|
|
import warnings |
|
|
from typing import Union, Iterable |
|
|
import random |
|
|
|
|
|
from argparse import Namespace |
|
|
|
|
|
import numpy as np |
|
|
import torch |
|
|
from rdkit import Chem, RDLogger |
|
|
from rdkit.Chem import KekulizeException, AtomKekulizeException |
|
|
import networkx as nx |
|
|
from networkx.algorithms import isomorphism |
|
|
from torch_scatter import scatter_add, scatter_mean |
|
|
|
|
|
|
|
|
class Queue(): |
|
|
def __init__(self, max_len=50): |
|
|
self.items = [] |
|
|
self.max_len = max_len |
|
|
|
|
|
def __len__(self): |
|
|
return len(self.items) |
|
|
|
|
|
def add(self, item): |
|
|
self.items.insert(0, item) |
|
|
if len(self) > self.max_len: |
|
|
self.items.pop() |
|
|
|
|
|
def mean(self): |
|
|
return np.mean(self.items) |
|
|
|
|
|
def std(self): |
|
|
return np.std(self.items) |
|
|
|
|
|
|
|
|
def reverse_tensor(x): |
|
|
return x[torch.arange(x.size(0) - 1, -1, -1)] |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def sum_except_batch(x, indices): |
|
|
if len(x.size()) < 2: |
|
|
x = x.unsqueeze(-1) |
|
|
return scatter_add(x.sum(list(range(1, len(x.size())))), indices, dim=0) |
|
|
|
|
|
|
|
|
def remove_mean_batch(x, batch_mask, dim_size=None): |
|
|
|
|
|
mean = scatter_mean(x, batch_mask, dim=0, dim_size=dim_size) |
|
|
x = x - mean[batch_mask] |
|
|
return x, mean |
|
|
|
|
|
|
|
|
def assert_mean_zero(x, batch_mask, thresh=1e-2, eps=1e-10): |
|
|
largest_value = x.abs().max().item() |
|
|
error = scatter_add(x, batch_mask, dim=0).abs().max().item() |
|
|
rel_error = error / (largest_value + eps) |
|
|
assert rel_error < thresh, f'Mean is not zero, relative_error {rel_error}' |
|
|
|
|
|
|
|
|
def bvm(v, m): |
|
|
""" |
|
|
Batched vector-matrix product of the form out = v @ m |
|
|
:param v: (b, n_in) |
|
|
:param m: (b, n_in, n_out) |
|
|
:return: (b, n_out) |
|
|
""" |
|
|
|
|
|
return torch.bmm(v.unsqueeze(1), m).squeeze(1) |
|
|
|
|
|
|
|
|
def get_grad_norm( |
|
|
parameters: Union[torch.Tensor, Iterable[torch.Tensor]], |
|
|
norm_type: float = 2.0) -> torch.Tensor: |
|
|
""" |
|
|
Adapted from: https://pytorch.org/docs/stable/_modules/torch/nn/utils/clip_grad.html#clip_grad_norm_ |
|
|
""" |
|
|
|
|
|
if isinstance(parameters, torch.Tensor): |
|
|
parameters = [parameters] |
|
|
parameters = [p for p in parameters if p.grad is not None] |
|
|
|
|
|
norm_type = float(norm_type) |
|
|
|
|
|
if len(parameters) == 0: |
|
|
return torch.tensor(0.) |
|
|
|
|
|
device = parameters[0].grad.device |
|
|
|
|
|
total_norm = torch.norm(torch.stack( |
|
|
[torch.norm(p.grad.detach(), norm_type).to(device) for p in |
|
|
parameters]), norm_type) |
|
|
|
|
|
return total_norm |
|
|
|
|
|
|
|
|
def write_xyz_file(coords, atom_types, filename): |
|
|
out = f"{len(coords)}\n\n" |
|
|
assert len(coords) == len(atom_types) |
|
|
for i in range(len(coords)): |
|
|
out += f"{atom_types[i]} {coords[i, 0]:.3f} {coords[i, 1]:.3f} {coords[i, 2]:.3f}\n" |
|
|
with open(filename, 'w') as f: |
|
|
f.write(out) |
|
|
|
|
|
|
|
|
def write_sdf_file(sdf_path, molecules, catch_errors=True, connected=False): |
|
|
with Chem.SDWriter(str(sdf_path)) as w: |
|
|
for mol in molecules: |
|
|
try: |
|
|
if mol is None: |
|
|
raise ValueError("Mol is None.") |
|
|
w.write(get_largest_connected_component(mol) if connected else mol) |
|
|
|
|
|
except (RuntimeError, ValueError) as e: |
|
|
if not catch_errors: |
|
|
raise e |
|
|
|
|
|
if isinstance(e, (KekulizeException, AtomKekulizeException)): |
|
|
w.SetKekulize(False) |
|
|
w.write(get_largest_connected_component(mol) if connected else mol) |
|
|
w.SetKekulize(True) |
|
|
warnings.warn(f"Mol saved without kekulization.") |
|
|
else: |
|
|
|
|
|
w.write(Chem.Mol()) |
|
|
warnings.warn(f"Erroneous mol replaced with empty dummy.") |
|
|
|
|
|
|
|
|
def get_largest_connected_component(mol): |
|
|
try: |
|
|
frags = Chem.GetMolFrags(mol, asMols=True) |
|
|
newmol = max(frags, key=lambda m: m.GetNumAtoms()) |
|
|
except: |
|
|
newmol = mol |
|
|
return newmol |
|
|
|
|
|
|
|
|
def write_chain(filename, rdmol_chain): |
|
|
with open(filename, 'w') as f: |
|
|
f.write("".join([Chem.MolToXYZBlock(m) for m in rdmol_chain])) |
|
|
|
|
|
|
|
|
def combine_sdfs(sdf_list, out_file): |
|
|
all_content = [] |
|
|
for sdf in sdf_list: |
|
|
with open(sdf, 'r') as f: |
|
|
all_content.append(f.read()) |
|
|
combined_str = '$$$$\n'.join(all_content) |
|
|
with open(out_file, 'w') as f: |
|
|
f.write(combined_str) |
|
|
|
|
|
|
|
|
def batch_to_list(data, batch_mask, keep_order=True): |
|
|
if keep_order: |
|
|
data_list = [data[batch_mask == i] |
|
|
for i in torch.unique(batch_mask, sorted=True)] |
|
|
return data_list |
|
|
|
|
|
|
|
|
idx = torch.argsort(batch_mask) |
|
|
batch_mask = batch_mask[idx] |
|
|
data = data[idx] |
|
|
|
|
|
chunk_sizes = torch.unique(batch_mask, return_counts=True)[1].tolist() |
|
|
return torch.split(data, chunk_sizes) |
|
|
|
|
|
|
|
|
def batch_to_list_for_indices(indices, batch_mask, offsets=None): |
|
|
|
|
|
split = batch_to_list(indices.T, batch_mask) |
|
|
|
|
|
|
|
|
if offsets is None: |
|
|
warnings.warn("Trying to infer index offset from smallest element in " |
|
|
"batch. This might be wrong.") |
|
|
split = [x.T - x.min() for x in split] |
|
|
else: |
|
|
|
|
|
assert len(offsets) == len(split) or indices.numel() == 0 |
|
|
split = [x.T - offset for x, offset in zip(split, offsets)] |
|
|
|
|
|
return split |
|
|
|
|
|
|
|
|
def num_nodes_to_batch_mask(n_samples, num_nodes, device): |
|
|
assert isinstance(num_nodes, int) or len(num_nodes) == n_samples |
|
|
|
|
|
if isinstance(num_nodes, torch.Tensor): |
|
|
num_nodes = num_nodes.to(device) |
|
|
|
|
|
sample_inds = torch.arange(n_samples, device=device) |
|
|
|
|
|
return torch.repeat_interleave(sample_inds, num_nodes) |
|
|
|
|
|
|
|
|
def rdmol_to_nxgraph(rdmol): |
|
|
graph = nx.Graph() |
|
|
for atom in rdmol.GetAtoms(): |
|
|
|
|
|
graph.add_node(atom.GetIdx(), atom_type=atom.GetAtomicNum()) |
|
|
|
|
|
|
|
|
for bond in rdmol.GetBonds(): |
|
|
graph.add_edge(bond.GetBeginAtomIdx(), bond.GetEndAtomIdx()) |
|
|
|
|
|
return graph |
|
|
|
|
|
|
|
|
def calc_rmsd(mol_a, mol_b): |
|
|
""" Calculate RMSD of two molecules with unknown atom correspondence. """ |
|
|
graph_a = rdmol_to_nxgraph(mol_a) |
|
|
graph_b = rdmol_to_nxgraph(mol_b) |
|
|
|
|
|
gm = isomorphism.GraphMatcher( |
|
|
graph_a, graph_b, |
|
|
node_match=lambda na, nb: na['atom_type'] == nb['atom_type']) |
|
|
|
|
|
isomorphisms = list(gm.isomorphisms_iter()) |
|
|
if len(isomorphisms) < 1: |
|
|
return None |
|
|
|
|
|
all_rmsds = [] |
|
|
for mapping in isomorphisms: |
|
|
atom_types_a = [atom.GetAtomicNum() for atom in mol_a.GetAtoms()] |
|
|
atom_types_b = [mol_b.GetAtomWithIdx(mapping[i]).GetAtomicNum() |
|
|
for i in range(mol_b.GetNumAtoms())] |
|
|
assert atom_types_a == atom_types_b |
|
|
|
|
|
conf_a = mol_a.GetConformer() |
|
|
coords_a = np.array([conf_a.GetAtomPosition(i) |
|
|
for i in range(mol_a.GetNumAtoms())]) |
|
|
conf_b = mol_b.GetConformer() |
|
|
coords_b = np.array([conf_b.GetAtomPosition(mapping[i]) |
|
|
for i in range(mol_b.GetNumAtoms())]) |
|
|
|
|
|
diff = coords_a - coords_b |
|
|
rmsd = np.sqrt(np.mean(np.sum(diff * diff, axis=1))) |
|
|
all_rmsds.append(rmsd) |
|
|
|
|
|
if len(isomorphisms) > 1: |
|
|
print("More than one isomorphism found. Returning minimum RMSD.") |
|
|
|
|
|
return min(all_rmsds) |
|
|
|
|
|
|
|
|
def set_deterministic(seed): |
|
|
random.seed(seed) |
|
|
np.random.seed(seed) |
|
|
torch.manual_seed(seed) |
|
|
if torch.cuda.is_available(): |
|
|
torch.cuda.manual_seed_all(seed) |
|
|
|
|
|
torch.backends.cudnn.deterministic = True |
|
|
torch.backends.cudnn.benchmark = False |
|
|
|
|
|
|
|
|
def disable_rdkit_logging(): |
|
|
|
|
|
RDLogger.DisableLog('rdApp.info') |
|
|
RDLogger.DisableLog('rdApp.error') |
|
|
RDLogger.DisableLog('rdApp.warning') |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def dict_to_namespace(input_dict): |
|
|
""" Recursively convert a nested dictionary into a Namespace object. """ |
|
|
if isinstance(input_dict, dict): |
|
|
output_namespace = Namespace() |
|
|
output = output_namespace.__dict__ |
|
|
for key, value in input_dict.items(): |
|
|
output[key] = dict_to_namespace(value) |
|
|
return output_namespace |
|
|
|
|
|
elif isinstance(input_dict, Namespace): |
|
|
|
|
|
return dict_to_namespace(input_dict.__dict__) |
|
|
|
|
|
else: |
|
|
return input_dict |
|
|
|
|
|
|
|
|
def namespace_to_dict(x): |
|
|
""" Recursively convert a nested Namespace object into a dictionary. """ |
|
|
if not (isinstance(x, Namespace) or isinstance(x, dict)): |
|
|
return x |
|
|
|
|
|
if isinstance(x, Namespace): |
|
|
x = vars(x) |
|
|
|
|
|
|
|
|
output = {} |
|
|
for key, value in x.items(): |
|
|
output[key] = namespace_to_dict(value) |
|
|
return output |
|
|
|