Upload folder using huggingface_hub
Browse files- config.json +33 -0
- configuration_internlm.py +135 -0
- generation_config.json +7 -0
- model-00001-of-00002.safetensors +3 -0
- model-00002-of-00002.safetensors +3 -0
- model.safetensors.index.json +178 -0
- modeling_internlm2.py +1239 -0
- special_tokens_map.json +6 -0
- tokenization_internlm.py +240 -0
- tokenizer.model +3 -0
- tokenizer_config.json +41 -0
    	
        config.json
    ADDED
    
    | @@ -0,0 +1,33 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            {
         | 
| 2 | 
            +
              "architectures": [
         | 
| 3 | 
            +
                "InternLM2ForCausalLM"
         | 
| 4 | 
            +
              ],
         | 
| 5 | 
            +
              "auto_map": {
         | 
| 6 | 
            +
                "AutoConfig": "configuration_internlm.InternLMConfig",
         | 
| 7 | 
            +
                "AutoModelForCausalLM": "modeling_internlm2.InternLM2ForCausalLM",
         | 
| 8 | 
            +
                "AutoModel": "modeling_internlm2.InternLM2ForCausalLM"
         | 
| 9 | 
            +
              },
         | 
| 10 | 
            +
              "bias": false,
         | 
| 11 | 
            +
              "bos_token_id": 1,
         | 
| 12 | 
            +
              "eos_token_id": 2,
         | 
| 13 | 
            +
              "hidden_act": "silu",
         | 
| 14 | 
            +
              "hidden_size": 2048,
         | 
| 15 | 
            +
              "initializer_range": 0.02,
         | 
| 16 | 
            +
              "intermediate_size": 5504,
         | 
| 17 | 
            +
              "max_position_embeddings": 1024,
         | 
| 18 | 
            +
              "model_type": "internlm",
         | 
| 19 | 
            +
              "num_attention_heads": 16,
         | 
| 20 | 
            +
              "num_hidden_layers": 24,
         | 
| 21 | 
            +
              "num_key_value_heads": 16,
         | 
| 22 | 
            +
              "pad_token_id": 2,
         | 
| 23 | 
            +
              "rms_norm_eps": 1e-05,
         | 
| 24 | 
            +
              "rotary": {
         | 
| 25 | 
            +
                "base": 10000,
         | 
| 26 | 
            +
                "type": "dynamic"
         | 
| 27 | 
            +
              },
         | 
| 28 | 
            +
              "tie_word_embeddings": false,
         | 
| 29 | 
            +
              "torch_dtype": "bfloat16",
         | 
| 30 | 
            +
              "transformers_version": "4.39.1",
         | 
| 31 | 
            +
              "use_cache": true,
         | 
| 32 | 
            +
              "vocab_size": 32000
         | 
| 33 | 
            +
            }
         | 
    	
        configuration_internlm.py
    ADDED
    
    | @@ -0,0 +1,135 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            # coding=utf-8
         | 
| 2 | 
            +
            # Copyright (c) InternLM. All rights reserved.
         | 
| 3 | 
            +
            #
         | 
| 4 | 
            +
            # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
         | 
| 5 | 
            +
            # and OPT implementations in this library. It has been modified from its
         | 
| 6 | 
            +
            # original forms to accommodate minor architectural differences compared
         | 
| 7 | 
            +
            # to GPT-NeoX and OPT used by the Meta AI team that trained the model.
         | 
| 8 | 
            +
            #
         | 
| 9 | 
            +
            # Licensed under the Apache License, Version 2.0 (the "License");
         | 
| 10 | 
            +
            # you may not use this file except in compliance with the License.
         | 
| 11 | 
            +
            # You may obtain a copy of the License at
         | 
| 12 | 
            +
            #
         | 
| 13 | 
            +
            #     http://www.apache.org/licenses/LICENSE-2.0
         | 
| 14 | 
            +
            #
         | 
| 15 | 
            +
            # Unless required by applicable law or agreed to in writing, software
         | 
| 16 | 
            +
            # distributed under the License is distributed on an "AS IS" BASIS,
         | 
| 17 | 
            +
            # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
         | 
| 18 | 
            +
            # See the License for the specific language governing permissions and
         | 
| 19 | 
            +
            # limitations under the License.
         | 
| 20 | 
            +
            """ InternLM model configuration"""
         | 
| 21 | 
            +
             | 
| 22 | 
            +
            from transformers.configuration_utils import PretrainedConfig
         | 
| 23 | 
            +
            from transformers.utils import logging
         | 
| 24 | 
            +
             | 
| 25 | 
            +
            logger = logging.get_logger(__name__)
         | 
| 26 | 
            +
             | 
| 27 | 
            +
            INTERNLM_PRETRAINED_CONFIG_ARCHIVE_MAP = {}
         | 
| 28 | 
            +
             | 
| 29 | 
            +
             | 
| 30 | 
            +
            class InternLMConfig(PretrainedConfig):
         | 
| 31 | 
            +
                r"""
         | 
| 32 | 
            +
                This is the configuration class to store the configuration of a [`InternLMModel`]. It is used to instantiate
         | 
| 33 | 
            +
                an InternLM model according to the specified arguments, defining the model architecture. Instantiating a
         | 
| 34 | 
            +
                configuration with the defaults will yield a similar configuration to that of the InternLM-7B.
         | 
| 35 | 
            +
             | 
| 36 | 
            +
                Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
         | 
| 37 | 
            +
                documentation from [`PretrainedConfig`] for more information.
         | 
| 38 | 
            +
             | 
| 39 | 
            +
             | 
| 40 | 
            +
                Args:
         | 
| 41 | 
            +
                    vocab_size (`int`, *optional*, defaults to 32000):
         | 
| 42 | 
            +
                        Vocabulary size of the InternLM model. Defines the number of different tokens that can be represented by the
         | 
| 43 | 
            +
                        `inputs_ids` passed when calling [`InternLMModel`]
         | 
| 44 | 
            +
                    hidden_size (`int`, *optional*, defaults to 4096):
         | 
| 45 | 
            +
                        Dimension of the hidden representations.
         | 
| 46 | 
            +
                    intermediate_size (`int`, *optional*, defaults to 11008):
         | 
| 47 | 
            +
                        Dimension of the MLP representations.
         | 
| 48 | 
            +
                    num_hidden_layers (`int`, *optional*, defaults to 32):
         | 
| 49 | 
            +
                        Number of hidden layers in the Transformer encoder.
         | 
| 50 | 
            +
                    num_attention_heads (`int`, *optional*, defaults to 32):
         | 
| 51 | 
            +
                        Number of attention heads for each attention layer in the Transformer encoder.
         | 
| 52 | 
            +
                    num_key_value_heads (`int`, *optional*):
         | 
| 53 | 
            +
                        This is the number of key_value heads that should be used to implement Grouped Query Attention. If
         | 
| 54 | 
            +
                        `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
         | 
| 55 | 
            +
                        `num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
         | 
| 56 | 
            +
                        converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
         | 
| 57 | 
            +
                        by meanpooling all the original heads within that group. For more details checkout [this
         | 
| 58 | 
            +
                        paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
         | 
| 59 | 
            +
                        `num_attention_heads`.
         | 
| 60 | 
            +
                    hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
         | 
| 61 | 
            +
                        The non-linear activation function (function or string) in the decoder.
         | 
| 62 | 
            +
                    max_position_embeddings (`int`, *optional*, defaults to 2048):
         | 
| 63 | 
            +
                        The maximum sequence length that this model might ever be used with. Typically set this to something large
         | 
| 64 | 
            +
                        just in case (e.g., 512 or 1024 or 2048).
         | 
| 65 | 
            +
                    initializer_range (`float`, *optional*, defaults to 0.02):
         | 
| 66 | 
            +
                        The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
         | 
| 67 | 
            +
                    rms_norm_eps (`float`, *optional*, defaults to 1e-12):
         | 
| 68 | 
            +
                        The epsilon used by the rms normalization layers.
         | 
| 69 | 
            +
                    use_cache (`bool`, *optional*, defaults to `True`):
         | 
| 70 | 
            +
                        Whether or not the model should return the last key/values attentions (not used by all models). Only
         | 
| 71 | 
            +
                        relevant if `config.is_decoder=True`.
         | 
| 72 | 
            +
                    tie_word_embeddings(`bool`, *optional*, defaults to `False`):
         | 
| 73 | 
            +
                        Whether to tie weight embeddings
         | 
| 74 | 
            +
                    Example:
         | 
| 75 | 
            +
             | 
| 76 | 
            +
                ```python
         | 
| 77 | 
            +
                >>> from transformers import InternLMModel, InternLMConfig
         | 
| 78 | 
            +
             | 
| 79 | 
            +
                >>> # Initializing a InternLM internlm-7b style configuration
         | 
| 80 | 
            +
                >>> configuration = InternLMConfig()
         | 
| 81 | 
            +
             | 
| 82 | 
            +
                >>> # Initializing a model from the internlm-7b style configuration
         | 
| 83 | 
            +
                >>> model = InternLMModel(configuration)
         | 
| 84 | 
            +
             | 
| 85 | 
            +
                >>> # Accessing the model configuration
         | 
| 86 | 
            +
                >>> configuration = model.config
         | 
| 87 | 
            +
                ```"""
         | 
| 88 | 
            +
                model_type = "internlm"
         | 
| 89 | 
            +
                _auto_class = "AutoConfig"
         | 
| 90 | 
            +
             | 
| 91 | 
            +
                def __init__(  # pylint: disable=W0102
         | 
| 92 | 
            +
                    self,
         | 
| 93 | 
            +
                    vocab_size=103168,
         | 
| 94 | 
            +
                    hidden_size=4096,
         | 
| 95 | 
            +
                    intermediate_size=11008,
         | 
| 96 | 
            +
                    num_hidden_layers=32,
         | 
| 97 | 
            +
                    num_attention_heads=32,
         | 
| 98 | 
            +
                    num_key_value_heads=None,
         | 
| 99 | 
            +
                    hidden_act="silu",
         | 
| 100 | 
            +
                    max_position_embeddings=2048,
         | 
| 101 | 
            +
                    initializer_range=0.02,
         | 
| 102 | 
            +
                    rms_norm_eps=1e-6,
         | 
| 103 | 
            +
                    use_cache=True,
         | 
| 104 | 
            +
                    pad_token_id=0,
         | 
| 105 | 
            +
                    bos_token_id=1,
         | 
| 106 | 
            +
                    eos_token_id=2,
         | 
| 107 | 
            +
                    tie_word_embeddings=False,
         | 
| 108 | 
            +
                    bias=True,
         | 
| 109 | 
            +
                    rotary={"base": 10000, "type": "dynamic"},  # pylint: disable=W0102
         | 
| 110 | 
            +
                    **kwargs,
         | 
| 111 | 
            +
                ):
         | 
| 112 | 
            +
                    self.vocab_size = vocab_size
         | 
| 113 | 
            +
                    self.max_position_embeddings = max_position_embeddings
         | 
| 114 | 
            +
                    self.hidden_size = hidden_size
         | 
| 115 | 
            +
                    self.intermediate_size = intermediate_size
         | 
| 116 | 
            +
                    self.num_hidden_layers = num_hidden_layers
         | 
| 117 | 
            +
                    self.num_attention_heads = num_attention_heads
         | 
| 118 | 
            +
             | 
| 119 | 
            +
                    if num_key_value_heads is None:
         | 
| 120 | 
            +
                        num_key_value_heads = num_attention_heads
         | 
| 121 | 
            +
                    self.num_key_value_heads = num_key_value_heads
         | 
| 122 | 
            +
             | 
| 123 | 
            +
                    self.hidden_act = hidden_act
         | 
| 124 | 
            +
                    self.initializer_range = initializer_range
         | 
| 125 | 
            +
                    self.rms_norm_eps = rms_norm_eps
         | 
| 126 | 
            +
                    self.use_cache = use_cache
         | 
| 127 | 
            +
                    self.bias = bias
         | 
| 128 | 
            +
                    self.rotary = rotary
         | 
| 129 | 
            +
                    super().__init__(
         | 
| 130 | 
            +
                        pad_token_id=pad_token_id,
         | 
| 131 | 
            +
                        bos_token_id=bos_token_id,
         | 
| 132 | 
            +
                        eos_token_id=eos_token_id,
         | 
| 133 | 
            +
                        tie_word_embeddings=tie_word_embeddings,
         | 
| 134 | 
            +
                        **kwargs,
         | 
| 135 | 
            +
                    )
         | 
    	
        generation_config.json
    ADDED
    
    | @@ -0,0 +1,7 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            {
         | 
| 2 | 
            +
              "_from_model_config": true,
         | 
| 3 | 
            +
              "bos_token_id": 1,
         | 
| 4 | 
            +
              "eos_token_id": 2,
         | 
| 5 | 
            +
              "pad_token_id": 2,
         | 
| 6 | 
            +
              "transformers_version": "4.39.1"
         | 
| 7 | 
            +
            }
         | 
    	
        model-00001-of-00002.safetensors
    ADDED
    
    | @@ -0,0 +1,3 @@ | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            version https://git-lfs.github.com/spec/v1
         | 
| 2 | 
            +
            oid sha256:17c87df70729720b4d42a1cebb93bc650957e602541aa909db06a7a03c82179d
         | 
| 3 | 
            +
            size 1986164896
         | 
    	
        model-00002-of-00002.safetensors
    ADDED
    
    | @@ -0,0 +1,3 @@ | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            version https://git-lfs.github.com/spec/v1
         | 
| 2 | 
            +
            oid sha256:20764cc7153b028b665cdb97fad327199bc20b3520193b63a3a445dd2344bdd2
         | 
| 3 | 
            +
            size 704700984
         | 
    	
        model.safetensors.index.json
    ADDED
    
    | @@ -0,0 +1,178 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            {
         | 
| 2 | 
            +
              "metadata": {
         | 
| 3 | 
            +
                "total_size": 2690846720
         | 
| 4 | 
            +
              },
         | 
| 5 | 
            +
              "weight_map": {
         | 
| 6 | 
            +
                "model.layers.0.attention.wo.weight": "model-00001-of-00002.safetensors",
         | 
| 7 | 
            +
                "model.layers.0.attention.wqkv.weight": "model-00001-of-00002.safetensors",
         | 
| 8 | 
            +
                "model.layers.0.attention_norm.weight": "model-00001-of-00002.safetensors",
         | 
| 9 | 
            +
                "model.layers.0.feed_forward.w1.weight": "model-00001-of-00002.safetensors",
         | 
| 10 | 
            +
                "model.layers.0.feed_forward.w2.weight": "model-00001-of-00002.safetensors",
         | 
| 11 | 
            +
                "model.layers.0.feed_forward.w3.weight": "model-00001-of-00002.safetensors",
         | 
| 12 | 
            +
                "model.layers.0.ffn_norm.weight": "model-00001-of-00002.safetensors",
         | 
| 13 | 
            +
                "model.layers.1.attention.wo.weight": "model-00001-of-00002.safetensors",
         | 
| 14 | 
            +
                "model.layers.1.attention.wqkv.weight": "model-00001-of-00002.safetensors",
         | 
| 15 | 
            +
                "model.layers.1.attention_norm.weight": "model-00001-of-00002.safetensors",
         | 
| 16 | 
            +
                "model.layers.1.feed_forward.w1.weight": "model-00001-of-00002.safetensors",
         | 
| 17 | 
            +
                "model.layers.1.feed_forward.w2.weight": "model-00001-of-00002.safetensors",
         | 
| 18 | 
            +
                "model.layers.1.feed_forward.w3.weight": "model-00001-of-00002.safetensors",
         | 
| 19 | 
            +
                "model.layers.1.ffn_norm.weight": "model-00001-of-00002.safetensors",
         | 
| 20 | 
            +
                "model.layers.10.attention.wo.weight": "model-00001-of-00002.safetensors",
         | 
| 21 | 
            +
                "model.layers.10.attention.wqkv.weight": "model-00001-of-00002.safetensors",
         | 
| 22 | 
            +
                "model.layers.10.attention_norm.weight": "model-00001-of-00002.safetensors",
         | 
| 23 | 
            +
                "model.layers.10.feed_forward.w1.weight": "model-00001-of-00002.safetensors",
         | 
| 24 | 
            +
                "model.layers.10.feed_forward.w2.weight": "model-00001-of-00002.safetensors",
         | 
| 25 | 
            +
                "model.layers.10.feed_forward.w3.weight": "model-00001-of-00002.safetensors",
         | 
| 26 | 
            +
                "model.layers.10.ffn_norm.weight": "model-00001-of-00002.safetensors",
         | 
| 27 | 
            +
                "model.layers.11.attention.wo.weight": "model-00001-of-00002.safetensors",
         | 
| 28 | 
            +
                "model.layers.11.attention.wqkv.weight": "model-00001-of-00002.safetensors",
         | 
| 29 | 
            +
                "model.layers.11.attention_norm.weight": "model-00001-of-00002.safetensors",
         | 
| 30 | 
            +
                "model.layers.11.feed_forward.w1.weight": "model-00001-of-00002.safetensors",
         | 
| 31 | 
            +
                "model.layers.11.feed_forward.w2.weight": "model-00001-of-00002.safetensors",
         | 
| 32 | 
            +
                "model.layers.11.feed_forward.w3.weight": "model-00001-of-00002.safetensors",
         | 
| 33 | 
            +
                "model.layers.11.ffn_norm.weight": "model-00001-of-00002.safetensors",
         | 
| 34 | 
            +
                "model.layers.12.attention.wo.weight": "model-00001-of-00002.safetensors",
         | 
| 35 | 
            +
                "model.layers.12.attention.wqkv.weight": "model-00001-of-00002.safetensors",
         | 
| 36 | 
            +
                "model.layers.12.attention_norm.weight": "model-00001-of-00002.safetensors",
         | 
| 37 | 
            +
                "model.layers.12.feed_forward.w1.weight": "model-00001-of-00002.safetensors",
         | 
| 38 | 
            +
                "model.layers.12.feed_forward.w2.weight": "model-00001-of-00002.safetensors",
         | 
| 39 | 
            +
                "model.layers.12.feed_forward.w3.weight": "model-00001-of-00002.safetensors",
         | 
| 40 | 
            +
                "model.layers.12.ffn_norm.weight": "model-00001-of-00002.safetensors",
         | 
| 41 | 
            +
                "model.layers.13.attention.wo.weight": "model-00001-of-00002.safetensors",
         | 
| 42 | 
            +
                "model.layers.13.attention.wqkv.weight": "model-00001-of-00002.safetensors",
         | 
| 43 | 
            +
                "model.layers.13.attention_norm.weight": "model-00001-of-00002.safetensors",
         | 
| 44 | 
            +
                "model.layers.13.feed_forward.w1.weight": "model-00001-of-00002.safetensors",
         | 
| 45 | 
            +
                "model.layers.13.feed_forward.w2.weight": "model-00001-of-00002.safetensors",
         | 
| 46 | 
            +
                "model.layers.13.feed_forward.w3.weight": "model-00001-of-00002.safetensors",
         | 
| 47 | 
            +
                "model.layers.13.ffn_norm.weight": "model-00001-of-00002.safetensors",
         | 
| 48 | 
            +
                "model.layers.14.attention.wo.weight": "model-00001-of-00002.safetensors",
         | 
| 49 | 
            +
                "model.layers.14.attention.wqkv.weight": "model-00001-of-00002.safetensors",
         | 
| 50 | 
            +
                "model.layers.14.attention_norm.weight": "model-00001-of-00002.safetensors",
         | 
| 51 | 
            +
                "model.layers.14.feed_forward.w1.weight": "model-00001-of-00002.safetensors",
         | 
| 52 | 
            +
                "model.layers.14.feed_forward.w2.weight": "model-00001-of-00002.safetensors",
         | 
| 53 | 
            +
                "model.layers.14.feed_forward.w3.weight": "model-00001-of-00002.safetensors",
         | 
| 54 | 
            +
                "model.layers.14.ffn_norm.weight": "model-00001-of-00002.safetensors",
         | 
| 55 | 
            +
                "model.layers.15.attention.wo.weight": "model-00001-of-00002.safetensors",
         | 
| 56 | 
            +
                "model.layers.15.attention.wqkv.weight": "model-00001-of-00002.safetensors",
         | 
| 57 | 
            +
                "model.layers.15.attention_norm.weight": "model-00001-of-00002.safetensors",
         | 
| 58 | 
            +
                "model.layers.15.feed_forward.w1.weight": "model-00001-of-00002.safetensors",
         | 
| 59 | 
            +
                "model.layers.15.feed_forward.w2.weight": "model-00001-of-00002.safetensors",
         | 
| 60 | 
            +
                "model.layers.15.feed_forward.w3.weight": "model-00001-of-00002.safetensors",
         | 
| 61 | 
            +
                "model.layers.15.ffn_norm.weight": "model-00001-of-00002.safetensors",
         | 
| 62 | 
            +
                "model.layers.16.attention.wo.weight": "model-00001-of-00002.safetensors",
         | 
| 63 | 
            +
                "model.layers.16.attention.wqkv.weight": "model-00001-of-00002.safetensors",
         | 
| 64 | 
            +
                "model.layers.16.attention_norm.weight": "model-00001-of-00002.safetensors",
         | 
| 65 | 
            +
                "model.layers.16.feed_forward.w1.weight": "model-00001-of-00002.safetensors",
         | 
| 66 | 
            +
                "model.layers.16.feed_forward.w2.weight": "model-00001-of-00002.safetensors",
         | 
| 67 | 
            +
                "model.layers.16.feed_forward.w3.weight": "model-00001-of-00002.safetensors",
         | 
| 68 | 
            +
                "model.layers.16.ffn_norm.weight": "model-00001-of-00002.safetensors",
         | 
| 69 | 
            +
                "model.layers.17.attention.wo.weight": "model-00001-of-00002.safetensors",
         | 
| 70 | 
            +
                "model.layers.17.attention.wqkv.weight": "model-00001-of-00002.safetensors",
         | 
| 71 | 
            +
                "model.layers.17.attention_norm.weight": "model-00001-of-00002.safetensors",
         | 
| 72 | 
            +
                "model.layers.17.feed_forward.w1.weight": "model-00001-of-00002.safetensors",
         | 
| 73 | 
            +
                "model.layers.17.feed_forward.w2.weight": "model-00001-of-00002.safetensors",
         | 
| 74 | 
            +
                "model.layers.17.feed_forward.w3.weight": "model-00001-of-00002.safetensors",
         | 
| 75 | 
            +
                "model.layers.17.ffn_norm.weight": "model-00001-of-00002.safetensors",
         | 
| 76 | 
            +
                "model.layers.18.attention.wo.weight": "model-00001-of-00002.safetensors",
         | 
| 77 | 
            +
                "model.layers.18.attention.wqkv.weight": "model-00001-of-00002.safetensors",
         | 
| 78 | 
            +
                "model.layers.18.attention_norm.weight": "model-00002-of-00002.safetensors",
         | 
| 79 | 
            +
                "model.layers.18.feed_forward.w1.weight": "model-00002-of-00002.safetensors",
         | 
| 80 | 
            +
                "model.layers.18.feed_forward.w2.weight": "model-00002-of-00002.safetensors",
         | 
| 81 | 
            +
                "model.layers.18.feed_forward.w3.weight": "model-00002-of-00002.safetensors",
         | 
| 82 | 
            +
                "model.layers.18.ffn_norm.weight": "model-00002-of-00002.safetensors",
         | 
| 83 | 
            +
                "model.layers.19.attention.wo.weight": "model-00002-of-00002.safetensors",
         | 
| 84 | 
            +
                "model.layers.19.attention.wqkv.weight": "model-00002-of-00002.safetensors",
         | 
| 85 | 
            +
                "model.layers.19.attention_norm.weight": "model-00002-of-00002.safetensors",
         | 
| 86 | 
            +
                "model.layers.19.feed_forward.w1.weight": "model-00002-of-00002.safetensors",
         | 
| 87 | 
            +
                "model.layers.19.feed_forward.w2.weight": "model-00002-of-00002.safetensors",
         | 
| 88 | 
            +
                "model.layers.19.feed_forward.w3.weight": "model-00002-of-00002.safetensors",
         | 
| 89 | 
            +
                "model.layers.19.ffn_norm.weight": "model-00002-of-00002.safetensors",
         | 
| 90 | 
            +
                "model.layers.2.attention.wo.weight": "model-00001-of-00002.safetensors",
         | 
| 91 | 
            +
                "model.layers.2.attention.wqkv.weight": "model-00001-of-00002.safetensors",
         | 
| 92 | 
            +
                "model.layers.2.attention_norm.weight": "model-00001-of-00002.safetensors",
         | 
| 93 | 
            +
                "model.layers.2.feed_forward.w1.weight": "model-00001-of-00002.safetensors",
         | 
| 94 | 
            +
                "model.layers.2.feed_forward.w2.weight": "model-00001-of-00002.safetensors",
         | 
| 95 | 
            +
                "model.layers.2.feed_forward.w3.weight": "model-00001-of-00002.safetensors",
         | 
| 96 | 
            +
                "model.layers.2.ffn_norm.weight": "model-00001-of-00002.safetensors",
         | 
| 97 | 
            +
                "model.layers.20.attention.wo.weight": "model-00002-of-00002.safetensors",
         | 
| 98 | 
            +
                "model.layers.20.attention.wqkv.weight": "model-00002-of-00002.safetensors",
         | 
| 99 | 
            +
                "model.layers.20.attention_norm.weight": "model-00002-of-00002.safetensors",
         | 
| 100 | 
            +
                "model.layers.20.feed_forward.w1.weight": "model-00002-of-00002.safetensors",
         | 
| 101 | 
            +
                "model.layers.20.feed_forward.w2.weight": "model-00002-of-00002.safetensors",
         | 
| 102 | 
            +
                "model.layers.20.feed_forward.w3.weight": "model-00002-of-00002.safetensors",
         | 
| 103 | 
            +
                "model.layers.20.ffn_norm.weight": "model-00002-of-00002.safetensors",
         | 
| 104 | 
            +
                "model.layers.21.attention.wo.weight": "model-00002-of-00002.safetensors",
         | 
| 105 | 
            +
                "model.layers.21.attention.wqkv.weight": "model-00002-of-00002.safetensors",
         | 
| 106 | 
            +
                "model.layers.21.attention_norm.weight": "model-00002-of-00002.safetensors",
         | 
| 107 | 
            +
                "model.layers.21.feed_forward.w1.weight": "model-00002-of-00002.safetensors",
         | 
| 108 | 
            +
                "model.layers.21.feed_forward.w2.weight": "model-00002-of-00002.safetensors",
         | 
| 109 | 
            +
                "model.layers.21.feed_forward.w3.weight": "model-00002-of-00002.safetensors",
         | 
| 110 | 
            +
                "model.layers.21.ffn_norm.weight": "model-00002-of-00002.safetensors",
         | 
| 111 | 
            +
                "model.layers.22.attention.wo.weight": "model-00002-of-00002.safetensors",
         | 
| 112 | 
            +
                "model.layers.22.attention.wqkv.weight": "model-00002-of-00002.safetensors",
         | 
| 113 | 
            +
                "model.layers.22.attention_norm.weight": "model-00002-of-00002.safetensors",
         | 
| 114 | 
            +
                "model.layers.22.feed_forward.w1.weight": "model-00002-of-00002.safetensors",
         | 
| 115 | 
            +
                "model.layers.22.feed_forward.w2.weight": "model-00002-of-00002.safetensors",
         | 
| 116 | 
            +
                "model.layers.22.feed_forward.w3.weight": "model-00002-of-00002.safetensors",
         | 
| 117 | 
            +
                "model.layers.22.ffn_norm.weight": "model-00002-of-00002.safetensors",
         | 
| 118 | 
            +
                "model.layers.23.attention.wo.weight": "model-00002-of-00002.safetensors",
         | 
| 119 | 
            +
                "model.layers.23.attention.wqkv.weight": "model-00002-of-00002.safetensors",
         | 
| 120 | 
            +
                "model.layers.23.attention_norm.weight": "model-00002-of-00002.safetensors",
         | 
| 121 | 
            +
                "model.layers.23.feed_forward.w1.weight": "model-00002-of-00002.safetensors",
         | 
| 122 | 
            +
                "model.layers.23.feed_forward.w2.weight": "model-00002-of-00002.safetensors",
         | 
| 123 | 
            +
                "model.layers.23.feed_forward.w3.weight": "model-00002-of-00002.safetensors",
         | 
| 124 | 
            +
                "model.layers.23.ffn_norm.weight": "model-00002-of-00002.safetensors",
         | 
| 125 | 
            +
                "model.layers.3.attention.wo.weight": "model-00001-of-00002.safetensors",
         | 
| 126 | 
            +
                "model.layers.3.attention.wqkv.weight": "model-00001-of-00002.safetensors",
         | 
| 127 | 
            +
                "model.layers.3.attention_norm.weight": "model-00001-of-00002.safetensors",
         | 
| 128 | 
            +
                "model.layers.3.feed_forward.w1.weight": "model-00001-of-00002.safetensors",
         | 
| 129 | 
            +
                "model.layers.3.feed_forward.w2.weight": "model-00001-of-00002.safetensors",
         | 
| 130 | 
            +
                "model.layers.3.feed_forward.w3.weight": "model-00001-of-00002.safetensors",
         | 
| 131 | 
            +
                "model.layers.3.ffn_norm.weight": "model-00001-of-00002.safetensors",
         | 
| 132 | 
            +
                "model.layers.4.attention.wo.weight": "model-00001-of-00002.safetensors",
         | 
| 133 | 
            +
                "model.layers.4.attention.wqkv.weight": "model-00001-of-00002.safetensors",
         | 
| 134 | 
            +
                "model.layers.4.attention_norm.weight": "model-00001-of-00002.safetensors",
         | 
| 135 | 
            +
                "model.layers.4.feed_forward.w1.weight": "model-00001-of-00002.safetensors",
         | 
| 136 | 
            +
                "model.layers.4.feed_forward.w2.weight": "model-00001-of-00002.safetensors",
         | 
| 137 | 
            +
                "model.layers.4.feed_forward.w3.weight": "model-00001-of-00002.safetensors",
         | 
| 138 | 
            +
                "model.layers.4.ffn_norm.weight": "model-00001-of-00002.safetensors",
         | 
| 139 | 
            +
                "model.layers.5.attention.wo.weight": "model-00001-of-00002.safetensors",
         | 
| 140 | 
            +
                "model.layers.5.attention.wqkv.weight": "model-00001-of-00002.safetensors",
         | 
| 141 | 
            +
                "model.layers.5.attention_norm.weight": "model-00001-of-00002.safetensors",
         | 
| 142 | 
            +
                "model.layers.5.feed_forward.w1.weight": "model-00001-of-00002.safetensors",
         | 
| 143 | 
            +
                "model.layers.5.feed_forward.w2.weight": "model-00001-of-00002.safetensors",
         | 
| 144 | 
            +
                "model.layers.5.feed_forward.w3.weight": "model-00001-of-00002.safetensors",
         | 
| 145 | 
            +
                "model.layers.5.ffn_norm.weight": "model-00001-of-00002.safetensors",
         | 
| 146 | 
            +
                "model.layers.6.attention.wo.weight": "model-00001-of-00002.safetensors",
         | 
| 147 | 
            +
                "model.layers.6.attention.wqkv.weight": "model-00001-of-00002.safetensors",
         | 
| 148 | 
            +
                "model.layers.6.attention_norm.weight": "model-00001-of-00002.safetensors",
         | 
| 149 | 
            +
                "model.layers.6.feed_forward.w1.weight": "model-00001-of-00002.safetensors",
         | 
| 150 | 
            +
                "model.layers.6.feed_forward.w2.weight": "model-00001-of-00002.safetensors",
         | 
| 151 | 
            +
                "model.layers.6.feed_forward.w3.weight": "model-00001-of-00002.safetensors",
         | 
| 152 | 
            +
                "model.layers.6.ffn_norm.weight": "model-00001-of-00002.safetensors",
         | 
| 153 | 
            +
                "model.layers.7.attention.wo.weight": "model-00001-of-00002.safetensors",
         | 
| 154 | 
            +
                "model.layers.7.attention.wqkv.weight": "model-00001-of-00002.safetensors",
         | 
| 155 | 
            +
                "model.layers.7.attention_norm.weight": "model-00001-of-00002.safetensors",
         | 
| 156 | 
            +
                "model.layers.7.feed_forward.w1.weight": "model-00001-of-00002.safetensors",
         | 
| 157 | 
            +
                "model.layers.7.feed_forward.w2.weight": "model-00001-of-00002.safetensors",
         | 
| 158 | 
            +
                "model.layers.7.feed_forward.w3.weight": "model-00001-of-00002.safetensors",
         | 
| 159 | 
            +
                "model.layers.7.ffn_norm.weight": "model-00001-of-00002.safetensors",
         | 
| 160 | 
            +
                "model.layers.8.attention.wo.weight": "model-00001-of-00002.safetensors",
         | 
| 161 | 
            +
                "model.layers.8.attention.wqkv.weight": "model-00001-of-00002.safetensors",
         | 
| 162 | 
            +
                "model.layers.8.attention_norm.weight": "model-00001-of-00002.safetensors",
         | 
| 163 | 
            +
                "model.layers.8.feed_forward.w1.weight": "model-00001-of-00002.safetensors",
         | 
| 164 | 
            +
                "model.layers.8.feed_forward.w2.weight": "model-00001-of-00002.safetensors",
         | 
| 165 | 
            +
                "model.layers.8.feed_forward.w3.weight": "model-00001-of-00002.safetensors",
         | 
| 166 | 
            +
                "model.layers.8.ffn_norm.weight": "model-00001-of-00002.safetensors",
         | 
| 167 | 
            +
                "model.layers.9.attention.wo.weight": "model-00001-of-00002.safetensors",
         | 
| 168 | 
            +
                "model.layers.9.attention.wqkv.weight": "model-00001-of-00002.safetensors",
         | 
| 169 | 
            +
                "model.layers.9.attention_norm.weight": "model-00001-of-00002.safetensors",
         | 
| 170 | 
            +
                "model.layers.9.feed_forward.w1.weight": "model-00001-of-00002.safetensors",
         | 
| 171 | 
            +
                "model.layers.9.feed_forward.w2.weight": "model-00001-of-00002.safetensors",
         | 
| 172 | 
            +
                "model.layers.9.feed_forward.w3.weight": "model-00001-of-00002.safetensors",
         | 
| 173 | 
            +
                "model.layers.9.ffn_norm.weight": "model-00001-of-00002.safetensors",
         | 
| 174 | 
            +
                "model.norm.weight": "model-00002-of-00002.safetensors",
         | 
| 175 | 
            +
                "model.tok_embeddings.weight": "model-00001-of-00002.safetensors",
         | 
| 176 | 
            +
                "output.weight": "model-00002-of-00002.safetensors"
         | 
| 177 | 
            +
              }
         | 
| 178 | 
            +
            }
         | 
    	
        modeling_internlm2.py
    ADDED
    
    | @@ -0,0 +1,1239 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            # coding=utf-8
         | 
| 2 | 
            +
            # # Copyright (c) InternLM. All rights reserved.
         | 
| 3 | 
            +
            #
         | 
| 4 | 
            +
            # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
         | 
| 5 | 
            +
            # and OPT implementations in this library. It has been modified from its
         | 
| 6 | 
            +
            # original forms to accommodate minor architectural differences compared
         | 
| 7 | 
            +
            # to GPT-NeoX and OPT used by the Meta AI team that trained the model.
         | 
| 8 | 
            +
            #
         | 
| 9 | 
            +
            # Licensed under the Apache License, Version 2.0 (the "License");
         | 
| 10 | 
            +
            # you may not use this file except in compliance with the License.
         | 
| 11 | 
            +
            # You may obtain a copy of the License at
         | 
| 12 | 
            +
            #
         | 
| 13 | 
            +
            #     http://www.apache.org/licenses/LICENSE-2.0
         | 
| 14 | 
            +
            #
         | 
| 15 | 
            +
            # Unless required by applicable law or agreed to in writing, software
         | 
| 16 | 
            +
            # distributed under the License is distributed on an "AS IS" BASIS,
         | 
| 17 | 
            +
            # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
         | 
| 18 | 
            +
            # See the License for the specific language governing permissions and
         | 
| 19 | 
            +
            # limitations under the License.
         | 
| 20 | 
            +
            """ PyTorch InternLM2 model."""
         | 
| 21 | 
            +
            import math
         | 
| 22 | 
            +
            import queue
         | 
| 23 | 
            +
            import threading
         | 
| 24 | 
            +
            import warnings
         | 
| 25 | 
            +
            from typing import List, Optional, Tuple, Union
         | 
| 26 | 
            +
             | 
| 27 | 
            +
            import torch
         | 
| 28 | 
            +
            import torch.utils.checkpoint
         | 
| 29 | 
            +
            from einops import rearrange
         | 
| 30 | 
            +
            from torch import nn
         | 
| 31 | 
            +
            from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
         | 
| 32 | 
            +
            from transformers.activations import ACT2FN
         | 
| 33 | 
            +
            from transformers.modeling_outputs import (
         | 
| 34 | 
            +
                BaseModelOutputWithPast,
         | 
| 35 | 
            +
                CausalLMOutputWithPast,
         | 
| 36 | 
            +
                SequenceClassifierOutputWithPast,
         | 
| 37 | 
            +
            )
         | 
| 38 | 
            +
            from transformers.modeling_utils import PreTrainedModel
         | 
| 39 | 
            +
            from transformers.utils import (
         | 
| 40 | 
            +
                add_start_docstrings,
         | 
| 41 | 
            +
                add_start_docstrings_to_model_forward,
         | 
| 42 | 
            +
                logging,
         | 
| 43 | 
            +
                replace_return_docstrings,
         | 
| 44 | 
            +
            )
         | 
| 45 | 
            +
             | 
| 46 | 
            +
            try:
         | 
| 47 | 
            +
                from transformers.generation.streamers import BaseStreamer
         | 
| 48 | 
            +
            except:  # noqa # pylint: disable=bare-except
         | 
| 49 | 
            +
                BaseStreamer = None
         | 
| 50 | 
            +
             | 
| 51 | 
            +
            from .configuration_internlm import InternLMConfig as InternLM2Config
         | 
| 52 | 
            +
             | 
| 53 | 
            +
            logger = logging.get_logger(__name__)
         | 
| 54 | 
            +
             | 
| 55 | 
            +
            _CONFIG_FOR_DOC = "InternLM2Config"
         | 
| 56 | 
            +
             | 
| 57 | 
            +
             | 
| 58 | 
            +
            # Copied from transformers.models.bart.modeling_bart._make_causal_mask
         | 
| 59 | 
            +
            def _make_causal_mask(
         | 
| 60 | 
            +
                input_ids_shape: torch.Size, dtype: torch.dtype, device: torch.device, past_key_values_length: int = 0
         | 
| 61 | 
            +
            ):
         | 
| 62 | 
            +
                """
         | 
| 63 | 
            +
                Make causal mask used for bi-directional self-attention.
         | 
| 64 | 
            +
                """
         | 
| 65 | 
            +
                bsz, tgt_len = input_ids_shape
         | 
| 66 | 
            +
                mask = torch.full((tgt_len, tgt_len), torch.tensor(torch.finfo(dtype).min, device=device), device=device)
         | 
| 67 | 
            +
                mask_cond = torch.arange(mask.size(-1), device=device)
         | 
| 68 | 
            +
                mask.masked_fill_(mask_cond < (mask_cond + 1).view(mask.size(-1), 1), 0)
         | 
| 69 | 
            +
                mask = mask.to(dtype)
         | 
| 70 | 
            +
             | 
| 71 | 
            +
                if past_key_values_length > 0:
         | 
| 72 | 
            +
                    mask = torch.cat([torch.zeros(tgt_len, past_key_values_length, dtype=dtype, device=device), mask], dim=-1)
         | 
| 73 | 
            +
                return mask[None, None, :, :].expand(bsz, 1, tgt_len, tgt_len + past_key_values_length)
         | 
| 74 | 
            +
             | 
| 75 | 
            +
             | 
| 76 | 
            +
            # Copied from transformers.models.bart.modeling_bart._expand_mask
         | 
| 77 | 
            +
            def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None):
         | 
| 78 | 
            +
                """
         | 
| 79 | 
            +
                Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`.
         | 
| 80 | 
            +
                """
         | 
| 81 | 
            +
                bsz, src_len = mask.size()
         | 
| 82 | 
            +
                tgt_len = tgt_len if tgt_len is not None else src_len
         | 
| 83 | 
            +
             | 
| 84 | 
            +
                expanded_mask = mask[:, None, None, :].expand(bsz, 1, tgt_len, src_len).to(dtype)
         | 
| 85 | 
            +
             | 
| 86 | 
            +
                inverted_mask = 1.0 - expanded_mask
         | 
| 87 | 
            +
             | 
| 88 | 
            +
                return inverted_mask.masked_fill(inverted_mask.to(torch.bool), torch.finfo(dtype).min)
         | 
| 89 | 
            +
             | 
| 90 | 
            +
             | 
| 91 | 
            +
            class InternLM2RMSNorm(nn.Module):
         | 
| 92 | 
            +
                def __init__(self, hidden_size, eps=1e-6):
         | 
| 93 | 
            +
                    """
         | 
| 94 | 
            +
                    InternLM2RMSNorm is equivalent to T5LayerNorm
         | 
| 95 | 
            +
                    """
         | 
| 96 | 
            +
                    super().__init__()
         | 
| 97 | 
            +
                    self.weight = nn.Parameter(torch.ones(hidden_size))
         | 
| 98 | 
            +
                    self.variance_epsilon = eps
         | 
| 99 | 
            +
             | 
| 100 | 
            +
                def forward(self, hidden_states):
         | 
| 101 | 
            +
                    input_dtype = hidden_states.dtype
         | 
| 102 | 
            +
                    hidden_states = hidden_states.to(torch.float32)
         | 
| 103 | 
            +
                    variance = hidden_states.pow(2).mean(-1, keepdim=True)
         | 
| 104 | 
            +
                    hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
         | 
| 105 | 
            +
                    return self.weight * hidden_states.to(input_dtype)
         | 
| 106 | 
            +
             | 
| 107 | 
            +
             | 
| 108 | 
            +
            class InternLM2RotaryEmbedding(nn.Module):
         | 
| 109 | 
            +
                def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
         | 
| 110 | 
            +
                    super().__init__()
         | 
| 111 | 
            +
             | 
| 112 | 
            +
                    self.dim = dim
         | 
| 113 | 
            +
                    self.max_position_embeddings = max_position_embeddings
         | 
| 114 | 
            +
                    self.base = base
         | 
| 115 | 
            +
                    inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim))
         | 
| 116 | 
            +
                    self.register_buffer("inv_freq", inv_freq, persistent=False)
         | 
| 117 | 
            +
             | 
| 118 | 
            +
                    # Build here to make `torch.jit.trace` work.
         | 
| 119 | 
            +
                    self._set_cos_sin_cache(
         | 
| 120 | 
            +
                        seq_len=max_position_embeddings, device=self.inv_freq.device, dtype=torch.get_default_dtype()
         | 
| 121 | 
            +
                    )
         | 
| 122 | 
            +
             | 
| 123 | 
            +
                def _set_cos_sin_cache(self, seq_len, device, dtype):
         | 
| 124 | 
            +
                    self.max_seq_len_cached = seq_len
         | 
| 125 | 
            +
                    t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype)
         | 
| 126 | 
            +
             | 
| 127 | 
            +
                    freqs = torch.einsum("i,j->ij", t, self.inv_freq)
         | 
| 128 | 
            +
                    # Different from paper, but it uses a different permutation in order to obtain the same calculation
         | 
| 129 | 
            +
                    emb = torch.cat((freqs, freqs), dim=-1)
         | 
| 130 | 
            +
                    self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
         | 
| 131 | 
            +
                    self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
         | 
| 132 | 
            +
             | 
| 133 | 
            +
                def forward(self, x, seq_len=None):
         | 
| 134 | 
            +
                    # x: [bs, num_attention_heads, seq_len, head_size]
         | 
| 135 | 
            +
                    if seq_len > self.max_seq_len_cached:
         | 
| 136 | 
            +
                        self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=x.dtype)
         | 
| 137 | 
            +
             | 
| 138 | 
            +
                    return (
         | 
| 139 | 
            +
                        self.cos_cached[:seq_len].to(dtype=x.dtype),
         | 
| 140 | 
            +
                        self.sin_cached[:seq_len].to(dtype=x.dtype),
         | 
| 141 | 
            +
                    )
         | 
| 142 | 
            +
             | 
| 143 | 
            +
             | 
| 144 | 
            +
            class InternLM2LinearScalingRotaryEmbedding(InternLM2RotaryEmbedding):
         | 
| 145 | 
            +
                """InternLM2RotaryEmbedding extended with linear scaling. Credits to the Reddit user /u/kaiokendev"""
         | 
| 146 | 
            +
             | 
| 147 | 
            +
                def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0):
         | 
| 148 | 
            +
                    self.scaling_factor = scaling_factor
         | 
| 149 | 
            +
                    super().__init__(dim, max_position_embeddings, base, device)
         | 
| 150 | 
            +
             | 
| 151 | 
            +
                def _set_cos_sin_cache(self, seq_len, device, dtype):
         | 
| 152 | 
            +
                    self.max_seq_len_cached = seq_len
         | 
| 153 | 
            +
                    t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype)
         | 
| 154 | 
            +
                    t = t / self.scaling_factor
         | 
| 155 | 
            +
             | 
| 156 | 
            +
                    freqs = torch.einsum("i,j->ij", t, self.inv_freq)
         | 
| 157 | 
            +
                    # Different from paper, but it uses a different permutation in order to obtain the same calculation
         | 
| 158 | 
            +
                    emb = torch.cat((freqs, freqs), dim=-1)
         | 
| 159 | 
            +
                    self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
         | 
| 160 | 
            +
                    self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
         | 
| 161 | 
            +
             | 
| 162 | 
            +
             | 
| 163 | 
            +
            class InternLM2DynamicNTKScalingRotaryEmbedding(InternLM2RotaryEmbedding):
         | 
| 164 | 
            +
                """InternLM2RotaryEmbedding extended with Dynamic NTK scaling.
         | 
| 165 | 
            +
                Credits to the Reddit users /u/bloc97 and /u/emozilla.
         | 
| 166 | 
            +
                """
         | 
| 167 | 
            +
             | 
| 168 | 
            +
                def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0):
         | 
| 169 | 
            +
                    self.scaling_factor = scaling_factor
         | 
| 170 | 
            +
                    super().__init__(dim, max_position_embeddings, base, device)
         | 
| 171 | 
            +
             | 
| 172 | 
            +
                def _set_cos_sin_cache(self, seq_len, device, dtype):
         | 
| 173 | 
            +
                    self.max_seq_len_cached = seq_len
         | 
| 174 | 
            +
             | 
| 175 | 
            +
                    if seq_len > self.max_position_embeddings:
         | 
| 176 | 
            +
                        base = self.base * (
         | 
| 177 | 
            +
                            (self.scaling_factor * seq_len / self.max_position_embeddings) - (self.scaling_factor - 1)
         | 
| 178 | 
            +
                        ) ** (self.dim / (self.dim - 2))
         | 
| 179 | 
            +
                        inv_freq = 1.0 / (base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim))
         | 
| 180 | 
            +
                        self.register_buffer("inv_freq", inv_freq, persistent=False)
         | 
| 181 | 
            +
             | 
| 182 | 
            +
                    t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype)
         | 
| 183 | 
            +
             | 
| 184 | 
            +
                    freqs = torch.einsum("i,j->ij", t, self.inv_freq)
         | 
| 185 | 
            +
                    # Different from paper, but it uses a different permutation in order to obtain the same calculation
         | 
| 186 | 
            +
                    emb = torch.cat((freqs, freqs), dim=-1)
         | 
| 187 | 
            +
                    self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
         | 
| 188 | 
            +
                    self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
         | 
| 189 | 
            +
             | 
| 190 | 
            +
             | 
| 191 | 
            +
            def rotate_half(x):
         | 
| 192 | 
            +
                """Rotates half the hidden dims of the input."""
         | 
| 193 | 
            +
                x1 = x[..., : x.shape[-1] // 2]
         | 
| 194 | 
            +
                x2 = x[..., x.shape[-1] // 2 :]
         | 
| 195 | 
            +
                return torch.cat((-x2, x1), dim=-1)
         | 
| 196 | 
            +
             | 
| 197 | 
            +
             | 
| 198 | 
            +
            def apply_rotary_pos_emb(q, k, cos, sin, position_ids):
         | 
| 199 | 
            +
                # The first two dimensions of cos and sin are always 1, so we can `squeeze` them.
         | 
| 200 | 
            +
                cos = cos.squeeze(1).squeeze(0)  # [seq_len, dim]
         | 
| 201 | 
            +
                sin = sin.squeeze(1).squeeze(0)  # [seq_len, dim]
         | 
| 202 | 
            +
                cos = cos.unsqueeze(0).unsqueeze(0).expand(len(position_ids), -1, -1, -1)
         | 
| 203 | 
            +
                sin = sin.unsqueeze(0).unsqueeze(0).expand(len(position_ids), -1, -1, -1)
         | 
| 204 | 
            +
                if q.size(2) == 1:
         | 
| 205 | 
            +
                    q_embed = (q * cos[:, :, -1, :]) + (rotate_half(q) * sin[:, :, -1, :])
         | 
| 206 | 
            +
                else:
         | 
| 207 | 
            +
                    q_embed = (q * cos) + (rotate_half(q) * sin)
         | 
| 208 | 
            +
             | 
| 209 | 
            +
                if k.size(2) == 1:
         | 
| 210 | 
            +
                    k_embed = (k * cos[:, :, -1, :]) + (rotate_half(k) * sin[:, :, -1, :])
         | 
| 211 | 
            +
                else:
         | 
| 212 | 
            +
                    k_embed = (k * cos) + (rotate_half(k) * sin)
         | 
| 213 | 
            +
             | 
| 214 | 
            +
                return q_embed, k_embed
         | 
| 215 | 
            +
             | 
| 216 | 
            +
             | 
| 217 | 
            +
            class InternLM2MLP(nn.Module):
         | 
| 218 | 
            +
                def __init__(self, config):
         | 
| 219 | 
            +
                    super().__init__()
         | 
| 220 | 
            +
                    self.config = config
         | 
| 221 | 
            +
                    self.hidden_size = config.hidden_size
         | 
| 222 | 
            +
                    self.intermediate_size = config.intermediate_size
         | 
| 223 | 
            +
                    self.w1 = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
         | 
| 224 | 
            +
                    self.w3 = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
         | 
| 225 | 
            +
                    self.w2 = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
         | 
| 226 | 
            +
                    self.act_fn = ACT2FN[config.hidden_act]
         | 
| 227 | 
            +
             | 
| 228 | 
            +
                def forward(self, x):
         | 
| 229 | 
            +
                    down_proj = self.w2(self.act_fn(self.w1(x)) * self.w3(x))
         | 
| 230 | 
            +
             | 
| 231 | 
            +
                    return down_proj
         | 
| 232 | 
            +
             | 
| 233 | 
            +
             | 
| 234 | 
            +
            def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
         | 
| 235 | 
            +
                """
         | 
| 236 | 
            +
                This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
         | 
| 237 | 
            +
                num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
         | 
| 238 | 
            +
                """
         | 
| 239 | 
            +
                batch, num_key_value_heads, slen, head_dim = hidden_states.shape
         | 
| 240 | 
            +
                if n_rep == 1:
         | 
| 241 | 
            +
                    return hidden_states
         | 
| 242 | 
            +
                hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
         | 
| 243 | 
            +
                return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
         | 
| 244 | 
            +
             | 
| 245 | 
            +
             | 
| 246 | 
            +
            class InternLM2Attention(nn.Module):
         | 
| 247 | 
            +
                """Multi-headed attention from 'Attention Is All You Need' paper"""
         | 
| 248 | 
            +
             | 
| 249 | 
            +
                def __init__(self, config: InternLM2Config):
         | 
| 250 | 
            +
                    super().__init__()
         | 
| 251 | 
            +
                    self.config = config
         | 
| 252 | 
            +
                    self.hidden_size = config.hidden_size
         | 
| 253 | 
            +
                    self.num_heads = config.num_attention_heads
         | 
| 254 | 
            +
                    self.head_dim = self.hidden_size // self.num_heads
         | 
| 255 | 
            +
                    self.num_key_value_heads = config.num_key_value_heads
         | 
| 256 | 
            +
                    self.num_key_value_groups = self.num_heads // self.num_key_value_heads
         | 
| 257 | 
            +
                    self.max_position_embeddings = config.max_position_embeddings
         | 
| 258 | 
            +
                    self.is_causal = True
         | 
| 259 | 
            +
             | 
| 260 | 
            +
                    if (self.head_dim * self.num_heads) != self.hidden_size:
         | 
| 261 | 
            +
                        raise ValueError(
         | 
| 262 | 
            +
                            f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
         | 
| 263 | 
            +
                            f" and `num_heads`: {self.num_heads})."
         | 
| 264 | 
            +
                        )
         | 
| 265 | 
            +
             | 
| 266 | 
            +
                    self.wqkv = nn.Linear(
         | 
| 267 | 
            +
                        self.hidden_size,
         | 
| 268 | 
            +
                        (self.num_heads + 2 * self.num_key_value_heads) * self.head_dim,
         | 
| 269 | 
            +
                        bias=config.bias,
         | 
| 270 | 
            +
                    )
         | 
| 271 | 
            +
             | 
| 272 | 
            +
                    self.wo = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=config.bias)
         | 
| 273 | 
            +
                    self._init_rope()
         | 
| 274 | 
            +
             | 
| 275 | 
            +
                def _init_rope(self):
         | 
| 276 | 
            +
                    if self.config.rotary["type"] == "origin":
         | 
| 277 | 
            +
                        self.rotary_emb = InternLM2RotaryEmbedding(
         | 
| 278 | 
            +
                            self.head_dim,
         | 
| 279 | 
            +
                            max_position_embeddings=self.max_position_embeddings,
         | 
| 280 | 
            +
                            base=self.config.rotary["base"],
         | 
| 281 | 
            +
                        )
         | 
| 282 | 
            +
                    elif self.config.rotary["type"] == "dynamic":
         | 
| 283 | 
            +
                        self.rotary_emb = InternLM2DynamicNTKScalingRotaryEmbedding(
         | 
| 284 | 
            +
                            self.head_dim,
         | 
| 285 | 
            +
                            max_position_embeddings=self.max_position_embeddings,
         | 
| 286 | 
            +
                            base=self.config.rotary["base"],
         | 
| 287 | 
            +
                            scaling_factor=self.config.rotary.get("scaling_factor", 1.0),
         | 
| 288 | 
            +
                        )
         | 
| 289 | 
            +
                    else:
         | 
| 290 | 
            +
                        raise ValueError("Currently we only support rotary embedding's type being one of ('origin', 'dynamic').")
         | 
| 291 | 
            +
                    return self.rotary_emb
         | 
| 292 | 
            +
             | 
| 293 | 
            +
                def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
         | 
| 294 | 
            +
                    return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
         | 
| 295 | 
            +
             | 
| 296 | 
            +
                def forward(
         | 
| 297 | 
            +
                    self,
         | 
| 298 | 
            +
                    hidden_states: torch.Tensor,
         | 
| 299 | 
            +
                    attention_mask: Optional[torch.Tensor] = None,
         | 
| 300 | 
            +
                    position_ids: Optional[torch.LongTensor] = None,
         | 
| 301 | 
            +
                    past_key_value: Optional[Tuple[torch.Tensor]] = None,
         | 
| 302 | 
            +
                    output_attentions: bool = False,
         | 
| 303 | 
            +
                    use_cache: bool = False,
         | 
| 304 | 
            +
                    **kwargs,
         | 
| 305 | 
            +
                ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
         | 
| 306 | 
            +
                    if "padding_mask" in kwargs:
         | 
| 307 | 
            +
                        warnings.warn(
         | 
| 308 | 
            +
                            "Passing `padding_mask` is deprecated and will be removed in v4.37. "
         | 
| 309 | 
            +
                            "Please make sure use `attention_mask` instead.`"
         | 
| 310 | 
            +
                        )
         | 
| 311 | 
            +
             | 
| 312 | 
            +
                    bsz, q_len, _ = hidden_states.size()
         | 
| 313 | 
            +
             | 
| 314 | 
            +
                    qkv_states = self.wqkv(hidden_states)
         | 
| 315 | 
            +
             | 
| 316 | 
            +
                    qkv_states = rearrange(
         | 
| 317 | 
            +
                        qkv_states,
         | 
| 318 | 
            +
                        "b q (h gs d) -> b q h gs d",
         | 
| 319 | 
            +
                        gs=2 + self.num_key_value_groups,
         | 
| 320 | 
            +
                        d=self.head_dim,
         | 
| 321 | 
            +
                    )
         | 
| 322 | 
            +
             | 
| 323 | 
            +
                    query_states = qkv_states[..., : self.num_key_value_groups, :]
         | 
| 324 | 
            +
                    query_states = rearrange(query_states, "b q h gs d -> b q (h gs) d")
         | 
| 325 | 
            +
                    key_states = qkv_states[..., -2, :]
         | 
| 326 | 
            +
                    value_states = qkv_states[..., -1, :]
         | 
| 327 | 
            +
             | 
| 328 | 
            +
                    query_states = query_states.transpose(1, 2)
         | 
| 329 | 
            +
                    key_states = key_states.transpose(1, 2)
         | 
| 330 | 
            +
                    value_states = value_states.transpose(1, 2)
         | 
| 331 | 
            +
             | 
| 332 | 
            +
                    kv_seq_len = key_states.shape[-2]
         | 
| 333 | 
            +
                    if past_key_value is not None:
         | 
| 334 | 
            +
                        kv_seq_len += past_key_value[0].shape[-2]
         | 
| 335 | 
            +
                    cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
         | 
| 336 | 
            +
                    query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
         | 
| 337 | 
            +
             | 
| 338 | 
            +
                    if past_key_value is not None:
         | 
| 339 | 
            +
                        # reuse k, v, self_attention
         | 
| 340 | 
            +
                        key_states = torch.cat([past_key_value[0], key_states], dim=2)
         | 
| 341 | 
            +
                        value_states = torch.cat([past_key_value[1], value_states], dim=2)
         | 
| 342 | 
            +
             | 
| 343 | 
            +
                    past_key_value = (key_states, value_states) if use_cache else None
         | 
| 344 | 
            +
             | 
| 345 | 
            +
                    key_states = repeat_kv(key_states, self.num_key_value_groups)
         | 
| 346 | 
            +
                    value_states = repeat_kv(value_states, self.num_key_value_groups)
         | 
| 347 | 
            +
             | 
| 348 | 
            +
                    attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
         | 
| 349 | 
            +
             | 
| 350 | 
            +
                    if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
         | 
| 351 | 
            +
                        raise ValueError(
         | 
| 352 | 
            +
                            f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is"
         | 
| 353 | 
            +
                            f" {attn_weights.size()}"
         | 
| 354 | 
            +
                        )
         | 
| 355 | 
            +
             | 
| 356 | 
            +
                    if attention_mask is not None:
         | 
| 357 | 
            +
                        if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
         | 
| 358 | 
            +
                            raise ValueError(
         | 
| 359 | 
            +
                                f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
         | 
| 360 | 
            +
                            )
         | 
| 361 | 
            +
                        attn_weights = attn_weights + attention_mask
         | 
| 362 | 
            +
             | 
| 363 | 
            +
                    # upcast attention to fp32
         | 
| 364 | 
            +
                    attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
         | 
| 365 | 
            +
                    attn_output = torch.matmul(attn_weights, value_states)
         | 
| 366 | 
            +
             | 
| 367 | 
            +
                    if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
         | 
| 368 | 
            +
                        raise ValueError(
         | 
| 369 | 
            +
                            f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
         | 
| 370 | 
            +
                            f" {attn_output.size()}"
         | 
| 371 | 
            +
                        )
         | 
| 372 | 
            +
             | 
| 373 | 
            +
                    attn_output = attn_output.transpose(1, 2).contiguous()
         | 
| 374 | 
            +
                    attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
         | 
| 375 | 
            +
             | 
| 376 | 
            +
                    attn_output = self.wo(attn_output)
         | 
| 377 | 
            +
             | 
| 378 | 
            +
                    if not output_attentions:
         | 
| 379 | 
            +
                        attn_weights = None
         | 
| 380 | 
            +
             | 
| 381 | 
            +
                    return attn_output, attn_weights, past_key_value
         | 
| 382 | 
            +
             | 
| 383 | 
            +
             | 
| 384 | 
            +
            class InternLM2FlashAttention2(InternLM2Attention):
         | 
| 385 | 
            +
                """
         | 
| 386 | 
            +
                InternLM2 flash attention module. This module inherits from `InternLM2Attention` as the weights of the module stays
         | 
| 387 | 
            +
                untouched. The only required change would be on the forward pass where it needs to correctly call the public API of
         | 
| 388 | 
            +
                flash attention and deal with padding tokens in case the input contains any of them.
         | 
| 389 | 
            +
                """
         | 
| 390 | 
            +
             | 
| 391 | 
            +
                def forward(
         | 
| 392 | 
            +
                    self,
         | 
| 393 | 
            +
                    hidden_states: torch.Tensor,
         | 
| 394 | 
            +
                    attention_mask: Optional[torch.LongTensor] = None,
         | 
| 395 | 
            +
                    position_ids: Optional[torch.LongTensor] = None,
         | 
| 396 | 
            +
                    past_key_value: Optional[Tuple[torch.Tensor]] = None,
         | 
| 397 | 
            +
                    output_attentions: bool = False,
         | 
| 398 | 
            +
                    use_cache: bool = False,
         | 
| 399 | 
            +
                    **kwargs,
         | 
| 400 | 
            +
                ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
         | 
| 401 | 
            +
                    # InternLM2FlashAttention2 attention does not support output_attentions
         | 
| 402 | 
            +
                    if "padding_mask" in kwargs:
         | 
| 403 | 
            +
                        warnings.warn(
         | 
| 404 | 
            +
                            "Passing `padding_mask` is deprecated and will be removed in v4.37. "
         | 
| 405 | 
            +
                            "Please make sure use `attention_mask` instead.`"
         | 
| 406 | 
            +
                        )
         | 
| 407 | 
            +
             | 
| 408 | 
            +
                        # overwrite attention_mask with padding_mask
         | 
| 409 | 
            +
                        attention_mask = kwargs.pop("padding_mask")
         | 
| 410 | 
            +
             | 
| 411 | 
            +
                    output_attentions = False
         | 
| 412 | 
            +
             | 
| 413 | 
            +
                    bsz, q_len, _ = hidden_states.size()
         | 
| 414 | 
            +
             | 
| 415 | 
            +
                    qkv_states = self.wqkv(hidden_states)
         | 
| 416 | 
            +
             | 
| 417 | 
            +
                    qkv_states = rearrange(
         | 
| 418 | 
            +
                        qkv_states,
         | 
| 419 | 
            +
                        "b q (h gs d) -> b q h gs d",
         | 
| 420 | 
            +
                        gs=self.num_heads + 2 * self.num_key_value_heads,
         | 
| 421 | 
            +
                        d=self.head_dim,
         | 
| 422 | 
            +
                        q=q_len,
         | 
| 423 | 
            +
                    )
         | 
| 424 | 
            +
             | 
| 425 | 
            +
                    query_states = qkv_states[..., : self.num_key_value_groups, :]
         | 
| 426 | 
            +
                    query_states = rearrange(query_states, "b q h gs d -> b q (h gs) d")
         | 
| 427 | 
            +
                    key_states = qkv_states[..., -2, :]
         | 
| 428 | 
            +
                    value_states = qkv_states[..., -1, :]
         | 
| 429 | 
            +
             | 
| 430 | 
            +
                    kv_seq_len = key_states.shape[-2]
         | 
| 431 | 
            +
                    if past_key_value is not None:
         | 
| 432 | 
            +
                        kv_seq_len += past_key_value[0].shape[-2]
         | 
| 433 | 
            +
             | 
| 434 | 
            +
                    cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
         | 
| 435 | 
            +
             | 
| 436 | 
            +
                    query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
         | 
| 437 | 
            +
             | 
| 438 | 
            +
                    if past_key_value is not None:
         | 
| 439 | 
            +
                        # reuse k, v, self_attention
         | 
| 440 | 
            +
                        key_states = torch.cat([past_key_value[0], key_states], dim=2)
         | 
| 441 | 
            +
                        value_states = torch.cat([past_key_value[1], value_states], dim=2)
         | 
| 442 | 
            +
             | 
| 443 | 
            +
                    past_key_value = (key_states, value_states) if use_cache else None
         | 
| 444 | 
            +
             | 
| 445 | 
            +
                    query_states = query_states.transpose(1, 2)
         | 
| 446 | 
            +
                    key_states = key_states.transpose(1, 2)
         | 
| 447 | 
            +
                    value_states = value_states.transpose(1, 2)
         | 
| 448 | 
            +
             | 
| 449 | 
            +
                    dropout_rate = 0.0 if not self.training else self.attention_dropout
         | 
| 450 | 
            +
             | 
| 451 | 
            +
                    # In PEFT, usually we cast the layer norms in float32 for training stability reasons
         | 
| 452 | 
            +
                    # therefore the input hidden states gets silently casted in float32. Hence, we need
         | 
| 453 | 
            +
                    # cast them back in the correct dtype just to be sure everything works as expected.
         | 
| 454 | 
            +
                    # This might slowdown training & inference so it is recommended to not cast the LayerNorms
         | 
| 455 | 
            +
                    # in fp32. (InternLM2RMSNorm handles it correctly)
         | 
| 456 | 
            +
             | 
| 457 | 
            +
                    input_dtype = query_states.dtype
         | 
| 458 | 
            +
                    if input_dtype == torch.float32:
         | 
| 459 | 
            +
                        # Handle the case where the model is quantized
         | 
| 460 | 
            +
                        if hasattr(self.config, "_pre_quantization_dtype"):
         | 
| 461 | 
            +
                            target_dtype = self.config._pre_quantization_dtype
         | 
| 462 | 
            +
                        else:
         | 
| 463 | 
            +
                            target_dtype = self.q_proj.weight.dtype
         | 
| 464 | 
            +
             | 
| 465 | 
            +
                        logger.warning_once(
         | 
| 466 | 
            +
                            f"The input hidden states seems to be silently casted in float32, this might be related to"
         | 
| 467 | 
            +
                            f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back "
         | 
| 468 | 
            +
                            f"the input in {target_dtype}."
         | 
| 469 | 
            +
                        )
         | 
| 470 | 
            +
             | 
| 471 | 
            +
                        query_states = query_states.to(target_dtype)
         | 
| 472 | 
            +
                        key_states = key_states.to(target_dtype)
         | 
| 473 | 
            +
                        value_states = value_states.to(target_dtype)
         | 
| 474 | 
            +
             | 
| 475 | 
            +
                    attn_output = self._flash_attention_forward(
         | 
| 476 | 
            +
                        query_states, key_states, value_states, attention_mask, q_len, dropout=dropout_rate
         | 
| 477 | 
            +
                    )
         | 
| 478 | 
            +
             | 
| 479 | 
            +
                    attn_output = attn_output.reshape(bsz, q_len, self.hidden_size).contiguous()
         | 
| 480 | 
            +
                    attn_output = self.wo(attn_output)
         | 
| 481 | 
            +
             | 
| 482 | 
            +
                    if not output_attentions:
         | 
| 483 | 
            +
                        attn_weights = None
         | 
| 484 | 
            +
             | 
| 485 | 
            +
                    return attn_output, attn_weights, past_key_value
         | 
| 486 | 
            +
             | 
| 487 | 
            +
             | 
| 488 | 
            +
            class InternLM2DecoderLayer(nn.Module):
         | 
| 489 | 
            +
                def __init__(self, config: InternLM2Config):
         | 
| 490 | 
            +
                    super().__init__()
         | 
| 491 | 
            +
                    self.hidden_size = config.hidden_size
         | 
| 492 | 
            +
                    self.attention = (
         | 
| 493 | 
            +
                        InternLM2Attention(config=config)
         | 
| 494 | 
            +
                        if not getattr(config, "_flash_attn_2_enabled", False)
         | 
| 495 | 
            +
                        else InternLM2FlashAttention2(config=config)
         | 
| 496 | 
            +
                    )
         | 
| 497 | 
            +
                    self.feed_forward = InternLM2MLP(config)
         | 
| 498 | 
            +
                    self.attention_norm = InternLM2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
         | 
| 499 | 
            +
                    self.ffn_norm = InternLM2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
         | 
| 500 | 
            +
             | 
| 501 | 
            +
                def forward(
         | 
| 502 | 
            +
                    self,
         | 
| 503 | 
            +
                    hidden_states: torch.Tensor,
         | 
| 504 | 
            +
                    attention_mask: Optional[torch.Tensor] = None,
         | 
| 505 | 
            +
                    position_ids: Optional[torch.LongTensor] = None,
         | 
| 506 | 
            +
                    past_key_value: Optional[Tuple[torch.Tensor]] = None,
         | 
| 507 | 
            +
                    output_attentions: Optional[bool] = False,
         | 
| 508 | 
            +
                    use_cache: Optional[bool] = False,
         | 
| 509 | 
            +
                    **kwargs,
         | 
| 510 | 
            +
                ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
         | 
| 511 | 
            +
                    """
         | 
| 512 | 
            +
                    Args:
         | 
| 513 | 
            +
                        hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
         | 
| 514 | 
            +
                        attention_mask (`torch.FloatTensor`, *optional*):
         | 
| 515 | 
            +
                            attention mask of size `(batch_size, sequence_length)` if flash attention is used or `(batch_size, 1,
         | 
| 516 | 
            +
                            query_sequence_length, key_sequence_length)` if default attention is used.
         | 
| 517 | 
            +
                        output_attentions (`bool`, *optional*):
         | 
| 518 | 
            +
                            Whether or not to return the attentions tensors of all attention layers. See `attentions` under
         | 
| 519 | 
            +
                            returned tensors for more detail.
         | 
| 520 | 
            +
                        use_cache (`bool`, *optional*):
         | 
| 521 | 
            +
                            If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
         | 
| 522 | 
            +
                            (see `past_key_values`).
         | 
| 523 | 
            +
                        past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
         | 
| 524 | 
            +
                    """
         | 
| 525 | 
            +
                    if "padding_mask" in kwargs:
         | 
| 526 | 
            +
                        warnings.warn(
         | 
| 527 | 
            +
                            "Passing `padding_mask` is deprecated and will be removed in v4.37. "
         | 
| 528 | 
            +
                            "Please make sure use `attention_mask` instead.`"
         | 
| 529 | 
            +
                        )
         | 
| 530 | 
            +
             | 
| 531 | 
            +
                    residual = hidden_states
         | 
| 532 | 
            +
             | 
| 533 | 
            +
                    hidden_states = self.attention_norm(hidden_states)
         | 
| 534 | 
            +
             | 
| 535 | 
            +
                    # Self Attention
         | 
| 536 | 
            +
                    hidden_states, self_attn_weights, present_key_value = self.attention(
         | 
| 537 | 
            +
                        hidden_states=hidden_states,
         | 
| 538 | 
            +
                        attention_mask=attention_mask,
         | 
| 539 | 
            +
                        position_ids=position_ids,
         | 
| 540 | 
            +
                        past_key_value=past_key_value,
         | 
| 541 | 
            +
                        output_attentions=output_attentions,
         | 
| 542 | 
            +
                        use_cache=use_cache,
         | 
| 543 | 
            +
                        **kwargs,
         | 
| 544 | 
            +
                    )
         | 
| 545 | 
            +
                    hidden_states = residual + hidden_states
         | 
| 546 | 
            +
             | 
| 547 | 
            +
                    # Fully Connected
         | 
| 548 | 
            +
                    residual = hidden_states
         | 
| 549 | 
            +
                    hidden_states = self.ffn_norm(hidden_states)
         | 
| 550 | 
            +
                    hidden_states = self.feed_forward(hidden_states)
         | 
| 551 | 
            +
                    hidden_states = residual + hidden_states
         | 
| 552 | 
            +
             | 
| 553 | 
            +
                    outputs = (hidden_states,)
         | 
| 554 | 
            +
             | 
| 555 | 
            +
                    if output_attentions:
         | 
| 556 | 
            +
                        outputs += (self_attn_weights,)
         | 
| 557 | 
            +
             | 
| 558 | 
            +
                    if use_cache:
         | 
| 559 | 
            +
                        outputs += (present_key_value,)
         | 
| 560 | 
            +
             | 
| 561 | 
            +
                    return outputs
         | 
| 562 | 
            +
             | 
| 563 | 
            +
             | 
| 564 | 
            +
            InternLM2_START_DOCSTRING = r"""
         | 
| 565 | 
            +
                This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
         | 
| 566 | 
            +
                library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
         | 
| 567 | 
            +
                etc.)
         | 
| 568 | 
            +
                This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
         | 
| 569 | 
            +
                Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
         | 
| 570 | 
            +
                and behavior.
         | 
| 571 | 
            +
                Parameters:
         | 
| 572 | 
            +
                    config ([`InternLM2Config`]):
         | 
| 573 | 
            +
                        Model configuration class with all the parameters of the model. Initializing with a config file does not
         | 
| 574 | 
            +
                        load the weights associated with the model, only the configuration. Check out the
         | 
| 575 | 
            +
                        [`~PreTrainedModel.from_pretrained`] method to load the model weights.
         | 
| 576 | 
            +
            """
         | 
| 577 | 
            +
             | 
| 578 | 
            +
             | 
| 579 | 
            +
            @add_start_docstrings(
         | 
| 580 | 
            +
                "The bare InternLM2 Model outputting raw hidden-states without any specific head on top.",
         | 
| 581 | 
            +
                InternLM2_START_DOCSTRING,
         | 
| 582 | 
            +
            )
         | 
| 583 | 
            +
            class InternLM2PreTrainedModel(PreTrainedModel):
         | 
| 584 | 
            +
                config_class = InternLM2Config
         | 
| 585 | 
            +
                base_model_prefix = "model"
         | 
| 586 | 
            +
                supports_gradient_checkpointing = True
         | 
| 587 | 
            +
                _no_split_modules = ["InternLM2DecoderLayer"]
         | 
| 588 | 
            +
                _skip_keys_device_placement = "past_key_values"
         | 
| 589 | 
            +
                _supports_flash_attn_2 = True
         | 
| 590 | 
            +
             | 
| 591 | 
            +
                def _init_weights(self, module):
         | 
| 592 | 
            +
                    std = self.config.initializer_range
         | 
| 593 | 
            +
                    if isinstance(module, nn.Linear):
         | 
| 594 | 
            +
                        module.weight.data.normal_(mean=0.0, std=std)
         | 
| 595 | 
            +
                        if module.bias is not None:
         | 
| 596 | 
            +
                            module.bias.data.zero_()
         | 
| 597 | 
            +
                    elif isinstance(module, nn.Embedding):
         | 
| 598 | 
            +
                        module.weight.data.normal_(mean=0.0, std=std)
         | 
| 599 | 
            +
                        if module.padding_idx is not None:
         | 
| 600 | 
            +
                            module.weight.data[module.padding_idx].zero_()
         | 
| 601 | 
            +
             | 
| 602 | 
            +
             | 
| 603 | 
            +
            InternLM2_INPUTS_DOCSTRING = r"""
         | 
| 604 | 
            +
                Args:
         | 
| 605 | 
            +
                    input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
         | 
| 606 | 
            +
                        Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
         | 
| 607 | 
            +
                        it.
         | 
| 608 | 
            +
                        Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
         | 
| 609 | 
            +
                        [`PreTrainedTokenizer.__call__`] for details.
         | 
| 610 | 
            +
                        [What are input IDs?](../glossary#input-ids)
         | 
| 611 | 
            +
                    attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
         | 
| 612 | 
            +
                        Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
         | 
| 613 | 
            +
                        - 1 for tokens that are **not masked**,
         | 
| 614 | 
            +
                        - 0 for tokens that are **masked**.
         | 
| 615 | 
            +
                        [What are attention masks?](../glossary#attention-mask)
         | 
| 616 | 
            +
                        Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
         | 
| 617 | 
            +
                        [`PreTrainedTokenizer.__call__`] for details.
         | 
| 618 | 
            +
                        If `past_key_values` is used, optionally only the last `input_ids` have to be input (see
         | 
| 619 | 
            +
                        `past_key_values`).
         | 
| 620 | 
            +
                        If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
         | 
| 621 | 
            +
                        and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
         | 
| 622 | 
            +
                        information on the default strategy.
         | 
| 623 | 
            +
                        - 1 indicates the head is **not masked**,
         | 
| 624 | 
            +
                        - 0 indicates the head is **masked**.
         | 
| 625 | 
            +
                    position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
         | 
| 626 | 
            +
                        Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
         | 
| 627 | 
            +
                        config.n_positions - 1]`.
         | 
| 628 | 
            +
                        [What are position IDs?](../glossary#position-ids)
         | 
| 629 | 
            +
                    past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or
         | 
| 630 | 
            +
                        when `config.use_cache=True`):
         | 
| 631 | 
            +
                        Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
         | 
| 632 | 
            +
                        `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape
         | 
| 633 | 
            +
                        `(batch_size, num_heads, decoder_sequence_length, embed_size_per_head)`.
         | 
| 634 | 
            +
                        Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
         | 
| 635 | 
            +
                        blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
         | 
| 636 | 
            +
                        If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't
         | 
| 637 | 
            +
                        have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids`
         | 
| 638 | 
            +
                        of shape `(batch_size, sequence_length)`.
         | 
| 639 | 
            +
                    inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
         | 
| 640 | 
            +
                        Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
         | 
| 641 | 
            +
                        is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
         | 
| 642 | 
            +
                        model's internal embedding lookup matrix.
         | 
| 643 | 
            +
                    use_cache (`bool`, *optional*):
         | 
| 644 | 
            +
                        If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
         | 
| 645 | 
            +
                        `past_key_values`).
         | 
| 646 | 
            +
                    output_attentions (`bool`, *optional*):
         | 
| 647 | 
            +
                        Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
         | 
| 648 | 
            +
                        tensors for more detail.
         | 
| 649 | 
            +
                    output_hidden_states (`bool`, *optional*):
         | 
| 650 | 
            +
                        Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
         | 
| 651 | 
            +
                        more detail.
         | 
| 652 | 
            +
                    return_dict (`bool`, *optional*):
         | 
| 653 | 
            +
                        Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
         | 
| 654 | 
            +
            """
         | 
| 655 | 
            +
             | 
| 656 | 
            +
             | 
| 657 | 
            +
            @add_start_docstrings(
         | 
| 658 | 
            +
                "The bare InternLM2 Model outputting raw hidden-states without any specific head on top.",
         | 
| 659 | 
            +
                InternLM2_START_DOCSTRING,
         | 
| 660 | 
            +
            )
         | 
| 661 | 
            +
            class InternLM2Model(InternLM2PreTrainedModel):
         | 
| 662 | 
            +
                """
         | 
| 663 | 
            +
                Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`InternLM2DecoderLayer`]
         | 
| 664 | 
            +
                Args:
         | 
| 665 | 
            +
                    config: InternLM2Config
         | 
| 666 | 
            +
                """
         | 
| 667 | 
            +
             | 
| 668 | 
            +
                _auto_class = "AutoModel"
         | 
| 669 | 
            +
             | 
| 670 | 
            +
                def __init__(self, config: InternLM2Config):
         | 
| 671 | 
            +
                    super().__init__(config)
         | 
| 672 | 
            +
                    self.padding_idx = config.pad_token_id
         | 
| 673 | 
            +
                    self.vocab_size = config.vocab_size
         | 
| 674 | 
            +
             | 
| 675 | 
            +
                    self.tok_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
         | 
| 676 | 
            +
                    self.layers = nn.ModuleList([InternLM2DecoderLayer(config) for _ in range(config.num_hidden_layers)])
         | 
| 677 | 
            +
                    self.norm = InternLM2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
         | 
| 678 | 
            +
             | 
| 679 | 
            +
                    self.gradient_checkpointing = False
         | 
| 680 | 
            +
                    # Initialize weights and apply final processing
         | 
| 681 | 
            +
                    self.post_init()
         | 
| 682 | 
            +
             | 
| 683 | 
            +
                def get_input_embeddings(self):
         | 
| 684 | 
            +
                    return self.tok_embeddings
         | 
| 685 | 
            +
             | 
| 686 | 
            +
                def set_input_embeddings(self, value):
         | 
| 687 | 
            +
                    self.tok_embeddings = value
         | 
| 688 | 
            +
             | 
| 689 | 
            +
                # Copied from transformers.models.bart.modeling_bart.BartDecoder._prepare_decoder_attention_mask
         | 
| 690 | 
            +
                def _prepare_decoder_attention_mask(self, attention_mask, input_shape, inputs_embeds, past_key_values_length):
         | 
| 691 | 
            +
                    # create causal mask
         | 
| 692 | 
            +
                    # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
         | 
| 693 | 
            +
                    combined_attention_mask = None
         | 
| 694 | 
            +
                    if input_shape[-1] > 1:
         | 
| 695 | 
            +
                        combined_attention_mask = _make_causal_mask(
         | 
| 696 | 
            +
                            input_shape,
         | 
| 697 | 
            +
                            inputs_embeds.dtype,
         | 
| 698 | 
            +
                            device=inputs_embeds.device,
         | 
| 699 | 
            +
                            past_key_values_length=past_key_values_length,
         | 
| 700 | 
            +
                        )
         | 
| 701 | 
            +
             | 
| 702 | 
            +
                    if attention_mask is not None:
         | 
| 703 | 
            +
                        # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
         | 
| 704 | 
            +
                        expanded_attn_mask = _expand_mask(attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]).to(
         | 
| 705 | 
            +
                            inputs_embeds.device
         | 
| 706 | 
            +
                        )
         | 
| 707 | 
            +
                        combined_attention_mask = (
         | 
| 708 | 
            +
                            expanded_attn_mask if combined_attention_mask is None else expanded_attn_mask + combined_attention_mask
         | 
| 709 | 
            +
                        )
         | 
| 710 | 
            +
             | 
| 711 | 
            +
                    return combined_attention_mask
         | 
| 712 | 
            +
             | 
| 713 | 
            +
                @add_start_docstrings_to_model_forward(InternLM2_INPUTS_DOCSTRING)
         | 
| 714 | 
            +
                def forward(
         | 
| 715 | 
            +
                    self,
         | 
| 716 | 
            +
                    input_ids: torch.LongTensor = None,
         | 
| 717 | 
            +
                    attention_mask: Optional[torch.Tensor] = None,
         | 
| 718 | 
            +
                    position_ids: Optional[torch.LongTensor] = None,
         | 
| 719 | 
            +
                    past_key_values: Optional[List[torch.FloatTensor]] = None,
         | 
| 720 | 
            +
                    inputs_embeds: Optional[torch.FloatTensor] = None,
         | 
| 721 | 
            +
                    use_cache: Optional[bool] = None,
         | 
| 722 | 
            +
                    output_attentions: Optional[bool] = None,
         | 
| 723 | 
            +
                    output_hidden_states: Optional[bool] = None,
         | 
| 724 | 
            +
                    return_dict: Optional[bool] = None,
         | 
| 725 | 
            +
                ) -> Union[Tuple, BaseModelOutputWithPast]:
         | 
| 726 | 
            +
                    output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
         | 
| 727 | 
            +
                    output_hidden_states = (
         | 
| 728 | 
            +
                        output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
         | 
| 729 | 
            +
                    )
         | 
| 730 | 
            +
                    use_cache = use_cache if use_cache is not None else self.config.use_cache
         | 
| 731 | 
            +
             | 
| 732 | 
            +
                    return_dict = return_dict if return_dict is not None else self.config.use_return_dict
         | 
| 733 | 
            +
             | 
| 734 | 
            +
                    # retrieve input_ids and inputs_embeds
         | 
| 735 | 
            +
                    if input_ids is not None and inputs_embeds is not None:
         | 
| 736 | 
            +
                        raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
         | 
| 737 | 
            +
                    elif input_ids is not None:
         | 
| 738 | 
            +
                        batch_size, seq_length = input_ids.shape[:2]
         | 
| 739 | 
            +
                    elif inputs_embeds is not None:
         | 
| 740 | 
            +
                        batch_size, seq_length = inputs_embeds.shape[:2]
         | 
| 741 | 
            +
                    else:
         | 
| 742 | 
            +
                        raise ValueError("You have to specify either input_ids or inputs_embeds")
         | 
| 743 | 
            +
             | 
| 744 | 
            +
                    seq_length_with_past = seq_length
         | 
| 745 | 
            +
                    past_key_values_length = 0
         | 
| 746 | 
            +
                    if past_key_values is not None:
         | 
| 747 | 
            +
                        past_key_values_length = past_key_values[0][0].shape[2]
         | 
| 748 | 
            +
                        seq_length_with_past = seq_length_with_past + past_key_values_length
         | 
| 749 | 
            +
             | 
| 750 | 
            +
                    if position_ids is None:
         | 
| 751 | 
            +
                        device = input_ids.device if input_ids is not None else inputs_embeds.device
         | 
| 752 | 
            +
                        position_ids = torch.arange(
         | 
| 753 | 
            +
                            past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device
         | 
| 754 | 
            +
                        )
         | 
| 755 | 
            +
                        position_ids = position_ids.unsqueeze(0)
         | 
| 756 | 
            +
             | 
| 757 | 
            +
                    if inputs_embeds is None:
         | 
| 758 | 
            +
                        inputs_embeds = self.tok_embeddings(input_ids)
         | 
| 759 | 
            +
                    # embed positions
         | 
| 760 | 
            +
                    if attention_mask is None:
         | 
| 761 | 
            +
                        attention_mask = torch.ones(
         | 
| 762 | 
            +
                            (batch_size, seq_length_with_past), dtype=torch.bool, device=inputs_embeds.device
         | 
| 763 | 
            +
                        )
         | 
| 764 | 
            +
                    attention_mask = self._prepare_decoder_attention_mask(
         | 
| 765 | 
            +
                        attention_mask, (batch_size, seq_length), inputs_embeds, past_key_values_length
         | 
| 766 | 
            +
                    )
         | 
| 767 | 
            +
             | 
| 768 | 
            +
                    # embed positions
         | 
| 769 | 
            +
                    hidden_states = inputs_embeds
         | 
| 770 | 
            +
             | 
| 771 | 
            +
                    if self.gradient_checkpointing and self.training:
         | 
| 772 | 
            +
                        if use_cache:
         | 
| 773 | 
            +
                            logger.warning_once(
         | 
| 774 | 
            +
                                "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
         | 
| 775 | 
            +
                            )
         | 
| 776 | 
            +
                            use_cache = False
         | 
| 777 | 
            +
             | 
| 778 | 
            +
                    # decoder layers
         | 
| 779 | 
            +
                    all_hidden_states = () if output_hidden_states else None
         | 
| 780 | 
            +
                    all_self_attns = () if output_attentions else None
         | 
| 781 | 
            +
                    next_decoder_cache = () if use_cache else None
         | 
| 782 | 
            +
             | 
| 783 | 
            +
                    for idx, decoder_layer in enumerate(self.layers):
         | 
| 784 | 
            +
                        if output_hidden_states:
         | 
| 785 | 
            +
                            all_hidden_states += (hidden_states,)
         | 
| 786 | 
            +
             | 
| 787 | 
            +
                        past_key_value = past_key_values[idx] if past_key_values is not None else None
         | 
| 788 | 
            +
             | 
| 789 | 
            +
                        if self.gradient_checkpointing and self.training:
         | 
| 790 | 
            +
             | 
| 791 | 
            +
                            def create_custom_forward(module):
         | 
| 792 | 
            +
                                def custom_forward(*inputs):
         | 
| 793 | 
            +
                                    # None for past_key_value
         | 
| 794 | 
            +
                                    return module(*inputs, output_attentions, None)
         | 
| 795 | 
            +
             | 
| 796 | 
            +
                                return custom_forward
         | 
| 797 | 
            +
             | 
| 798 | 
            +
                            layer_outputs = torch.utils.checkpoint.checkpoint(
         | 
| 799 | 
            +
                                create_custom_forward(decoder_layer),
         | 
| 800 | 
            +
                                hidden_states,
         | 
| 801 | 
            +
                                attention_mask,
         | 
| 802 | 
            +
                                position_ids,
         | 
| 803 | 
            +
                                None,
         | 
| 804 | 
            +
                            )
         | 
| 805 | 
            +
                        else:
         | 
| 806 | 
            +
                            layer_outputs = decoder_layer(
         | 
| 807 | 
            +
                                hidden_states,
         | 
| 808 | 
            +
                                attention_mask=attention_mask,
         | 
| 809 | 
            +
                                position_ids=position_ids,
         | 
| 810 | 
            +
                                past_key_value=past_key_value,
         | 
| 811 | 
            +
                                output_attentions=output_attentions,
         | 
| 812 | 
            +
                                use_cache=use_cache,
         | 
| 813 | 
            +
                            )
         | 
| 814 | 
            +
             | 
| 815 | 
            +
                        hidden_states = layer_outputs[0]
         | 
| 816 | 
            +
             | 
| 817 | 
            +
                        if use_cache:
         | 
| 818 | 
            +
                            next_decoder_cache += (layer_outputs[2 if output_attentions else 1],)
         | 
| 819 | 
            +
             | 
| 820 | 
            +
                        if output_attentions:
         | 
| 821 | 
            +
                            all_self_attns += (layer_outputs[1],)
         | 
| 822 | 
            +
             | 
| 823 | 
            +
                    hidden_states = self.norm(hidden_states)
         | 
| 824 | 
            +
             | 
| 825 | 
            +
                    # add hidden states from the last decoder layer
         | 
| 826 | 
            +
                    if output_hidden_states:
         | 
| 827 | 
            +
                        all_hidden_states += (hidden_states,)
         | 
| 828 | 
            +
             | 
| 829 | 
            +
                    next_cache = next_decoder_cache if use_cache else None
         | 
| 830 | 
            +
                    if not return_dict:
         | 
| 831 | 
            +
                        return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
         | 
| 832 | 
            +
                    return BaseModelOutputWithPast(
         | 
| 833 | 
            +
                        last_hidden_state=hidden_states,
         | 
| 834 | 
            +
                        past_key_values=next_cache,
         | 
| 835 | 
            +
                        hidden_states=all_hidden_states,
         | 
| 836 | 
            +
                        attentions=all_self_attns,
         | 
| 837 | 
            +
                    )
         | 
| 838 | 
            +
             | 
| 839 | 
            +
             | 
| 840 | 
            +
            class InternLM2ForCausalLM(InternLM2PreTrainedModel):
         | 
| 841 | 
            +
                _auto_class = "AutoModelForCausalLM"
         | 
| 842 | 
            +
             | 
| 843 | 
            +
                _tied_weights_keys = ["output.weight"]
         | 
| 844 | 
            +
             | 
| 845 | 
            +
                def __init__(self, config):
         | 
| 846 | 
            +
                    super().__init__(config)
         | 
| 847 | 
            +
                    self.model = InternLM2Model(config)
         | 
| 848 | 
            +
                    self.vocab_size = config.vocab_size
         | 
| 849 | 
            +
                    self.output = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
         | 
| 850 | 
            +
             | 
| 851 | 
            +
                    # Initialize weights and apply final processing
         | 
| 852 | 
            +
                    self.post_init()
         | 
| 853 | 
            +
             | 
| 854 | 
            +
                def get_input_embeddings(self):
         | 
| 855 | 
            +
                    return self.model.tok_embeddings
         | 
| 856 | 
            +
             | 
| 857 | 
            +
                def set_input_embeddings(self, value):
         | 
| 858 | 
            +
                    self.model.tok_embeddings = value
         | 
| 859 | 
            +
             | 
| 860 | 
            +
                def get_output_embeddings(self):
         | 
| 861 | 
            +
                    return self.output
         | 
| 862 | 
            +
             | 
| 863 | 
            +
                def set_output_embeddings(self, new_embeddings):
         | 
| 864 | 
            +
                    self.output = new_embeddings
         | 
| 865 | 
            +
             | 
| 866 | 
            +
                def set_decoder(self, decoder):
         | 
| 867 | 
            +
                    self.model = decoder
         | 
| 868 | 
            +
             | 
| 869 | 
            +
                def get_decoder(self):
         | 
| 870 | 
            +
                    return self.model
         | 
| 871 | 
            +
             | 
| 872 | 
            +
                @add_start_docstrings_to_model_forward(InternLM2_INPUTS_DOCSTRING)
         | 
| 873 | 
            +
                @replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
         | 
| 874 | 
            +
                def forward(
         | 
| 875 | 
            +
                    self,
         | 
| 876 | 
            +
                    input_ids: torch.LongTensor = None,
         | 
| 877 | 
            +
                    attention_mask: Optional[torch.Tensor] = None,
         | 
| 878 | 
            +
                    position_ids: Optional[torch.LongTensor] = None,
         | 
| 879 | 
            +
                    past_key_values: Optional[List[torch.FloatTensor]] = None,
         | 
| 880 | 
            +
                    inputs_embeds: Optional[torch.FloatTensor] = None,
         | 
| 881 | 
            +
                    labels: Optional[torch.LongTensor] = None,
         | 
| 882 | 
            +
                    use_cache: Optional[bool] = None,
         | 
| 883 | 
            +
                    output_attentions: Optional[bool] = None,
         | 
| 884 | 
            +
                    output_hidden_states: Optional[bool] = None,
         | 
| 885 | 
            +
                    return_dict: Optional[bool] = None,
         | 
| 886 | 
            +
                ) -> Union[Tuple, CausalLMOutputWithPast]:
         | 
| 887 | 
            +
                    r"""
         | 
| 888 | 
            +
                    Args:
         | 
| 889 | 
            +
                        labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
         | 
| 890 | 
            +
                            Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
         | 
| 891 | 
            +
                            config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
         | 
| 892 | 
            +
                            (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
         | 
| 893 | 
            +
                    Returns:
         | 
| 894 | 
            +
                    Example:
         | 
| 895 | 
            +
                    ```python
         | 
| 896 | 
            +
                    >>> from transformers import AutoTokenizer, InternLM2ForCausalLM
         | 
| 897 | 
            +
                    >>> model = InternLM2ForCausalLM.from_pretrained(PATH_TO_CONVERTED_WEIGHTS)
         | 
| 898 | 
            +
                    >>> tokenizer = AutoTokenizer.from_pretrained(PATH_TO_CONVERTED_TOKENIZER)
         | 
| 899 | 
            +
                    >>> prompt = "Hey, are you conscious? Can you talk to me?"
         | 
| 900 | 
            +
                    >>> inputs = tokenizer(prompt, return_tensors="pt")
         | 
| 901 | 
            +
                    >>> # Generate
         | 
| 902 | 
            +
                    >>> generate_ids = model.generate(inputs.input_ids, max_length=30)
         | 
| 903 | 
            +
                    >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
         | 
| 904 | 
            +
                    "Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
         | 
| 905 | 
            +
                    ```"""
         | 
| 906 | 
            +
             | 
| 907 | 
            +
                    output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
         | 
| 908 | 
            +
                    output_hidden_states = (
         | 
| 909 | 
            +
                        output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
         | 
| 910 | 
            +
                    )
         | 
| 911 | 
            +
                    return_dict = return_dict if return_dict is not None else self.config.use_return_dict
         | 
| 912 | 
            +
             | 
| 913 | 
            +
                    # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
         | 
| 914 | 
            +
                    outputs = self.model(
         | 
| 915 | 
            +
                        input_ids=input_ids,
         | 
| 916 | 
            +
                        attention_mask=attention_mask,
         | 
| 917 | 
            +
                        position_ids=position_ids,
         | 
| 918 | 
            +
                        past_key_values=past_key_values,
         | 
| 919 | 
            +
                        inputs_embeds=inputs_embeds,
         | 
| 920 | 
            +
                        use_cache=use_cache,
         | 
| 921 | 
            +
                        output_attentions=output_attentions,
         | 
| 922 | 
            +
                        output_hidden_states=output_hidden_states,
         | 
| 923 | 
            +
                        return_dict=return_dict,
         | 
| 924 | 
            +
                    )
         | 
| 925 | 
            +
             | 
| 926 | 
            +
                    hidden_states = outputs[0]
         | 
| 927 | 
            +
                    logits = self.output(hidden_states)
         | 
| 928 | 
            +
                    logits = logits.float()
         | 
| 929 | 
            +
             | 
| 930 | 
            +
                    loss = None
         | 
| 931 | 
            +
                    if labels is not None:
         | 
| 932 | 
            +
                        # Shift so that tokens < n predict n
         | 
| 933 | 
            +
                        shift_logits = logits[..., :-1, :].contiguous()
         | 
| 934 | 
            +
                        shift_labels = labels[..., 1:].contiguous()
         | 
| 935 | 
            +
                        # Flatten the tokens
         | 
| 936 | 
            +
                        loss_fct = CrossEntropyLoss()
         | 
| 937 | 
            +
                        shift_logits = shift_logits.view(-1, self.config.vocab_size)
         | 
| 938 | 
            +
                        shift_labels = shift_labels.view(-1)
         | 
| 939 | 
            +
                        # Enable model parallelism
         | 
| 940 | 
            +
                        shift_labels = shift_labels.to(shift_logits.device)
         | 
| 941 | 
            +
                        loss = loss_fct(shift_logits, shift_labels)
         | 
| 942 | 
            +
             | 
| 943 | 
            +
                    if not return_dict:
         | 
| 944 | 
            +
                        output = (logits,) + outputs[1:]
         | 
| 945 | 
            +
                        return (loss,) + output if loss is not None else output
         | 
| 946 | 
            +
             | 
| 947 | 
            +
                    return CausalLMOutputWithPast(
         | 
| 948 | 
            +
                        loss=loss,
         | 
| 949 | 
            +
                        logits=logits,
         | 
| 950 | 
            +
                        past_key_values=outputs.past_key_values,
         | 
| 951 | 
            +
                        hidden_states=outputs.hidden_states,
         | 
| 952 | 
            +
                        attentions=outputs.attentions,
         | 
| 953 | 
            +
                    )
         | 
| 954 | 
            +
             | 
| 955 | 
            +
                def prepare_inputs_for_generation(
         | 
| 956 | 
            +
                    self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs
         | 
| 957 | 
            +
                ):
         | 
| 958 | 
            +
                    if past_key_values is not None:
         | 
| 959 | 
            +
                        past_length = past_key_values[0][0].shape[2]
         | 
| 960 | 
            +
             | 
| 961 | 
            +
                        # Some generation methods already pass only the last input ID
         | 
| 962 | 
            +
                        if input_ids.shape[1] > past_length:
         | 
| 963 | 
            +
                            remove_prefix_length = past_length
         | 
| 964 | 
            +
                        else:
         | 
| 965 | 
            +
                            # Default to old behavior: keep only final ID
         | 
| 966 | 
            +
                            remove_prefix_length = input_ids.shape[1] - 1
         | 
| 967 | 
            +
             | 
| 968 | 
            +
                        input_ids = input_ids[:, remove_prefix_length:]
         | 
| 969 | 
            +
             | 
| 970 | 
            +
                    position_ids = kwargs.get("position_ids", None)
         | 
| 971 | 
            +
                    if attention_mask is not None and position_ids is None:
         | 
| 972 | 
            +
                        # create position_ids on the fly for batch generation
         | 
| 973 | 
            +
                        position_ids = attention_mask.long().cumsum(-1) - 1
         | 
| 974 | 
            +
                        position_ids.masked_fill_(attention_mask == 0, 1)
         | 
| 975 | 
            +
                        if past_key_values:
         | 
| 976 | 
            +
                            position_ids = position_ids[:, -input_ids.shape[1] :]
         | 
| 977 | 
            +
             | 
| 978 | 
            +
                    # if `inputs_embeds` are passed, we only want to use them in the 1st generation step
         | 
| 979 | 
            +
                    if inputs_embeds is not None and past_key_values is None:
         | 
| 980 | 
            +
                        model_inputs = {"inputs_embeds": inputs_embeds}
         | 
| 981 | 
            +
                    else:
         | 
| 982 | 
            +
                        model_inputs = {"input_ids": input_ids}
         | 
| 983 | 
            +
             | 
| 984 | 
            +
                    model_inputs.update(
         | 
| 985 | 
            +
                        {
         | 
| 986 | 
            +
                            "position_ids": position_ids,
         | 
| 987 | 
            +
                            "past_key_values": past_key_values,
         | 
| 988 | 
            +
                            "use_cache": kwargs.get("use_cache"),
         | 
| 989 | 
            +
                            "attention_mask": attention_mask,
         | 
| 990 | 
            +
                        }
         | 
| 991 | 
            +
                    )
         | 
| 992 | 
            +
                    return model_inputs
         | 
| 993 | 
            +
             | 
| 994 | 
            +
                @staticmethod
         | 
| 995 | 
            +
                def _reorder_cache(past_key_values, beam_idx):
         | 
| 996 | 
            +
                    reordered_past = ()
         | 
| 997 | 
            +
                    for layer_past in past_key_values:
         | 
| 998 | 
            +
                        reordered_past += (
         | 
| 999 | 
            +
                            tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
         | 
| 1000 | 
            +
                        )
         | 
| 1001 | 
            +
                    return reordered_past
         | 
| 1002 | 
            +
             | 
| 1003 | 
            +
                def build_inputs(self, tokenizer, query: str, history: List[Tuple[str, str]] = []):
         | 
| 1004 | 
            +
                    prompt = ""
         | 
| 1005 | 
            +
                    for record in history:
         | 
| 1006 | 
            +
                        prompt += f"""<|User|>:{record[0]}<eoh>\n<|Bot|>:{record[1]}<eoa>\n"""
         | 
| 1007 | 
            +
                    prompt += f"""<|User|>:{query}<eoh>\n<|Bot|>:"""
         | 
| 1008 | 
            +
                    return tokenizer([prompt], return_tensors="pt")
         | 
| 1009 | 
            +
             | 
| 1010 | 
            +
                @torch.no_grad()
         | 
| 1011 | 
            +
                def chat(
         | 
| 1012 | 
            +
                    self,
         | 
| 1013 | 
            +
                    tokenizer,
         | 
| 1014 | 
            +
                    query: str,
         | 
| 1015 | 
            +
                    history: List[Tuple[str, str]] = [],
         | 
| 1016 | 
            +
                    streamer: Optional[BaseStreamer] = None,
         | 
| 1017 | 
            +
                    max_new_tokens: int = 1024,
         | 
| 1018 | 
            +
                    do_sample: bool = True,
         | 
| 1019 | 
            +
                    temperature: float = 0.8,
         | 
| 1020 | 
            +
                    top_p: float = 0.8,
         | 
| 1021 | 
            +
                    **kwargs,
         | 
| 1022 | 
            +
                ):
         | 
| 1023 | 
            +
                    inputs = self.build_inputs(tokenizer, query, history)
         | 
| 1024 | 
            +
                    inputs = {k: v.to(self.device) for k, v in inputs.items() if torch.is_tensor(v)}
         | 
| 1025 | 
            +
                    outputs = self.generate(
         | 
| 1026 | 
            +
                        **inputs,
         | 
| 1027 | 
            +
                        streamer=streamer,
         | 
| 1028 | 
            +
                        max_new_tokens=max_new_tokens,
         | 
| 1029 | 
            +
                        do_sample=do_sample,
         | 
| 1030 | 
            +
                        temperature=temperature,
         | 
| 1031 | 
            +
                        top_p=top_p,
         | 
| 1032 | 
            +
                        **kwargs,
         | 
| 1033 | 
            +
                    )
         | 
| 1034 | 
            +
                    outputs = outputs[0].cpu().tolist()[len(inputs["input_ids"][0]) :]
         | 
| 1035 | 
            +
                    response = tokenizer.decode(outputs, skip_special_tokens=True)
         | 
| 1036 | 
            +
                    response = response.split("<eoa>")[0]
         | 
| 1037 | 
            +
                    history = history + [(query, response)]
         | 
| 1038 | 
            +
                    return response, history
         | 
| 1039 | 
            +
             | 
| 1040 | 
            +
                @torch.no_grad()
         | 
| 1041 | 
            +
                def stream_chat(
         | 
| 1042 | 
            +
                    self,
         | 
| 1043 | 
            +
                    tokenizer,
         | 
| 1044 | 
            +
                    query: str,
         | 
| 1045 | 
            +
                    history: List[Tuple[str, str]] = [],
         | 
| 1046 | 
            +
                    max_new_tokens: int = 1024,
         | 
| 1047 | 
            +
                    do_sample: bool = True,
         | 
| 1048 | 
            +
                    temperature: float = 0.8,
         | 
| 1049 | 
            +
                    top_p: float = 0.8,
         | 
| 1050 | 
            +
                    **kwargs,
         | 
| 1051 | 
            +
                ):
         | 
| 1052 | 
            +
                    """
         | 
| 1053 | 
            +
                    Return a generator in format: (response, history)
         | 
| 1054 | 
            +
                    Eg.
         | 
| 1055 | 
            +
                    ('你好,有什么可以帮助您的吗', [('你好', '你好,有什么可以帮助您的吗')])
         | 
| 1056 | 
            +
                    ('你好,有什么可以帮助您的吗?', [('你好', '你好,有什么可以帮助您的吗?')])
         | 
| 1057 | 
            +
                    """
         | 
| 1058 | 
            +
                    if BaseStreamer is None:
         | 
| 1059 | 
            +
                        raise ModuleNotFoundError(
         | 
| 1060 | 
            +
                            "The version of `transformers` is too low. Please make sure "
         | 
| 1061 | 
            +
                            "that you have installed `transformers>=4.28.0`."
         | 
| 1062 | 
            +
                        )
         | 
| 1063 | 
            +
             | 
| 1064 | 
            +
                    response_queue = queue.Queue(maxsize=20)
         | 
| 1065 | 
            +
             | 
| 1066 | 
            +
                    class ChatStreamer(BaseStreamer):
         | 
| 1067 | 
            +
                        def __init__(self, tokenizer) -> None:
         | 
| 1068 | 
            +
                            super().__init__()
         | 
| 1069 | 
            +
                            self.tokenizer = tokenizer
         | 
| 1070 | 
            +
                            self.queue = response_queue
         | 
| 1071 | 
            +
                            self.query = query
         | 
| 1072 | 
            +
                            self.history = history
         | 
| 1073 | 
            +
                            self.response = ""
         | 
| 1074 | 
            +
                            self.received_inputs = False
         | 
| 1075 | 
            +
                            self.queue.put((self.response, history + [(self.query, self.response)]))
         | 
| 1076 | 
            +
             | 
| 1077 | 
            +
                        def put(self, value):
         | 
| 1078 | 
            +
                            if len(value.shape) > 1 and value.shape[0] > 1:
         | 
| 1079 | 
            +
                                raise ValueError("ChatStreamer only supports batch size 1")
         | 
| 1080 | 
            +
                            elif len(value.shape) > 1:
         | 
| 1081 | 
            +
                                value = value[0]
         | 
| 1082 | 
            +
             | 
| 1083 | 
            +
                            if not self.received_inputs:
         | 
| 1084 | 
            +
                                # The first received value is input_ids, ignore here
         | 
| 1085 | 
            +
                                self.received_inputs = True
         | 
| 1086 | 
            +
                                return
         | 
| 1087 | 
            +
             | 
| 1088 | 
            +
                            token = self.tokenizer.decode([value[-1]], skip_special_tokens=True)
         | 
| 1089 | 
            +
                            if token.strip() != "<eoa>":
         | 
| 1090 | 
            +
                                self.response = self.response + token
         | 
| 1091 | 
            +
                                history = self.history + [(self.query, self.response)]
         | 
| 1092 | 
            +
                                self.queue.put((self.response, history))
         | 
| 1093 | 
            +
             | 
| 1094 | 
            +
                        def end(self):
         | 
| 1095 | 
            +
                            self.queue.put(None)
         | 
| 1096 | 
            +
             | 
| 1097 | 
            +
                    def stream_producer():
         | 
| 1098 | 
            +
                        return self.chat(
         | 
| 1099 | 
            +
                            tokenizer=tokenizer,
         | 
| 1100 | 
            +
                            query=query,
         | 
| 1101 | 
            +
                            streamer=ChatStreamer(tokenizer=tokenizer),
         | 
| 1102 | 
            +
                            history=history,
         | 
| 1103 | 
            +
                            max_new_tokens=max_new_tokens,
         | 
| 1104 | 
            +
                            do_sample=do_sample,
         | 
| 1105 | 
            +
                            temperature=temperature,
         | 
| 1106 | 
            +
                            top_p=top_p,
         | 
| 1107 | 
            +
                            **kwargs,
         | 
| 1108 | 
            +
                        )
         | 
| 1109 | 
            +
             | 
| 1110 | 
            +
                    def consumer():
         | 
| 1111 | 
            +
                        producer = threading.Thread(target=stream_producer)
         | 
| 1112 | 
            +
                        producer.start()
         | 
| 1113 | 
            +
                        while True:
         | 
| 1114 | 
            +
                            res = response_queue.get()
         | 
| 1115 | 
            +
                            if res is None:
         | 
| 1116 | 
            +
                                return
         | 
| 1117 | 
            +
                            yield res
         | 
| 1118 | 
            +
             | 
| 1119 | 
            +
                    return consumer()
         | 
| 1120 | 
            +
             | 
| 1121 | 
            +
             | 
| 1122 | 
            +
            @add_start_docstrings(
         | 
| 1123 | 
            +
                """
         | 
| 1124 | 
            +
                The InternLM2 Model transformer with a sequence classification head on top (linear layer).
         | 
| 1125 | 
            +
                [`InternLM2ForSequenceClassification`] uses the last token in order to do the classification,
         | 
| 1126 | 
            +
                as other causal models (e.g. GPT-2) do.
         | 
| 1127 | 
            +
                Since it does classification on the last token, it requires to know the position of the last token. If a
         | 
| 1128 | 
            +
                `pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
         | 
| 1129 | 
            +
                no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
         | 
| 1130 | 
            +
                padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
         | 
| 1131 | 
            +
                each row of the batch).
         | 
| 1132 | 
            +
                """,
         | 
| 1133 | 
            +
                InternLM2_START_DOCSTRING,
         | 
| 1134 | 
            +
            )
         | 
| 1135 | 
            +
            class InternLM2ForSequenceClassification(InternLM2PreTrainedModel):
         | 
| 1136 | 
            +
                def __init__(self, config):
         | 
| 1137 | 
            +
                    super().__init__(config)
         | 
| 1138 | 
            +
                    self.num_labels = config.num_labels
         | 
| 1139 | 
            +
                    self.model = InternLM2Model(config)
         | 
| 1140 | 
            +
                    self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)
         | 
| 1141 | 
            +
             | 
| 1142 | 
            +
                    # Initialize weights and apply final processing
         | 
| 1143 | 
            +
                    self.post_init()
         | 
| 1144 | 
            +
             | 
| 1145 | 
            +
                def get_input_embeddings(self):
         | 
| 1146 | 
            +
                    return self.model.tok_embeddings
         | 
| 1147 | 
            +
             | 
| 1148 | 
            +
                def set_input_embeddings(self, value):
         | 
| 1149 | 
            +
                    self.model.tok_embeddings = value
         | 
| 1150 | 
            +
             | 
| 1151 | 
            +
                @add_start_docstrings_to_model_forward(InternLM2_INPUTS_DOCSTRING)
         | 
| 1152 | 
            +
                def forward(
         | 
| 1153 | 
            +
                    self,
         | 
| 1154 | 
            +
                    input_ids: torch.LongTensor = None,
         | 
| 1155 | 
            +
                    attention_mask: Optional[torch.Tensor] = None,
         | 
| 1156 | 
            +
                    position_ids: Optional[torch.LongTensor] = None,
         | 
| 1157 | 
            +
                    past_key_values: Optional[List[torch.FloatTensor]] = None,
         | 
| 1158 | 
            +
                    inputs_embeds: Optional[torch.FloatTensor] = None,
         | 
| 1159 | 
            +
                    labels: Optional[torch.LongTensor] = None,
         | 
| 1160 | 
            +
                    use_cache: Optional[bool] = None,
         | 
| 1161 | 
            +
                    output_attentions: Optional[bool] = None,
         | 
| 1162 | 
            +
                    output_hidden_states: Optional[bool] = None,
         | 
| 1163 | 
            +
                    return_dict: Optional[bool] = None,
         | 
| 1164 | 
            +
                ) -> Union[Tuple, SequenceClassifierOutputWithPast]:
         | 
| 1165 | 
            +
                    r"""
         | 
| 1166 | 
            +
                    labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
         | 
| 1167 | 
            +
                        Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
         | 
| 1168 | 
            +
                        config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
         | 
| 1169 | 
            +
                        `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
         | 
| 1170 | 
            +
                    """
         | 
| 1171 | 
            +
                    return_dict = return_dict if return_dict is not None else self.config.use_return_dict
         | 
| 1172 | 
            +
             | 
| 1173 | 
            +
                    transformer_outputs = self.model(
         | 
| 1174 | 
            +
                        input_ids,
         | 
| 1175 | 
            +
                        attention_mask=attention_mask,
         | 
| 1176 | 
            +
                        position_ids=position_ids,
         | 
| 1177 | 
            +
                        past_key_values=past_key_values,
         | 
| 1178 | 
            +
                        inputs_embeds=inputs_embeds,
         | 
| 1179 | 
            +
                        use_cache=use_cache,
         | 
| 1180 | 
            +
                        output_attentions=output_attentions,
         | 
| 1181 | 
            +
                        output_hidden_states=output_hidden_states,
         | 
| 1182 | 
            +
                        return_dict=return_dict,
         | 
| 1183 | 
            +
                    )
         | 
| 1184 | 
            +
                    hidden_states = transformer_outputs[0]
         | 
| 1185 | 
            +
                    logits = self.score(hidden_states)
         | 
| 1186 | 
            +
             | 
| 1187 | 
            +
                    if input_ids is not None:
         | 
| 1188 | 
            +
                        batch_size = input_ids.shape[0]
         | 
| 1189 | 
            +
                    else:
         | 
| 1190 | 
            +
                        batch_size = inputs_embeds.shape[0]
         | 
| 1191 | 
            +
             | 
| 1192 | 
            +
                    if self.config.pad_token_id is None and batch_size != 1:
         | 
| 1193 | 
            +
                        raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.")
         | 
| 1194 | 
            +
                    if self.config.pad_token_id is None:
         | 
| 1195 | 
            +
                        sequence_lengths = -1
         | 
| 1196 | 
            +
                    else:
         | 
| 1197 | 
            +
                        if input_ids is not None:
         | 
| 1198 | 
            +
                            sequence_lengths = (torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1).to(
         | 
| 1199 | 
            +
                                logits.device
         | 
| 1200 | 
            +
                            )
         | 
| 1201 | 
            +
                        else:
         | 
| 1202 | 
            +
                            sequence_lengths = -1
         | 
| 1203 | 
            +
             | 
| 1204 | 
            +
                    pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths]
         | 
| 1205 | 
            +
             | 
| 1206 | 
            +
                    loss = None
         | 
| 1207 | 
            +
                    if labels is not None:
         | 
| 1208 | 
            +
                        labels = labels.to(logits.device)
         | 
| 1209 | 
            +
                        if self.config.problem_type is None:
         | 
| 1210 | 
            +
                            if self.num_labels == 1:
         | 
| 1211 | 
            +
                                self.config.problem_type = "regression"
         | 
| 1212 | 
            +
                            elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
         | 
| 1213 | 
            +
                                self.config.problem_type = "single_label_classification"
         | 
| 1214 | 
            +
                            else:
         | 
| 1215 | 
            +
                                self.config.problem_type = "multi_label_classification"
         | 
| 1216 | 
            +
             | 
| 1217 | 
            +
                        if self.config.problem_type == "regression":
         | 
| 1218 | 
            +
                            loss_fct = MSELoss()
         | 
| 1219 | 
            +
                            if self.num_labels == 1:
         | 
| 1220 | 
            +
                                loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
         | 
| 1221 | 
            +
                            else:
         | 
| 1222 | 
            +
                                loss = loss_fct(pooled_logits, labels)
         | 
| 1223 | 
            +
                        elif self.config.problem_type == "single_label_classification":
         | 
| 1224 | 
            +
                            loss_fct = CrossEntropyLoss()
         | 
| 1225 | 
            +
                            loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1))
         | 
| 1226 | 
            +
                        elif self.config.problem_type == "multi_label_classification":
         | 
| 1227 | 
            +
                            loss_fct = BCEWithLogitsLoss()
         | 
| 1228 | 
            +
                            loss = loss_fct(pooled_logits, labels)
         | 
| 1229 | 
            +
                    if not return_dict:
         | 
| 1230 | 
            +
                        output = (pooled_logits,) + transformer_outputs[1:]
         | 
| 1231 | 
            +
                        return ((loss,) + output) if loss is not None else output
         | 
| 1232 | 
            +
             | 
| 1233 | 
            +
                    return SequenceClassifierOutputWithPast(
         | 
| 1234 | 
            +
                        loss=loss,
         | 
| 1235 | 
            +
                        logits=pooled_logits,
         | 
| 1236 | 
            +
                        past_key_values=transformer_outputs.past_key_values,
         | 
| 1237 | 
            +
                        hidden_states=transformer_outputs.hidden_states,
         | 
| 1238 | 
            +
                        attentions=transformer_outputs.attentions,
         | 
| 1239 | 
            +
                    )
         | 
    	
        special_tokens_map.json
    ADDED
    
    | @@ -0,0 +1,6 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            {
         | 
| 2 | 
            +
              "bos_token": "<s>",
         | 
| 3 | 
            +
              "eos_token": "</s>",
         | 
| 4 | 
            +
              "pad_token": "</s>",
         | 
| 5 | 
            +
              "unk_token": "<unk>"
         | 
| 6 | 
            +
            }
         | 
    	
        tokenization_internlm.py
    ADDED
    
    | @@ -0,0 +1,240 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            # coding=utf-8
         | 
| 2 | 
            +
            # Copyright (c) InternLM. All rights reserved.
         | 
| 3 | 
            +
            #
         | 
| 4 | 
            +
            # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
         | 
| 5 | 
            +
            # and OPT implementations in this library. It has been modified from its
         | 
| 6 | 
            +
            # original forms to accommodate minor architectural differences compared
         | 
| 7 | 
            +
            # to GPT-NeoX and OPT used by the Meta AI team that trained the model.
         | 
| 8 | 
            +
            #
         | 
| 9 | 
            +
            # Licensed under the Apache License, Version 2.0 (the "License");
         | 
| 10 | 
            +
            # you may not use this file except in compliance with the License.
         | 
| 11 | 
            +
            # You may obtain a copy of the License at
         | 
| 12 | 
            +
            #
         | 
| 13 | 
            +
            #     http://www.apache.org/licenses/LICENSE-2.0
         | 
| 14 | 
            +
            #
         | 
| 15 | 
            +
            # Unless required by applicable law or agreed to in writing, software
         | 
| 16 | 
            +
            # distributed under the License is distributed on an "AS IS" BASIS,
         | 
| 17 | 
            +
            # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
         | 
| 18 | 
            +
            # See the License for the specific language governing permissions and
         | 
| 19 | 
            +
            # limitations under the License.
         | 
| 20 | 
            +
             | 
| 21 | 
            +
            """Tokenization classes for IntermLM."""
         | 
| 22 | 
            +
            import os
         | 
| 23 | 
            +
            from shutil import copyfile
         | 
| 24 | 
            +
            from typing import Any, Dict, List, Optional, Tuple
         | 
| 25 | 
            +
             | 
| 26 | 
            +
            import sentencepiece as spm
         | 
| 27 | 
            +
            from transformers.tokenization_utils import PreTrainedTokenizer
         | 
| 28 | 
            +
            from transformers.utils import logging
         | 
| 29 | 
            +
             | 
| 30 | 
            +
            logger = logging.get_logger(__name__)
         | 
| 31 | 
            +
             | 
| 32 | 
            +
            VOCAB_FILES_NAMES = {"vocab_file": "./tokenizer.model"}
         | 
| 33 | 
            +
             | 
| 34 | 
            +
            PRETRAINED_VOCAB_FILES_MAP = {}
         | 
| 35 | 
            +
             | 
| 36 | 
            +
             | 
| 37 | 
            +
            class InternLMTokenizer(PreTrainedTokenizer):
         | 
| 38 | 
            +
                """
         | 
| 39 | 
            +
                Construct a InternLM tokenizer. Based on byte-level Byte-Pair-Encoding.
         | 
| 40 | 
            +
             | 
| 41 | 
            +
                Args:
         | 
| 42 | 
            +
                    vocab_file (`str`):
         | 
| 43 | 
            +
                        Path to the vocabulary file.
         | 
| 44 | 
            +
                """
         | 
| 45 | 
            +
             | 
| 46 | 
            +
                vocab_files_names = VOCAB_FILES_NAMES
         | 
| 47 | 
            +
                pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
         | 
| 48 | 
            +
                model_input_names = ["input_ids", "attention_mask"]
         | 
| 49 | 
            +
                _auto_class = "AutoTokenizer"
         | 
| 50 | 
            +
             | 
| 51 | 
            +
                def __init__(
         | 
| 52 | 
            +
                    self,
         | 
| 53 | 
            +
                    vocab_file,
         | 
| 54 | 
            +
                    unk_token="<unk>",
         | 
| 55 | 
            +
                    bos_token="<s>",
         | 
| 56 | 
            +
                    eos_token="</s>",
         | 
| 57 | 
            +
                    pad_token="</s>",
         | 
| 58 | 
            +
                    sp_model_kwargs: Optional[Dict[str, Any]] = None,
         | 
| 59 | 
            +
                    add_bos_token=True,
         | 
| 60 | 
            +
                    add_eos_token=False,
         | 
| 61 | 
            +
                    decode_with_prefix_space=False,
         | 
| 62 | 
            +
                    clean_up_tokenization_spaces=False,
         | 
| 63 | 
            +
                    **kwargs,
         | 
| 64 | 
            +
                ):
         | 
| 65 | 
            +
                    self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs
         | 
| 66 | 
            +
                    self.vocab_file = vocab_file
         | 
| 67 | 
            +
                    self.add_bos_token = add_bos_token
         | 
| 68 | 
            +
                    self.add_eos_token = add_eos_token
         | 
| 69 | 
            +
                    self.decode_with_prefix_space = decode_with_prefix_space
         | 
| 70 | 
            +
                    self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
         | 
| 71 | 
            +
                    self.sp_model.Load(vocab_file)
         | 
| 72 | 
            +
                    self._no_prefix_space_tokens = None
         | 
| 73 | 
            +
                    super().__init__(
         | 
| 74 | 
            +
                        bos_token=bos_token,
         | 
| 75 | 
            +
                        eos_token=eos_token,
         | 
| 76 | 
            +
                        unk_token=unk_token,
         | 
| 77 | 
            +
                        pad_token=pad_token,
         | 
| 78 | 
            +
                        clean_up_tokenization_spaces=clean_up_tokenization_spaces,
         | 
| 79 | 
            +
                        **kwargs,
         | 
| 80 | 
            +
                    )
         | 
| 81 | 
            +
             | 
| 82 | 
            +
                    """ Initialization"""
         | 
| 83 | 
            +
             | 
| 84 | 
            +
                @property
         | 
| 85 | 
            +
                def no_prefix_space_tokens(self):
         | 
| 86 | 
            +
                    if self._no_prefix_space_tokens is None:
         | 
| 87 | 
            +
                        vocab = self.convert_ids_to_tokens(list(range(self.vocab_size)))
         | 
| 88 | 
            +
                        self._no_prefix_space_tokens = {i for i, tok in enumerate(vocab) if not tok.startswith("▁")}
         | 
| 89 | 
            +
                    return self._no_prefix_space_tokens
         | 
| 90 | 
            +
             | 
| 91 | 
            +
                @property
         | 
| 92 | 
            +
                def vocab_size(self):
         | 
| 93 | 
            +
                    """Returns vocab size"""
         | 
| 94 | 
            +
                    return self.sp_model.get_piece_size()
         | 
| 95 | 
            +
             | 
| 96 | 
            +
                @property
         | 
| 97 | 
            +
                def bos_token_id(self) -> Optional[int]:
         | 
| 98 | 
            +
                    return self.sp_model.bos_id()
         | 
| 99 | 
            +
             | 
| 100 | 
            +
                @property
         | 
| 101 | 
            +
                def eos_token_id(self) -> Optional[int]:
         | 
| 102 | 
            +
                    return self.sp_model.eos_id()
         | 
| 103 | 
            +
             | 
| 104 | 
            +
                def get_vocab(self):
         | 
| 105 | 
            +
                    """Returns vocab as a dict"""
         | 
| 106 | 
            +
                    vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)}
         | 
| 107 | 
            +
                    vocab.update(self.added_tokens_encoder)
         | 
| 108 | 
            +
                    return vocab
         | 
| 109 | 
            +
             | 
| 110 | 
            +
                def _tokenize(self, text):
         | 
| 111 | 
            +
                    """Returns a tokenized string."""
         | 
| 112 | 
            +
                    return self.sp_model.encode(text, out_type=str)
         | 
| 113 | 
            +
             | 
| 114 | 
            +
                def _convert_token_to_id(self, token):
         | 
| 115 | 
            +
                    """Converts a token (str) in an id using the vocab."""
         | 
| 116 | 
            +
                    return self.sp_model.piece_to_id(token)
         | 
| 117 | 
            +
             | 
| 118 | 
            +
                def _convert_id_to_token(self, index):
         | 
| 119 | 
            +
                    """Converts an index (integer) in a token (str) using the vocab."""
         | 
| 120 | 
            +
                    token = self.sp_model.IdToPiece(index)
         | 
| 121 | 
            +
                    return token
         | 
| 122 | 
            +
             | 
| 123 | 
            +
                def _maybe_add_prefix_space(self, tokens, decoded):
         | 
| 124 | 
            +
                    if tokens and tokens[0] not in self.no_prefix_space_tokens:
         | 
| 125 | 
            +
                        return " " + decoded
         | 
| 126 | 
            +
                    else:
         | 
| 127 | 
            +
                        return decoded
         | 
| 128 | 
            +
             | 
| 129 | 
            +
                def convert_tokens_to_string(self, tokens):
         | 
| 130 | 
            +
                    """Converts a sequence of tokens (string) in a single string."""
         | 
| 131 | 
            +
                    current_sub_tokens = []
         | 
| 132 | 
            +
                    out_string = ""
         | 
| 133 | 
            +
                    prev_is_special = False
         | 
| 134 | 
            +
                    for token in tokens:
         | 
| 135 | 
            +
                        # make sure that special tokens are not decoded using sentencepiece model
         | 
| 136 | 
            +
                        if token in self.all_special_tokens:
         | 
| 137 | 
            +
                            if not prev_is_special:
         | 
| 138 | 
            +
                                out_string += " "
         | 
| 139 | 
            +
                            out_string += self.sp_model.decode(current_sub_tokens) + token
         | 
| 140 | 
            +
                            prev_is_special = True
         | 
| 141 | 
            +
                            current_sub_tokens = []
         | 
| 142 | 
            +
                        else:
         | 
| 143 | 
            +
                            current_sub_tokens.append(token)
         | 
| 144 | 
            +
                            prev_is_special = False
         | 
| 145 | 
            +
                    out_string += self.sp_model.decode(current_sub_tokens)
         | 
| 146 | 
            +
                    out_string = self.clean_up_tokenization(out_string)
         | 
| 147 | 
            +
                    out_string = self._maybe_add_prefix_space(tokens=tokens, decoded=out_string)
         | 
| 148 | 
            +
                    return out_string[1:]
         | 
| 149 | 
            +
             | 
| 150 | 
            +
                def save_vocabulary(self, save_directory, filename_prefix: Optional[str] = None) -> Tuple[str]:
         | 
| 151 | 
            +
                    """
         | 
| 152 | 
            +
                    Save the vocabulary and special tokens file to a directory.
         | 
| 153 | 
            +
             | 
| 154 | 
            +
                    Args:
         | 
| 155 | 
            +
                        save_directory (`str`):
         | 
| 156 | 
            +
                            The directory in which to save the vocabulary.
         | 
| 157 | 
            +
             | 
| 158 | 
            +
                    Returns:
         | 
| 159 | 
            +
                        `Tuple(str)`: Paths to the files saved.
         | 
| 160 | 
            +
                    """
         | 
| 161 | 
            +
                    if not os.path.isdir(save_directory):
         | 
| 162 | 
            +
                        logger.error(f"Vocabulary path ({save_directory}) should be a directory")
         | 
| 163 | 
            +
                        return
         | 
| 164 | 
            +
                    out_vocab_file = os.path.join(
         | 
| 165 | 
            +
                        save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
         | 
| 166 | 
            +
                    )
         | 
| 167 | 
            +
             | 
| 168 | 
            +
                    if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file) and os.path.isfile(self.vocab_file):
         | 
| 169 | 
            +
                        copyfile(self.vocab_file, out_vocab_file)
         | 
| 170 | 
            +
                    elif not os.path.isfile(self.vocab_file):
         | 
| 171 | 
            +
                        with open(out_vocab_file, "wb") as fi:
         | 
| 172 | 
            +
                            content_spiece_model = self.sp_model.serialized_model_proto()
         | 
| 173 | 
            +
                            fi.write(content_spiece_model)
         | 
| 174 | 
            +
             | 
| 175 | 
            +
                    return (out_vocab_file,)
         | 
| 176 | 
            +
             | 
| 177 | 
            +
                def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None):
         | 
| 178 | 
            +
                    if self.add_bos_token:
         | 
| 179 | 
            +
                        bos_token_ids = [self.bos_token_id]
         | 
| 180 | 
            +
                    else:
         | 
| 181 | 
            +
                        bos_token_ids = []
         | 
| 182 | 
            +
             | 
| 183 | 
            +
                    output = bos_token_ids + token_ids_0
         | 
| 184 | 
            +
             | 
| 185 | 
            +
                    if token_ids_1 is not None:
         | 
| 186 | 
            +
                        output = output + token_ids_1
         | 
| 187 | 
            +
             | 
| 188 | 
            +
                    if self.add_eos_token:
         | 
| 189 | 
            +
                        output = output + [self.eos_token_id]
         | 
| 190 | 
            +
             | 
| 191 | 
            +
                    return output
         | 
| 192 | 
            +
             | 
| 193 | 
            +
                def get_special_tokens_mask(
         | 
| 194 | 
            +
                    self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
         | 
| 195 | 
            +
                ) -> List[int]:
         | 
| 196 | 
            +
                    """
         | 
| 197 | 
            +
                    Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
         | 
| 198 | 
            +
                    special tokens using the tokenizer `prepare_for_model` method.
         | 
| 199 | 
            +
             | 
| 200 | 
            +
                    Args:
         | 
| 201 | 
            +
                        token_ids_0 (`List[int]`):
         | 
| 202 | 
            +
                            List of IDs.
         | 
| 203 | 
            +
                        token_ids_1 (`List[int]`, *optional*):
         | 
| 204 | 
            +
                            Optional second list of IDs for sequence pairs.
         | 
| 205 | 
            +
                        already_has_special_tokens (`bool`, *optional*, defaults to `False`):
         | 
| 206 | 
            +
                            Whether or not the token list is already formatted with special tokens for the model.
         | 
| 207 | 
            +
             | 
| 208 | 
            +
                    Returns:
         | 
| 209 | 
            +
                        `List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
         | 
| 210 | 
            +
                    """
         | 
| 211 | 
            +
                    if already_has_special_tokens:
         | 
| 212 | 
            +
                        return super().get_special_tokens_mask(
         | 
| 213 | 
            +
                            token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
         | 
| 214 | 
            +
                        )
         | 
| 215 | 
            +
             | 
| 216 | 
            +
                    if token_ids_1 is None:
         | 
| 217 | 
            +
                        return [1] + ([0] * len(token_ids_0)) + [1]
         | 
| 218 | 
            +
                    return [1] + ([0] * len(token_ids_0)) + [1, 1] + ([0] * len(token_ids_1)) + [1]
         | 
| 219 | 
            +
             | 
| 220 | 
            +
                def create_token_type_ids_from_sequences(
         | 
| 221 | 
            +
                    self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
         | 
| 222 | 
            +
                ) -> List[int]:
         | 
| 223 | 
            +
                    """
         | 
| 224 | 
            +
                    Create a mask from the two sequences passed to be used in a sequence-pair classification task. T5 does not make
         | 
| 225 | 
            +
                    use of token type ids, therefore a list of zeros is returned.
         | 
| 226 | 
            +
             | 
| 227 | 
            +
                    Args:
         | 
| 228 | 
            +
                        token_ids_0 (`List[int]`):
         | 
| 229 | 
            +
                            List of IDs.
         | 
| 230 | 
            +
                        token_ids_1 (`List[int]`, *optional*):
         | 
| 231 | 
            +
                            Optional second list of IDs for sequence pairs.
         | 
| 232 | 
            +
             | 
| 233 | 
            +
                    Returns:
         | 
| 234 | 
            +
                        `List[int]`: List of zeros.
         | 
| 235 | 
            +
                    """
         | 
| 236 | 
            +
                    eos = [self.eos_token_id]
         | 
| 237 | 
            +
             | 
| 238 | 
            +
                    if token_ids_1 is None:
         | 
| 239 | 
            +
                        return len(token_ids_0 + eos) * [0]
         | 
| 240 | 
            +
                    return len(token_ids_0 + eos + token_ids_1 + eos) * [0]
         | 
    	
        tokenizer.model
    ADDED
    
    | @@ -0,0 +1,3 @@ | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            version https://git-lfs.github.com/spec/v1
         | 
| 2 | 
            +
            oid sha256:9e556afd44213b6bd1be2b850ebbbd98f5481437a8021afaf58ee7fb1818d347
         | 
| 3 | 
            +
            size 499723
         | 
    	
        tokenizer_config.json
    ADDED
    
    | @@ -0,0 +1,41 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            {
         | 
| 2 | 
            +
              "added_tokens_decoder": {
         | 
| 3 | 
            +
                "0": {
         | 
| 4 | 
            +
                  "content": "<unk>",
         | 
| 5 | 
            +
                  "lstrip": false,
         | 
| 6 | 
            +
                  "normalized": false,
         | 
| 7 | 
            +
                  "rstrip": false,
         | 
| 8 | 
            +
                  "single_word": false,
         | 
| 9 | 
            +
                  "special": true
         | 
| 10 | 
            +
                },
         | 
| 11 | 
            +
                "1": {
         | 
| 12 | 
            +
                  "content": "<s>",
         | 
| 13 | 
            +
                  "lstrip": false,
         | 
| 14 | 
            +
                  "normalized": false,
         | 
| 15 | 
            +
                  "rstrip": false,
         | 
| 16 | 
            +
                  "single_word": false,
         | 
| 17 | 
            +
                  "special": true
         | 
| 18 | 
            +
                },
         | 
| 19 | 
            +
                "2": {
         | 
| 20 | 
            +
                  "content": "</s>",
         | 
| 21 | 
            +
                  "lstrip": false,
         | 
| 22 | 
            +
                  "normalized": false,
         | 
| 23 | 
            +
                  "rstrip": false,
         | 
| 24 | 
            +
                  "single_word": false,
         | 
| 25 | 
            +
                  "special": true
         | 
| 26 | 
            +
                }
         | 
| 27 | 
            +
              },
         | 
| 28 | 
            +
              "auto_map": {
         | 
| 29 | 
            +
                "AutoTokenizer": [
         | 
| 30 | 
            +
                  "tokenization_internlm.InternLMTokenizer",
         | 
| 31 | 
            +
                  null
         | 
| 32 | 
            +
                ]
         | 
| 33 | 
            +
              },
         | 
| 34 | 
            +
              "bos_token": "<s>",
         | 
| 35 | 
            +
              "clean_up_tokenization_spaces": false,
         | 
| 36 | 
            +
              "eos_token": "</s>",
         | 
| 37 | 
            +
              "model_max_length": 1000000000000000019884624838656,
         | 
| 38 | 
            +
              "pad_token": "</s>",
         | 
| 39 | 
            +
              "tokenizer_class": "InternLMTokenizer",
         | 
| 40 | 
            +
              "unk_token": "<unk>"
         | 
| 41 | 
            +
            }
         | 
