|
|
from fastapi import FastAPI |
|
|
from fastapi.middleware.cors import CORSMiddleware |
|
|
from pydantic import BaseModel |
|
|
from transformers import AutoTokenizer, AutoModelForCausalLM |
|
|
import torch |
|
|
|
|
|
app = FastAPI() |
|
|
|
|
|
|
|
|
app.add_middleware( |
|
|
CORSMiddleware, |
|
|
allow_origins=["*"], |
|
|
allow_credentials=True, |
|
|
allow_methods=["*"], |
|
|
allow_headers=["*"], |
|
|
) |
|
|
|
|
|
|
|
|
model_name = "openai/gpt-oss-20b" |
|
|
tokenizer = AutoTokenizer.from_pretrained(model_name) |
|
|
model = AutoModelForCausalLM.from_pretrained( |
|
|
model_name, |
|
|
torch_dtype=torch.float16, |
|
|
device_map="auto" |
|
|
) |
|
|
|
|
|
class ChatRequest(BaseModel): |
|
|
message: str |
|
|
|
|
|
@app.post("/chat") |
|
|
async def chat(req: ChatRequest): |
|
|
messages = [{"role": "user", "content": req.message}] |
|
|
inputs = tokenizer.apply_chat_template( |
|
|
messages, |
|
|
add_generation_prompt=True, |
|
|
tokenize=True, |
|
|
return_dict=True, |
|
|
return_tensors="pt", |
|
|
).to(model.device) |
|
|
|
|
|
outputs = model.generate(**inputs, max_new_tokens=100) |
|
|
reply = tokenizer.decode( |
|
|
outputs[0][inputs["input_ids"].shape[-1]:], |
|
|
skip_special_tokens=True |
|
|
) |
|
|
return {"reply": reply} |