import argparse import pickle import sys from pathlib import Path basedir = Path(__file__).resolve().parent.parent.parent sys.path.append(str(basedir)) from src.sbdd_metrics.evaluation import compute_all_metrics_drugflow if __name__ == '__main__': p = argparse.ArgumentParser() p.add_argument('--in_dir', type=Path, required=True, help='Directory with samples') p.add_argument('--out_dir', type=str, required=True, help='Output directory') p.add_argument('--reference_smiles', type=str, default=None, help='Path to the .npy file with reference SMILES (optional)') p.add_argument('--gnina', type=str, default=None, help='Path to the gnina binary file (optional)') p.add_argument('--reduce', type=str, default=None, help='Path to the reduce binary file (optional)') p.add_argument('--n_samples', type=int, default=None, help='Top-N sampels to evaluate (optional)') p.add_argument('--exclude', type=str, nargs='+', default=[], help='Evaluator IDs to exclude') p.add_argument('--job_id', type=int, default=0, help='Job ID') p.add_argument('--n_jobs', type=int, default=1, help='Number of jobs') args = p.parse_args() Path(args.out_dir).mkdir(exist_ok=True, parents=True) if args.job_id == 0 and args.n_jobs == 1: out_detailed_table = Path(args.out_dir, 'metrics_detailed.csv') out_aggregated_table = Path(args.out_dir, 'metrics_aggregated.csv') out_distributions_file = Path(args.out_dir, 'metrics_data.pkl') else: out_detailed_table = Path(args.out_dir, f'metrics_detailed_{args.job_id}.csv') out_aggregated_table = Path(args.out_dir, f'metrics_aggregated_{args.job_id}.csv') out_distributions_file = Path(args.out_dir, f'metrics_data_{args.job_id}.pkl') if out_detailed_table.exists() and out_aggregated_table.exists() and out_distributions_file.exists(): print(f'Data already exist. Terminating') sys.exit(0) print(f'Evaluating: {args.in_dir}') data, detailed, aggregated = compute_all_metrics_drugflow( in_dir=args.in_dir, gnina_path=args.gnina, reduce_path=args.reduce, reference_smiles_path=args.reference_smiles, n_samples=args.n_samples, exclude_evaluators=args.exclude, job_id=args.job_id, n_jobs=args.n_jobs, ) detailed.to_csv(out_detailed_table, index=False) aggregated.to_csv(out_aggregated_table, index=False) with open(Path(out_distributions_file), 'wb') as f: pickle.dump(data, f)