(side_chain_aa_types, dtype=torch.int64)], dim=0),
num_classes=len(amino_acid_encoder)
)
side_chain_onehot = np.concatenate([
np.tile(np.eye(1, len(residue_encoder), residue_encoder['CA']),
[len(ca_coords), 1]),
np.tile(np.eye(1, len(residue_encoder), residue_encoder['SS']),
[len(side_chain_coords), 1])
], axis=0)
side_chain_onehot = torch.from_numpy(side_chain_onehot)
pocket_onehot = torch.cat([amino_acid_onehot, side_chain_onehot], dim=1)
vector_features = None
nma_features = None
# Bonds
edges = torch.tensor(edges).T
edge_types = F.one_hot(torch.tensor(edge_types), num_classes=len(residue_bond_encoder))
elif pocket_representation == 'CA+':
ca_coords = np.zeros((len(biopython_residues), 3))
ca_types = np.zeros(len(biopython_residues), dtype='int64')
v_dim = max([x for aa in aa_atom_index.values() for x in aa.values()]) + 1
vec_feats = np.zeros((len(biopython_residues), v_dim, 3), dtype='float32')
nf_nma = 5
nma_feats = np.zeros((len(biopython_residues), nf_nma, 3), dtype='float32')
edges = [] # CA-CA and CA-side_chain
edge_types = []
last_res_id = None
for i, res in enumerate(biopython_residues):
aa = amino_acid_encoder[protein_letters_3to1[res.get_resname()]]
ca_coords[i, :] = res['CA'].get_coord()
ca_types[i] = aa
vec_feats[i] = get_side_chain_vectors(res, aa_atom_index, v_dim)
if nma_input is not None:
nma_feats[i] = get_normal_modes(res, nma_dict)
# add edges between contiguous CA atoms
if i > 0 and res.id[1] == last_res_id + 1:
edges.append((i - 1, i))
edge_types.append(residue_bond_encoder['CA-CA'])
last_res_id = res.id[1]
# Coordinates
pocket_coords = torch.from_numpy(ca_coords)
# Features
pocket_onehot = F.one_hot(torch.from_numpy(ca_types),
num_classes=len(amino_acid_encoder))
vector_features = torch.from_numpy(vec_feats)
nma_features = torch.from_numpy(nma_feats)
# Bonds
if len(edges) < 1:
edges = torch.empty(2, 0)
edge_types = torch.empty(0, len(residue_bond_encoder))
else:
edges = torch.tensor(edges).T
edge_types = F.one_hot(torch.tensor(edge_types),
num_classes=len(residue_bond_encoder))
else:
raise NotImplementedError(
f"Pocket representation '{pocket_representation}' not implemented")
# pocket_ids = [f'{res.parent.id}:{res.id[1]}' for res in biopython_residues]
pocket = {
'x': pocket_coords.to(dtype=FLOAT_TYPE),
'one_hot': pocket_onehot.to(dtype=FLOAT_TYPE),
# 'ids': pocket_ids,
'size': torch.tensor([len(pocket_coords)], dtype=INT_TYPE),
'mask': torch.zeros(len(pocket_coords), dtype=INT_TYPE),
'bonds': edges.to(INT_TYPE),
'bond_one_hot': edge_types.to(FLOAT_TYPE),
'bond_mask': torch.zeros(edges.size(1), dtype=INT_TYPE),
'n_bonds': torch.tensor([len(edge_types)], dtype=INT_TYPE),
}
if vector_features is not None:
pocket['v'] = vector_features.to(dtype=FLOAT_TYPE)
if nma_input is not None:
pocket['nma_vec'] = nma_features.to(dtype=FLOAT_TYPE)
if compute_nerf_params:
nerf_params = [get_nerf_params(r) for r in biopython_residues]
nerf_params = {k: torch.stack([x[k] for x in nerf_params], dim=0)
for k in nerf_params[0].keys()}
pocket.update(nerf_params)
if compute_bb_frames:
n_xyz = torch.from_numpy(np.stack([r['N'].get_coord() for r in biopython_residues]))
ca_xyz = torch.from_numpy(np.stack([r['CA'].get_coord() for r in biopython_residues]))
c_xyz = torch.from_numpy(np.stack([r['C'].get_coord() for r in biopython_residues]))
pocket['axis_angle'], _ = get_bb_transform(n_xyz, ca_xyz, c_xyz)
return pocket, biopython_residues
def encode_atom(rd_atom, atom_encoder):
element = rd_atom.GetSymbol().capitalize()
explicitHs = rd_atom.GetNumExplicitHs()
if explicitHs == 1 and f'{element}H' in atom_encoder:
return atom_encoder[f'{element}H']
charge = rd_atom.GetFormalCharge()
if charge == 1 and f'{element}+' in atom_encoder:
return atom_encoder[f'{element}+']
if charge == -1 and f'{element}-' in atom_encoder:
return atom_encoder[f'{element}-']
return atom_encoder[element]
def prepare_ligand(rdmol, atom_encoder, bond_encoder):
# remove H atoms if not in atom_encoder
if 'H' not in atom_encoder:
rdmol = Chem.RemoveAllHs(rdmol, sanitize=False)
# Coordinates
ligand_coord = rdmol.GetConformer().GetPositions()
ligand_coord = torch.from_numpy(ligand_coord)
# Features
ligand_onehot = F.one_hot(
torch.tensor([encode_atom(a, atom_encoder) for a in rdmol.GetAtoms()]),
num_classes=len(atom_encoder)
)
# Bonds
adj = np.ones((rdmol.GetNumAtoms(), rdmol.GetNumAtoms())) * bond_encoder['NOBOND']
for b in rdmol.GetBonds():
i = b.GetBeginAtomIdx()
j = b.GetEndAtomIdx()
adj[i, j] = bond_encoder[str(b.GetBondType())]
adj[j, i] = adj[i, j] # undirected graph
# molecular graph is undirected -> don't save redundant information
bonds = np.stack(np.triu_indices(len(ligand_coord), k=1), axis=0)
# bonds = np.stack(np.ones_like(adj).nonzero(), axis=0)
bond_types = adj[bonds[0], bonds[1]].astype('int64')
bonds = torch.from_numpy(bonds)
bond_types = F.one_hot(torch.from_numpy(bond_types), num_classes=len(bond_encoder))
ligand = {
'x': ligand_coord.to(dtype=FLOAT_TYPE),
'one_hot': ligand_onehot.to(dtype=FLOAT_TYPE),
'mask': torch.zeros(len(ligand_coord), dtype=INT_TYPE),
'bonds': bonds.to(INT_TYPE),
'bond_one_hot': bond_types.to(FLOAT_TYPE),
'bond_mask': torch.zeros(bonds.size(1), dtype=INT_TYPE),
'size': torch.tensor([len(ligand_coord)], dtype=INT_TYPE),
'n_bonds': torch.tensor([len(bond_types)], dtype=INT_TYPE),
}
return ligand
def process_raw_molecule_with_empty_pocket(rdmol):
ligand = prepare_ligand(rdmol, atom_encoder, bond_encoder)
pocket = {
'x': torch.tensor([], dtype=FLOAT_TYPE),
'one_hot': torch.tensor([], dtype=FLOAT_TYPE),
'size': torch.tensor([], dtype=INT_TYPE),
'mask': torch.tensor([], dtype=INT_TYPE),
'bonds': torch.tensor([], dtype=INT_TYPE),
'bond_one_hot': torch.tensor([], dtype=FLOAT_TYPE),
'bond_mask': torch.tensor([], dtype=INT_TYPE),
'n_bonds': torch.tensor([], dtype=INT_TYPE),
}
return ligand, pocket
def process_raw_pair(biopython_model, rdmol, dist_cutoff=None,
pocket_representation='side_chain_bead',
compute_nerf_params=False, compute_bb_frames=False,
nma_input=None, return_pocket_pdb=False):
# Process ligand
ligand = prepare_ligand(rdmol, atom_encoder, bond_encoder)
# Find interacting pocket residues based on distance cutoff
pocket_residues = []
for residue in biopython_model.get_residues():
# Remove non-standard amino acids and HETATMs
if not is_aa(residue.get_resname(), standard=True):
continue
res_coords = torch.from_numpy(np.array([a.get_coord() for a in residue.get_atoms()]))
if dist_cutoff is None or (((res_coords[:, None, :] - ligand['x'][None, :, :]) ** 2).sum(-1) ** 0.5).min() < dist_cutoff:
pocket_residues.append(residue)
pocket, pocket_residues = prepare_pocket(
pocket_residues, aa_encoder, residue_encoder, residue_bond_encoder,
pocket_representation, compute_nerf_params, compute_bb_frames, nma_input
)
if return_pocket_pdb:
builder = StructureBuilder.StructureBuilder()
builder.init_structure("")
builder.init_model(0)
pocket_struct = builder.get_structure()
for residue in pocket_residues:
chain = residue.get_parent().get_id()
# init chain if necessary
if not pocket_struct[0].has_id(chain):
builder.init_chain(chain)
# add residue
pocket_struct[0][chain].add(residue)
pocket['pocket_pdb'] = pocket_struct
# if return_pocket_pdb:
# pocket['residues'] = [prepare_internal_coord(res) for res in pocket_residues]
return ligand, pocket
class AppendVirtualNodes:
def __init__(self, atom_encoder, bond_encoder, max_ligand_size, scale=1.0):
self.max_size = max_ligand_size
self.atom_encoder = atom_encoder
self.bond_encoder = bond_encoder
self.vidx = atom_encoder['NOATOM']
self.bidx = bond_encoder['NOBOND']
self.scale = scale
def __call__(self, ligand, max_size=None, eps=1e-6):
if max_size is None:
max_size = self.max_size
n_virt = max_size - ligand['size']
C = torch.cov(ligand['x'].T)
L = torch.linalg.cholesky(C + torch.eye(3) * eps)
mu = ligand['x'].mean(0, keepdim=True)
virt_coords = mu + torch.randn(n_virt, 3) @ L.T * self.scale
# insert virtual atom column
virt_one_hot = F.one_hot(torch.ones(n_virt, dtype=torch.int64) * self.vidx, num_classes=len(self.atom_encoder))
virt_mask = torch.cat([torch.zeros(ligand['size'], dtype=bool), torch.ones(n_virt, dtype=bool)])
ligand['x'] = torch.cat([ligand['x'], virt_coords])
ligand['one_hot'] = torch.cat(([ligand['one_hot'], virt_one_hot]))
ligand['virtual_mask'] = virt_mask
ligand['size'] = max_size
# Bonds
new_bonds = torch.triu_indices(max_size, max_size, offset=1)
bond_types = torch.ones(max_size, max_size, dtype=INT_TYPE) * self.bidx
row, col = ligand['bonds']
bond_types[row, col] = ligand['bond_one_hot'].argmax(dim=1)
new_row, new_col = new_bonds
bond_types = bond_types[new_row, new_col]
ligand['bonds'] = new_bonds
ligand['bond_one_hot'] = F.one_hot(bond_types, num_classes=len(self.bond_encoder)).to(ligand['bond_one_hot'].dtype)
ligand['n_bonds'] = len(ligand['bond_one_hot'])
return ligand
class AppendVirtualNodesInCoM:
def __init__(self, atom_encoder, bond_encoder, add_min=0, add_max=10):
self.atom_encoder = atom_encoder
self.bond_encoder = bond_encoder
self.vidx = atom_encoder['NOATOM']
self.bidx = bond_encoder['NOBOND']
self.add_min = add_min
self.add_max = add_max
def __call__(self, ligand):
n_virt = random.randint(self.add_min, self.add_max)
# all virtual coordinates in the CoM
virt_coords = ligand['x'].mean(0, keepdim=True).repeat(n_virt, 1)
# insert virtual atom column
virt_one_hot = F.one_hot(torch.ones(n_virt, dtype=torch.int64) * self.vidx, num_classes=len(self.atom_encoder))
virt_mask = torch.cat([torch.zeros(ligand['size'], dtype=bool), torch.ones(n_virt, dtype=bool)])
ligand['x'] = torch.cat([ligand['x'], virt_coords])
ligand['one_hot'] = torch.cat(([ligand['one_hot'], virt_one_hot]))
ligand['virtual_mask'] = virt_mask
ligand['size'] = len(ligand['x'])
# Bonds
new_bonds = torch.triu_indices(ligand['size'], ligand['size'], offset=1)
bond_types = torch.ones(ligand['size'], ligand['size'], dtype=INT_TYPE) * self.bidx
row, col = ligand['bonds']
bond_types[row, col] = ligand['bond_one_hot'].argmax(dim=1)
new_row, new_col = new_bonds
bond_types = bond_types[new_row, new_col]
ligand['bonds'] = new_bonds
ligand['bond_one_hot'] = F.one_hot(bond_types, num_classes=len(self.bond_encoder)).to(ligand['bond_one_hot'].dtype)
ligand['n_bonds'] = len(ligand['bond_one_hot'])
return ligand
def rdmol_to_smiles(rdmol):
mol = Chem.Mol(rdmol)
Chem.RemoveStereochemistry(mol)
mol = Chem.RemoveHs(mol)
return Chem.MolToSmiles(mol)
def get_n_nodes(lig_positions, pocket_positions, smooth_sigma=None):
# Joint distribution of ligand's and pocket's number of nodes
n_nodes_lig = [len(x) for x in lig_positions]
n_nodes_pocket = [len(x) for x in pocket_positions]
joint_histogram = np.zeros((np.max(n_nodes_lig) + 1,
np.max(n_nodes_pocket) + 1))
for nlig, npocket in zip(n_nodes_lig, n_nodes_pocket):
joint_histogram[nlig, npocket] += 1
print(f'Original histogram: {np.count_nonzero(joint_histogram)}/'
f'{joint_histogram.shape[0] * joint_histogram.shape[1]} bins filled')
# Smooth the histogram
if smooth_sigma is not None:
filtered_histogram = gaussian_filter(
joint_histogram, sigma=smooth_sigma, order=0, mode='constant',
cval=0.0, truncate=4.0)
print(f'Smoothed histogram: {np.count_nonzero(filtered_histogram)}/'
f'{filtered_histogram.shape[0] * filtered_histogram.shape[1]} bins filled')
joint_histogram = filtered_histogram
return joint_histogram
# def get_type_histograms(lig_one_hot, pocket_one_hot, lig_encoder, pocket_encoder):
#
# lig_one_hot = np.concatenate(lig_one_hot, axis=0)
# pocket_one_hot = np.concatenate(pocket_one_hot, axis=0)
#
# atom_decoder = list(lig_encoder.keys())
# lig_counts = {k: 0 for k in lig_encoder.keys()}
# for a in [atom_decoder[x] for x in lig_one_hot.argmax(1)]:
# lig_counts[a] += 1
#
# aa_decoder = list(pocket_encoder.keys())
# pocket_counts = {k: 0 for k in pocket_encoder.keys()}
# for r in [aa_decoder[x] for x in pocket_one_hot.argmax(1)]:
# pocket_counts[r] += 1
#
# return lig_counts, pocket_counts
def get_type_histogram(one_hot, type_encoder):
one_hot = np.concatenate(one_hot, axis=0)
decoder = list(type_encoder.keys())
counts = {k: 0 for k in type_encoder.keys()}
for a in [decoder[x] for x in one_hot.argmax(1)]:
counts[a] += 1
return counts
def get_residue_with_resi(pdb_chain, resi):
res = [x for x in pdb_chain.get_residues() if x.id[1] == resi]
assert len(res) == 1
return res[0]
def get_pocket_from_ligand(pdb_model, ligand, dist_cutoff=8.0):
if ligand.endswith(".sdf"):
# ligand as sdf file
rdmol = Chem.SDMolSupplier(str(ligand))[0]
ligand_coords = torch.from_numpy(rdmol.GetConformer().GetPositions()).float()
resi = None
else:
# ligand contained in PDB; given in <chain>:<resi> format
chain, resi = ligand.split(':')
ligand = get_residue_with_resi(pdb_model[chain], int(resi))
ligand_coords = torch.from_numpy(
np.array([a.get_coord() for a in ligand.get_atoms()]))
pocket_residues = []
for residue in pdb_model.get_residues():
if residue.id[1] == resi:
continue # skip ligand itself
res_coords = torch.from_numpy(
np.array([a.get_coord() for a in residue.get_atoms()]))
if is_aa(residue.get_resname(), standard=True) \
and torch.cdist(res_coords, ligand_coords).min() < dist_cutoff:
pocket_residues.append(residue)
return pocket_residues
def encode_residues(biopython_residues, type_encoder, level='atom',
remove_H=True):
assert level in {'atom', 'residue'}
if level == 'atom':
entities = [a for res in biopython_residues for a in res.get_atoms()
if (a.element != 'H' or not remove_H)]
types = [a.element.capitalize() for a in entities]
else:
entities = [res['CA'] for res in biopython_residues]
types = [protein_letters_3to1[res.get_resname()] for res in biopython_residues]
coord = torch.tensor(np.stack([e.get_coord() for e in entities]))
one_hot = F.one_hot(torch.tensor([type_encoder[t] for t in types]),
num_classes=len(type_encoder))
return coord, one_hot
def center_data(ligand, pocket):
if pocket['x'].numel() > 0:
pocket_com = pocket.center()
else:
pocket_com = scatter_mean(ligand['x'], ligand['mask'], dim=0)
ligand['x'] = ligand['x'] - pocket_com[ligand['mask']]
return ligand, pocket
def get_bb_transform(n_xyz, ca_xyz, c_xyz):
"""
Compute translation and rotation of the canoncical backbone frame (triangle N-Ca-C) from a position with
Ca at the origin, N on the x-axis and C in the xy-plane to the global position of the backbone frame
Args:
n_xyz: (n, 3)
ca_xyz: (n, 3)
c_xyz: (n, 3)
Returns:
axis-angle representation of the rotation, shape (n, 3) # rotation matrix of shape (n, 3, 3)
translation vector of shape (n, 3)
"""
def rotation_matrix(angle, axis):
axis_mapping = {'x': 0, 'y': 1, 'z': 2}
axis = axis_mapping[axis]
vector = torch.zeros(len(angle), 3)
vector[:, axis] = 1
# return axis_angle_to_matrix(angle * vector)
return so3.matrix_from_rotation_vector(angle.view(-1, 1) * vector)
translation = ca_xyz
n_xyz = n_xyz - translation
c_xyz = c_xyz - translation
# Find rotation matrix that aligns the coordinate systems
# rotate around y-axis to move N into the xy-plane
theta_y = torch.arctan2(n_xyz[:, 2], -n_xyz[:, 0])
Ry = rotation_matrix(theta_y, 'y')
Ry = Ry.transpose(2, 1)
n_xyz = torch.einsum('noi,ni->no', Ry, n_xyz)
# rotate around z-axis to move N onto the x-axis
theta_z = torch.arctan2(n_xyz[:, 1], n_xyz[:, 0])
Rz = rotation_matrix(theta_z, 'z')
Rz = Rz.transpose(2, 1)
# print(torch.einsum('noi,ni->no', Rz, n_xyz))
# n_xyz = torch.einsum('noi,ni->no', Rz.transpose(0, 2, 1), n_xyz)
# rotate around x-axis to move C into the xy-plane
c_xyz = torch.einsum('noj,nji,ni->no', Rz, Ry, c_xyz)
theta_x = torch.arctan2(c_xyz[:, 2], c_xyz[:, 1])
Rx = rotation_matrix(theta_x, 'x')
Rx = Rx.transpose(2, 1)
# print(torch.einsum('noi,ni->no', Rx, c_xyz))
# Final rotation matrix
Ry = Ry.transpose(2, 1)
Rz = Rz.transpose(2, 1)
Rx = Rx.transpose(2, 1)
R = torch.einsum('nok,nkj,nji->noi', Ry, Rz, Rx)
# return R, translation
# return matrix_to_axis_angle(R), translation
return so3.rotation_vector_from_matrix(R), translation
class Residues(TensorDict):
"""
Dictionary-like container for residues that supports some basic transformations.
"""
# all keys
KEYS = {'x', 'one_hot', 'bonds', 'bond_one_hot', 'v', 'nma_vec', 'fixed_coord',
'atom_mask', 'nerf_indices', 'length', 'theta', 'chi', 'ddihedral',
'chi_indices', 'axis_angle', 'mask', 'bond_mask'}
# coordinate-type values, shape (..., 3)
COORD_KEYS = {'x', 'fixed_coord'}
# vector-type values, shape (n_residues, n_feat, 3)
VECTOR_KEYS = {'v', 'nma_vec'}
# properties that change if the side chains and/or backbones are updated
MUTABLE_PROPS_SS_AND_BB = {'v'}
# properties that only change if the side chains are updated
MUTABLE_PROPS_SS = {'chi'}
# properties that only change if the backbones are updated
MUTABLE_PROPS_BB = {'x', 'fixed_coord', 'axis_angle', 'nma_vec'}
# properties that remain fixed in all cases
IMMUTABLE_PROPS = {'mask', 'one_hot', 'bonds', 'bond_one_hot', 'bond_mask',
'atom_mask', 'nerf_indices', 'length', 'theta',
'ddihedral', 'chi_indices', 'name', 'size', 'n_bonds'}
def copy(self):
data = super().copy()
return Residues(**data)
def deepcopy(self):
data = {k: v.clone() if torch.is_tensor(v) else deepcopy(v)
for k, v in self.items()}
return Residues(**data)
def center(self):
com = scatter_mean(self['x'], self['mask'], dim=0)
self['x'] = self['x'] - com[self['mask']]
self['fixed_coord'] = self['fixed_coord'] - com[self['mask']].unsqueeze(1)
return com
def set_empty_v(self):
self['v'] = torch.tensor([], device=self['x'].device)
@torch.no_grad()
def set_chi(self, chi_angles):
self['chi'][:, :5] = chi_angles
nerf_params = {k: self[k] for k in ['fixed_coord', 'atom_mask',
'nerf_indices', 'length', 'theta',
'chi', 'ddihedral', 'chi_indices']}
self['v'] = ic_to_coords(**nerf_params) - self['x'].unsqueeze(1)
@torch.no_grad()
def set_frame(self, new_ca_coord, new_axis_angle):
bb_coord = self['fixed_coord']
bb_coord = bb_coord - self['x'].unsqueeze(1)
rotmat_before = so3.matrix_from_rotation_vector(self['axis_angle'])
rotmat_after = so3.matrix_from_rotation_vector(new_axis_angle)
rotmat_diff = rotmat_after @ rotmat_before.transpose(-1, -2)
bb_coord = torch.einsum('boi,bai->bao', rotmat_diff, bb_coord)
bb_coord = bb_coord + new_ca_coord.unsqueeze(1)
self['x'] = new_ca_coord
self['axis_angle'] = new_axis_angle
self['fixed_coord'] = bb_coord
self['v'] = torch.einsum('boi,bai->bao', rotmat_diff, self['v'])
@staticmethod
def empty(device):
return Residues(
x=torch.zeros(1, 3, device=device).float(),
mask=torch.zeros(1, 1, device=device).long(),
size=torch.zeros(1, device=device).long(),
)
def randomize_tensors(tensor_dict, exclude_keys=None):
"""Replace tensors with random tensors with the same shape."""
exclude_keys = set() if exclude_keys is None else set(exclude_keys)
for k, v in tensor_dict.items():
if isinstance(v, torch.Tensor) and k not in exclude_keys:
if torch.is_floating_point(v):
tensor_dict[k] = torch.randn_like(v)
else:
tensor_dict[k] = torch.randint_like(v, low=-42, high=42)
return tensor_dict
|