Boosting Pathology Foundation Models via Few-shot Prompt-tuning for Rare Cancer Subtyping
Abstract
PathPT enhances rare cancer subtyping by integrating vision-language foundation models with spatially-aware visual aggregation and task-specific prompt tuning, outperforming existing multi-instance learning methods in few-shot scenarios across multiple datasets.
Rare cancers comprise 20-25% of all malignancies but face major diagnostic challenges due to limited expert availability-especially in pediatric oncology, where they represent over 70% of cases. While pathology vision-language (VL) foundation models show promising zero-shot capabilities for common cancer subtyping, their clinical performance for rare cancers remains limited. Existing multi-instance learning (MIL) methods rely only on visual features, overlooking cross-modal knowledge and compromising interpretability critical for rare cancer diagnosis. To address this limitation, we propose PathPT, a novel framework that fully exploits the potential of vision-language pathology foundation models through spatially-aware visual aggregation and task-specific prompt tuning. Unlike conventional MIL, PathPT converts WSI-level supervision into fine-grained tile-level guidance by leveraging the zero-shot capabilities of VL models, thereby preserving localization on cancerous regions and enabling cross-modal reasoning through prompts aligned with histopathological semantics. We benchmark PathPT on eight rare cancer datasets(four adult and four pediatric) spanning 56 subtypes and 2,910 WSIs, as well as three common cancer datasets, evaluating four state-of-the-art VL models and four MIL frameworks under three few-shot settings. Results show that PathPT consistently delivers superior performance, achieving substantial gains in subtyping accuracy and cancerous region grounding ability. This work advances AI-assisted diagnosis for rare cancers, offering a scalable solution for improving subtyping accuracy in settings with limited access to specialized expertise.
Models citing this paper 0
No model linking this paper
Datasets citing this paper 0
No dataset linking this paper
Spaces citing this paper 0
No Space linking this paper
Collections including this paper 0
No Collection including this paper