File size: 4,753 Bytes
5facae9 2718df4 9591d0c 9954323 9e99f59 9954323 9e99f59 9954323 9e99f59 416ba18 9e99f59 9954323 416ba18 9954323 416ba18 9954323 416ba18 9954323 9e99f59 9954323 9e99f59 416ba18 9e99f59 9954323 416ba18 9954323 416ba18 9954323 9e99f59 9954323 9e99f59 9954323 9e99f59 9954323 9e99f59 9954323 9e99f59 9954323 9e99f59 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 |
# SPDX-FileCopyrightText: Copyright (c) 2024, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
import numpy as np
import numpy.typing as npt
import matplotlib.pyplot as plt
from matplotlib.patches import Rectangle
from typing import Dict, List, Tuple
COLORS = [
"#003EFF",
"#FF8F00",
"#079700",
"#A123FF",
"#87CEEB",
"#FF5733",
"#C70039",
"#900C3F",
"#581845",
"#11998E",
]
def reformat_for_plotting(
boxes: npt.NDArray[np.float64],
labels: npt.NDArray[np.int_],
scores: npt.NDArray[np.float64],
shape: Tuple[int, int],
num_classes: int,
) -> Tuple[List[npt.NDArray[np.int_]], List[npt.NDArray[np.float64]]]:
"""
Reformat YOLOX predictions for plotting.
- Unnormalizes boxes to original image size.
- Reformats boxes to [xmin, ymin, width, height].
- Converts to list of boxes and scores per class.
Args:
boxes (np.ndarray [N, 4]): Array of bounding boxes in format [xmin, ymin, xmax, ymax].
labels (np.ndarray [N]): Array of labels.
scores (np.ndarray [N]): Array of confidence scores.
shape (tuple [2]): Shape of the image (height, width).
num_classes (int): Number of classes.
Returns:
list[np.ndarray[N]]: List of box bounding boxes per class.
list[np.ndarray[N]]: List of confidence scores per class.
"""
boxes_plot = boxes.copy()
boxes_plot[:, [0, 2]] *= shape[1]
boxes_plot[:, [1, 3]] *= shape[0]
boxes_plot = boxes_plot.astype(int)
boxes_plot[:, 2] -= boxes_plot[:, 0]
boxes_plot[:, 3] -= boxes_plot[:, 1]
boxes_plot = [boxes_plot[labels == c] for c in range(num_classes)]
confs = [scores[labels == c] for c in range(num_classes)]
return boxes_plot, confs
def plot_sample(
img: npt.NDArray[np.uint8],
boxes_list: List[npt.NDArray[np.int_]],
confs_list: List[npt.NDArray[np.float64]],
labels: List[str],
show_text: bool = True,
) -> None:
"""
Plots an image with bounding boxes.
Coordinates are expected in format [x_min, y_min, width, height].
Args:
img (numpy.ndarray): The input image to be plotted.
boxes_list (list[np.ndarray]): List of box bounding boxes per class.
confs_list (list[np.ndarray]): List of confidence scores per class.
labels (list): List of class labels.
show_text (bool, optional): Whether to show the text. Defaults to True.
"""
plt.imshow(img, cmap="gray")
plt.axis(False)
for boxes, confs, col, l in zip(boxes_list, confs_list, COLORS, labels):
for box_idx, box in enumerate(boxes):
# Better display around boundaries
h, w, _ = img.shape
box = np.copy(box)
box[:2] = np.clip(box[:2], 2, max(h, w))
box[2] = min(box[2], w - 2 - box[0])
box[3] = min(box[3], h - 2 - box[1])
rect = Rectangle(
(box[0], box[1]),
box[2],
box[3],
linewidth=2,
facecolor="none",
edgecolor=col,
)
plt.gca().add_patch(rect)
# Add class and index label with proper alignment
if show_text:
plt.text(
box[0], box[1],
f"{l}_{box_idx} conf={confs[box_idx]:.3f}",
color='white',
fontsize=8,
bbox=dict(facecolor=col, alpha=1, edgecolor=col, pad=0, linewidth=2),
verticalalignment='bottom',
horizontalalignment='left'
)
def postprocess_preds_page_element(
preds: Dict[str, npt.NDArray],
thresholds_per_class: Dict[str, float],
class_labels: List[str],
) -> Tuple[npt.NDArray[np.float64], npt.NDArray[np.int_], npt.NDArray[np.float64]]:
"""
Post process predictions for the page element task.
- Applies thresholding
Args:
preds (dict): Predictions. Keys are "scores", "boxes", "labels".
thresholds_per_class (dict): Thresholds per class.
class_labels (list): List of class labels.
Returns:
numpy.ndarray [N x 4]: Array of bounding boxes.
numpy.ndarray [N]: Array of labels.
numpy.ndarray [N]: Array of scores.
"""
boxes = preds["boxes"].cpu().numpy()
labels = preds["labels"].cpu().numpy()
scores = preds["scores"].cpu().numpy()
# Threshold per class
thresholds = np.array(
[thresholds_per_class[class_labels[int(x)]] for x in labels]
)
boxes = boxes[scores > thresholds]
labels = labels[scores > thresholds]
scores = scores[scores > thresholds]
return boxes, labels, scores
|