Update README.md
Browse files
README.md
CHANGED
|
@@ -1,201 +1,224 @@
|
|
| 1 |
---
|
| 2 |
library_name: transformers
|
| 3 |
-
|
|
|
|
|
|
|
| 4 |
---
|
| 5 |
|
| 6 |
-
#
|
| 7 |
|
| 8 |
-
|
| 9 |
|
|
|
|
| 10 |
|
|
|
|
| 11 |
|
| 12 |
-
##
|
| 13 |
-
|
| 14 |
-
### Model Description
|
| 15 |
|
| 16 |
-
|
| 17 |
|
| 18 |
-
|
|
|
|
| 19 |
|
| 20 |
-
|
| 21 |
-
- **Funded by [optional]:** [More Information Needed]
|
| 22 |
-
- **Shared by [optional]:** [More Information Needed]
|
| 23 |
-
- **Model type:** [More Information Needed]
|
| 24 |
-
- **Language(s) (NLP):** [More Information Needed]
|
| 25 |
-
- **License:** [More Information Needed]
|
| 26 |
-
- **Finetuned from model [optional]:** [More Information Needed]
|
| 27 |
|
| 28 |
-
|
| 29 |
|
| 30 |
-
|
|
|
|
|
|
|
| 31 |
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
|
| 36 |
-
|
| 37 |
|
| 38 |
-
|
|
|
|
| 39 |
|
| 40 |
-
|
|
|
|
| 41 |
|
| 42 |
-
|
|
|
|
| 43 |
|
| 44 |
-
[
|
|
|
|
|
|
|
| 45 |
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
| 49 |
-
|
| 50 |
-
[More Information Needed]
|
| 51 |
|
| 52 |
-
|
| 53 |
|
| 54 |
-
|
|
|
|
|
|
|
| 55 |
|
| 56 |
-
|
| 57 |
|
| 58 |
-
|
| 59 |
|
| 60 |
-
|
|
|
|
|
|
|
| 61 |
|
| 62 |
-
|
| 63 |
|
| 64 |
-
|
|
|
|
| 65 |
|
| 66 |
-
|
| 67 |
|
| 68 |
-
|
|
|
|
|
|
|
|
|
|
| 69 |
|
| 70 |
-
|
| 71 |
|
| 72 |
-
|
| 73 |
|
| 74 |
-
|
|
|
|
| 75 |
|
| 76 |
-
|
|
|
|
| 77 |
|
| 78 |
-
|
|
|
|
| 79 |
|
| 80 |
-
|
|
|
|
| 81 |
|
| 82 |
-
[
|
|
|
|
| 83 |
|
| 84 |
-
###
|
| 85 |
|
| 86 |
-
|
| 87 |
|
| 88 |
-
|
| 89 |
|
| 90 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 91 |
|
|
|
|
|
|
|
| 92 |
|
| 93 |
-
|
| 94 |
|
| 95 |
-
|
|
|
|
|
|
|
| 96 |
|
| 97 |
-
|
| 98 |
|
| 99 |
-
|
| 100 |
|
| 101 |
-
|
|
|
|
|
|
|
| 102 |
|
| 103 |
-
|
| 104 |
|
| 105 |
-
|
|
|
|
|
|
|
| 106 |
|
| 107 |
-
|
| 108 |
|
| 109 |
-
|
| 110 |
|
| 111 |
-
|
|
|
|
|
|
|
|
|
|
| 112 |
|
| 113 |
-
|
| 114 |
|
| 115 |
-
|
| 116 |
|
| 117 |
-
|
| 118 |
|
| 119 |
-
|
| 120 |
|
| 121 |
-
|
| 122 |
|
| 123 |
-
|
| 124 |
|
| 125 |
-
[
|
| 126 |
|
| 127 |
-
### Results
|
| 128 |
|
| 129 |
-
|
| 130 |
|
| 131 |
-
|
| 132 |
|
|
|
|
| 133 |
|
|
|
|
| 134 |
|
| 135 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 136 |
|
| 137 |
-
<!-- Relevant interpretability work for the model goes here -->
|
| 138 |
|
| 139 |
-
|
| 140 |
|
| 141 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 142 |
|
| 143 |
-
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
| 144 |
|
| 145 |
-
|
| 146 |
|
| 147 |
-
|
| 148 |
-
- **Hours used:** [More Information Needed]
|
| 149 |
-
- **Cloud Provider:** [More Information Needed]
|
| 150 |
-
- **Compute Region:** [More Information Needed]
|
| 151 |
-
- **Carbon Emitted:** [More Information Needed]
|
| 152 |
|
| 153 |
-
## Technical Specifications
|
| 154 |
|
| 155 |
### Model Architecture and Objective
|
| 156 |
|
| 157 |
-
[
|
| 158 |
|
| 159 |
### Compute Infrastructure
|
| 160 |
|
| 161 |
-
|
| 162 |
|
| 163 |
#### Hardware
|
| 164 |
|
| 165 |
-
|
| 166 |
|
| 167 |
#### Software
|
| 168 |
|
| 169 |
-
[
|
| 170 |
-
|
| 171 |
-
|
| 172 |
-
|
| 173 |
-
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
| 174 |
-
|
| 175 |
-
**BibTeX:**
|
| 176 |
-
|
| 177 |
-
[More Information Needed]
|
| 178 |
-
|
| 179 |
-
**APA:**
|
| 180 |
-
|
| 181 |
-
[More Information Needed]
|
| 182 |
-
|
| 183 |
-
## Glossary [optional]
|
| 184 |
-
|
| 185 |
-
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
| 186 |
-
|
| 187 |
-
[More Information Needed]
|
| 188 |
|
| 189 |
## More Information [optional]
|
| 190 |
|
| 191 |
[More Information Needed]
|
| 192 |
|
| 193 |
-
## Model Card Authors [optional]
|
| 194 |
-
|
| 195 |
-
[More Information Needed]
|
| 196 |
-
|
| 197 |
-
## Model Card Contact
|
| 198 |
-
|
| 199 |
-
[More Information Needed]
|
| 200 |
-
|
| 201 |
-
|
|
|
|
| 1 |
---
|
| 2 |
library_name: transformers
|
| 3 |
+
license: apache-2.0
|
| 4 |
+
datasets:
|
| 5 |
+
- isek-ai/danbooru-tags-2023
|
| 6 |
---
|
| 7 |
|
| 8 |
+
# Dart (Danbooru Tags Transformer) v1
|
| 9 |
|
| 10 |
+
This model is a pretrained Dart (**Da**nboo**r**u **T**ags Transformer) model that generates danbooru tags.
|
| 11 |
|
| 12 |
+
Demo: [🤗 Space](https://huggingface.co/spaces/p1atdev/danbooru-tags-transformer)
|
| 13 |
|
| 14 |
+
If you are an end user, it's recommended using the fine-tuned version, [p1atdev/dart-v1-sft](https://huggingface.co/p1atdev/dart-v1-sft), instead
|
| 15 |
|
| 16 |
+
## Usage
|
|
|
|
|
|
|
| 17 |
|
| 18 |
+
#### Note
|
| 19 |
|
| 20 |
+
Since this model was trained only in alphabetical order, **placing tags that are later in alphabetical order at the beginning can prevent it from generating tags appropriately**.
|
| 21 |
+
Using the [fine-tuned version]((https://huggingface.co/p1atdev/dart-v1-sft)) can eliminate this concern.
|
| 22 |
|
| 23 |
+
### Using AutoModel
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 24 |
|
| 25 |
+
🤗 Transformers library is required.
|
| 26 |
|
| 27 |
+
```bash
|
| 28 |
+
pip install -U transformers
|
| 29 |
+
```
|
| 30 |
|
| 31 |
+
```py
|
| 32 |
+
import torch
|
| 33 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, GenerationConfig
|
| 34 |
|
| 35 |
+
MODEL_NAME = "p1atdev/dart-v1-base"
|
| 36 |
|
| 37 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME, trust_remote_code=True) # trust_remote_code is required for tokenizer
|
| 38 |
+
model = AutoModelForCausalLM.from_pretrained(MODEL_NAME, torch_dtype=torch.bfloat16)
|
| 39 |
|
| 40 |
+
prompt = "<|bos|><rating>rating:sfw, rating:general</rating><copyright>original</copyright><character></character><general>1girl, "
|
| 41 |
+
inputs = tokenizer(prompt, return_tensors="pt").input_ids
|
| 42 |
|
| 43 |
+
with torch.no_grad():
|
| 44 |
+
outputs = model.generate(inputs, generation_config=generation_config)
|
| 45 |
|
| 46 |
+
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
|
| 47 |
+
# rating:sfw, rating:general, original, 1girl, ahoge, black hair, blue eyes, blush, closed mouth, ear piercing, earrings, jewelry, looking at viewer, mole, mole under eye, piercing, portrait, shirt, short hair, solo, white shirt
|
| 48 |
+
```
|
| 49 |
|
| 50 |
+
#### Flash attention (optional)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 51 |
|
| 52 |
+
Using flash attention can optimize computations, but it is currently only compatible with Linux.
|
| 53 |
|
| 54 |
+
```bash
|
| 55 |
+
pip install flash_attn
|
| 56 |
+
```
|
| 57 |
|
| 58 |
+
### Accelerate with ORTModel
|
| 59 |
|
| 60 |
+
🤗 Optimum library is also compatible, for the high performance inference using ONNX.
|
| 61 |
|
| 62 |
+
```bash
|
| 63 |
+
pip install "optimum[onnxruntime]"
|
| 64 |
+
```
|
| 65 |
|
| 66 |
+
Two ONNX models are provided:
|
| 67 |
|
| 68 |
+
- [Normal](./model.onnx)
|
| 69 |
+
- [Quantized](./model_quantized.onnx)
|
| 70 |
|
| 71 |
+
Both can be utilized based on the following code:
|
| 72 |
|
| 73 |
+
```py
|
| 74 |
+
import torch
|
| 75 |
+
from transformers import AutoTokenizer, GenerationConfig
|
| 76 |
+
from optimum.onnxruntime import ORTModelForCausalLM
|
| 77 |
|
| 78 |
+
MODEL_NAME = "p1atdev/dart-v1-base"
|
| 79 |
|
| 80 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME, trust_remote_code=True)
|
| 81 |
|
| 82 |
+
# normal version
|
| 83 |
+
ort_model = ORTModelForCausalLM.from_pretrained(MODEL_NAME)
|
| 84 |
|
| 85 |
+
# qunatized version
|
| 86 |
+
# ort_model = ORTModelForCausalLM.from_pretrained(MODEL_NAME, file_name="model_quantized.onnx")
|
| 87 |
|
| 88 |
+
prompt = "<|bos|><rating>rating:sfw, rating:general</rating><copyright>original</copyright><character></character><general>1girl, "
|
| 89 |
+
inputs = tokenizer(prompt, return_tensors="pt").input_ids
|
| 90 |
|
| 91 |
+
with torch.no_grad():
|
| 92 |
+
outputs = model.generate(inputs, generation_config=generation_config)
|
| 93 |
|
| 94 |
+
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
|
| 95 |
+
```
|
| 96 |
|
| 97 |
+
### Prompt guidde
|
| 98 |
|
| 99 |
+
Due to training with a specialized prompt format, **natural language is not supported**.
|
| 100 |
|
| 101 |
+
The trained sentences are essentially composed of the following elements, arranged in the strict order shown below:
|
| 102 |
|
| 103 |
+
- `<|bos|>`: The bos (begin of sentence) token
|
| 104 |
+
- `<rating>[RATING_PARENT], [RATING_CHILD]</rating>`: The block of rating tags
|
| 105 |
+
- [RATING_PARENT]: `rating:sfw`, `rating:nsfw`
|
| 106 |
+
- [RATING_CHILD]:
|
| 107 |
+
- if `[RATING_PARENT]` is `rating:sfw`: `rating:general`, `rating:sensitive`
|
| 108 |
+
- else: `rating:questionable`, `rating:explicit`
|
| 109 |
+
- `<copyright>[COPYRIGHT, ...]</copyright>`: The block of copyright tags.
|
| 110 |
+
- [COPYRIGHT, ...]: All supported copyright tags can be seen in [TODO]()
|
| 111 |
+
- `<character>[CHARACTER, ...]</character>`: The block of character tags.
|
| 112 |
+
- [CHARACTER, ...]: All supported character tags can be seen in [TODO]()
|
| 113 |
+
- `<general>[GENERAL, ...]</general>`: The block of general tags.
|
| 114 |
+
- [GENERAL, ...]: All supported general tags can be seen in [TODO]()
|
| 115 |
+
- `<|eos|>`: The eos (end of sentence) token
|
| 116 |
|
| 117 |
+
- Tags other than special tokens are separated by commas.
|
| 118 |
+
- All tags are arranged in alphabetical order.
|
| 119 |
|
| 120 |
+
Example sentence:
|
| 121 |
|
| 122 |
+
```
|
| 123 |
+
<|bos|><rating>rating:sfw, rating:general</rating><copyright>vocaloid</copyright><character>hatsune miku</character><general>1girl, blue hair, cowboy shot, ...</general><|eos|>
|
| 124 |
+
```
|
| 125 |
|
| 126 |
+
Therefore, to complete the tags, the input prompt should be as follows:
|
| 127 |
|
| 128 |
+
1. without any copyright and character tags
|
| 129 |
|
| 130 |
+
```
|
| 131 |
+
<|bos|><rating>rating:sfw, rating:general</rating><copyright></copyright><character></character><general>1girl
|
| 132 |
+
```
|
| 133 |
|
| 134 |
+
2. specifing copyright and character tags
|
| 135 |
|
| 136 |
+
```
|
| 137 |
+
<|bos|><rating>rating:sfw, rating:general</rating><copyright>sousou no frieren</copyright><character>frieren</character><general>1girl
|
| 138 |
+
```
|
| 139 |
|
| 140 |
+
## Model Details
|
| 141 |
|
| 142 |
+
### Model Description
|
| 143 |
|
| 144 |
+
- **Developed by:** Plat
|
| 145 |
+
- **Model type:** Causal language model
|
| 146 |
+
- **Language(s) (NLP):** Danbooru tags
|
| 147 |
+
- **License:** Apache-2.0
|
| 148 |
|
| 149 |
+
- **Demo:** Avaiable on [🤗Space](https://huggingface.co/spaces/p1atdev/danbooru-tags-transformer)
|
| 150 |
|
| 151 |
+
## Bias, Risks, and Limitations
|
| 152 |
|
| 153 |
+
Since this model is a pre-trained model, it cannot accommodate flexible specifications.
|
| 154 |
|
| 155 |
+
## Training Details
|
| 156 |
|
| 157 |
+
### Training Data
|
| 158 |
|
| 159 |
+
This model was trained with:
|
| 160 |
|
| 161 |
+
- [isek-ai/danbooru-tags-2023](https://huggingface.co/datasets/isek-ai/danbooru-tags-2023): 6M size of danbooru tags dataset since 2005 to 2023
|
| 162 |
|
|
|
|
| 163 |
|
| 164 |
+
### Training Procedure
|
| 165 |
|
| 166 |
+
Trained using 🤗 transformers' trainer.
|
| 167 |
|
| 168 |
+
#### Preprocessing
|
| 169 |
|
| 170 |
+
Preprocessing was conducted through the following process:
|
| 171 |
|
| 172 |
+
1. Remove data where `general` tags is null.
|
| 173 |
+
2. Remove `general` tags that appear less than 100 times.
|
| 174 |
+
3. Remove undesirable tags such as `watermark` and `bad anatomy`.
|
| 175 |
+
4. Remove based on the number of tags attached to a single post (following rules):
|
| 176 |
+
- Remove if more than 100 for `general` tags.
|
| 177 |
+
- Remove if more than 5 for `copyright` tags.
|
| 178 |
+
- Remove if more than 10 for `character` tags.
|
| 179 |
+
5. Concatenate while splitting with special tokens according to the category of the tags.
|
| 180 |
|
|
|
|
| 181 |
|
| 182 |
+
#### Training Hyperparameters
|
| 183 |
|
| 184 |
+
The following hyperparameters were used during training:
|
| 185 |
+
- learning_rate: 0.0001
|
| 186 |
+
- train_batch_size: 32
|
| 187 |
+
- eval_batch_size: 8
|
| 188 |
+
- seed: 42
|
| 189 |
+
- gradient_accumulation_steps: 2
|
| 190 |
+
- total_train_batch_size: 64
|
| 191 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
| 192 |
+
- lr_scheduler_type: linear
|
| 193 |
+
- lr_scheduler_warmup_steps: 500
|
| 194 |
+
- num_epochs: 1
|
| 195 |
|
|
|
|
| 196 |
|
| 197 |
+
## Evaluation
|
| 198 |
|
| 199 |
+
Evaluation has not been done yet and it needs to evaluate.
|
|
|
|
|
|
|
|
|
|
|
|
|
| 200 |
|
| 201 |
+
## Technical Specifications
|
| 202 |
|
| 203 |
### Model Architecture and Objective
|
| 204 |
|
| 205 |
+
The architecture of this model is [OPT (Open Pretrained Transformer)](https://huggingface.co/docs/transformers/model_doc/opt), but the position embeddings was not trained.
|
| 206 |
|
| 207 |
### Compute Infrastructure
|
| 208 |
|
| 209 |
+
In house
|
| 210 |
|
| 211 |
#### Hardware
|
| 212 |
|
| 213 |
+
1x RTX 3070 Ti
|
| 214 |
|
| 215 |
#### Software
|
| 216 |
|
| 217 |
+
- Dataset processing: [🤗 Datasets](https://github.com/huggingface/datasets)
|
| 218 |
+
- Training: [🤗 Transformers](https://github.com/huggingface/transformers)
|
| 219 |
+
- Optimizing: [🤗 Optimum](https://github.com/huggingface/optimum)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 220 |
|
| 221 |
## More Information [optional]
|
| 222 |
|
| 223 |
[More Information Needed]
|
| 224 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|