upload PPO trained agent: LunarLander-v2
Browse files- .gitattributes +1 -0
- README.md +37 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +99 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +9 -0
- replay.mp4 +3 -0
- results.json +1 -0
.gitattributes
CHANGED
|
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 36 |
+
replay.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
|
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
library_name: stable-baselines3
|
| 3 |
+
tags:
|
| 4 |
+
- LunarLander-v2
|
| 5 |
+
- deep-reinforcement-learning
|
| 6 |
+
- reinforcement-learning
|
| 7 |
+
- stable-baselines3
|
| 8 |
+
model-index:
|
| 9 |
+
- name: PPO
|
| 10 |
+
results:
|
| 11 |
+
- task:
|
| 12 |
+
type: reinforcement-learning
|
| 13 |
+
name: reinforcement-learning
|
| 14 |
+
dataset:
|
| 15 |
+
name: LunarLander-v2
|
| 16 |
+
type: LunarLander-v2
|
| 17 |
+
metrics:
|
| 18 |
+
- type: mean_reward
|
| 19 |
+
value: 250.64 +/- 19.63
|
| 20 |
+
name: mean_reward
|
| 21 |
+
verified: false
|
| 22 |
+
---
|
| 23 |
+
|
| 24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
| 25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
| 26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
| 27 |
+
|
| 28 |
+
## Usage (with Stable-baselines3)
|
| 29 |
+
TODO: Add your code
|
| 30 |
+
|
| 31 |
+
|
| 32 |
+
```python
|
| 33 |
+
from stable_baselines3 import ...
|
| 34 |
+
from huggingface_sb3 import load_from_hub
|
| 35 |
+
|
| 36 |
+
...
|
| 37 |
+
```
|
config.json
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7abb629a2160>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7abb629a2200>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7abb629a22a0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7abb629a2340>", "_build": "<function ActorCriticPolicy._build at 0x7abb629a23e0>", "forward": "<function ActorCriticPolicy.forward at 0x7abb629a2480>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7abb629a2520>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7abb629a25c0>", "_predict": "<function ActorCriticPolicy._predict at 0x7abb629a2660>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7abb629a2700>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7abb629a27a0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7abb629a2840>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7abb68c4e900>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1744238717928506612, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdgIAAAAAAACME251bXB5Ll9jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAAIAAAAAAACmpmc+54ASvZS4AruSRK05jnyBvteoMzoAAIA/AACAP2anET1aWPM+ODUqvfNAa77zX6w8+PeQvQAAAAAAAAAAYKU5PtdZJD+vsRC+XJ1nvg5cNb3CmvY8AAAAAAAAAAAaXIm9SL2yPx0+Z76uFY+++9q0vQgclL0AAAAAAAAAAM1ryz3h9JW69waetVN6BbBypby62oiuNAAAgD8AAIA/YOkYPqwHTz4WIw+9eyVgvq9AfT3U7wa+AAAAAAAAAAAzXNW8p8FoP05KsbqfCGi+dBq8vRW+oDwAAAAAAAAAAKZ5Ej6oTjQ/kGWevb1HTL6HUjK9zmR+PAAAAAAAAAAAs1SQvcNpU7o1qgS4r7EQMh1Dsrpa4hg3AACAPwAAgD/A4Yg+7ptZPxvvWL1NOVe+pgb6PfufHL4AAAAAAAAAAICtj72kcA23/82ctRFJh6/aiWi7OuKvNAAAgD8AAIA/ZnPKvMlBEz2SvIU9mdxIvs4QtjweCQS9AAAAAAAAAACaYSI+JOQkPOfDzDX9INIzykiyPVKRHbUAAIA/AACAP81MU7kc22q8NbppPCXFsr3T1CA8vkoGPgAAgD8AAIA/zTYRPRRFgLy+QSm6d1AgPPn48L15Fw49AACAPwAAgD9m+pi9H83huSjgl7tVQjC18nGfOb9gsDoAAIA/AAAAAJSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJLEEsIhpSMAUOUdJRSlC4="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVhAAAAAAAAACME251bXB5Ll9jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksQhZSMAUOUdJRSlC4="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGWuC1Z1V5uMAWyUTegDjAF0lEdAoVtsCDEm6XV9lChoBkdAYUtW4mTkhmgHTegDaAhHQKFiROjZcs11fZQoaAZHQHItqVyFPBVoB02RAWgIR0ChY8XGXHBDdX2UKGgGR0BhkuL9/BnBaAdN6ANoCEdAoW+U0m+j/XV9lChoBkdAa/ZVZs9B8mgHTXcCaAhHQKFxG5uqFRJ1fZQoaAZHQGKGSteUpuxoB03oA2gIR0ChcTuYx+KCdX2UKGgGR0BjR7M5fdAPaAdN6ANoCEdAoXFaTEBKc3V9lChoBkdAYjsI0qH45GgHTegDaAhHQKFxxWp6yB11fZQoaAZHQGfb90Rvm5loB03oA2gIR0Chcc1hkRSQdX2UKGgGR0BdQy31BdD6aAdN6ANoCEdAoXID+Haew3V9lChoBkdAYKGhkAggYGgHTegDaAhHQKF1+oCMglp1fZQoaAZHQF6PAyEcsDpoB03oA2gIR0CheD2X9itrdX2UKGgGR0BkT3Y150KaaAdN6ANoCEdAoX1OB8QZoHV9lChoBkdAZF/2i+L3sWgHTegDaAhHQKF+ovXbudB1fZQoaAZHQF9kaTwDvE1oB03oA2gIR0Chgx82R7qqdX2UKGgGR0BuUAtDlYEGaAdNbwJoCEdAoYNm+PBBRnV9lChoBkdAW9ywGGEf1mgHTegDaAhHQKGDjY150KZ1fZQoaAZHQGLRvrnkkrxoB03oA2gIR0Chho0ZeiSJdX2UKGgGR0ByU489wFTvaAdNyAFoCEdAoYgGB19v0nV9lChoBkdAcarJ8OTaCmgHTeQCaAhHQKGJP/DtPYZ1fZQoaAZHQF9f3RG+bmVoB03oA2gIR0ChjLrYf4h2dX2UKGgGR0Bikc56t1ZDaAdN6ANoCEdAoY4htm+TNnV9lChoBkdAZJX3cHnln2gHTegDaAhHQKGa5xqfvnd1fZQoaAZHQGemUbcXWOJoB03oA2gIR0ChmxQr1/UfdX2UKGgGR0BlYz/sE7nxaAdN6ANoCEdAoZs/8Kohp3V9lChoBkdAYOfrleWv82gHTegDaAhHQKGb67jDKo11fZQoaAZHQGUVpobn5i5oB03oA2gIR0ChnD/EwWWQdX2UKGgGR0BmZLsSkCV9aAdN6ANoCEdAoaEdZvDP4XV9lChoBkdAcmtlwLmZE2gHTbQBaAhHQKGhYoF3Y+V1fZQoaAZHQGrz7hvR7Z5oB01/AmgIR0ChoaQ9aEBbdX2UKGgGR0BuX435vcagaAdNfAFoCEdAoaQj6UJOWXV9lChoBkdAIrDbzshPkGgHTRwBaAhHQKGkU/8l5W11fZQoaAZHQGaQzBqKxcFoB03oA2gIR0Chp3CB5HEudX2UKGgGR0BhvQr4FiazaAdN6ANoCEdAoaipV+7UX3V9lChoBkdAbJXSLqD9O2gHTZIDaAhHQKGp1cwg1WN1fZQoaAZHQGUN2+49X91oB03oA2gIR0ChrIX7DVH4dX2UKGgGR0Bi2BQm/nGLaAdN6ANoCEdAoa8dwLmZE3V9lChoBkdAcjG3yqdYn2gHTYkCaAhHQKGvlkkrwvx1fZQoaAZHQGbEwEIPbwloB03oA2gIR0ChsLeYD1XedX2UKGgGR0Bj0fkkrwvyaAdN6ANoCEdAobayDqW1MXV9lChoBkdAcCkjt5UtI2gHTYkDaAhHQKG380elsP91fZQoaAZHQG1AHM2WIGhoB03IAmgIR0ChuCrOiWVvdX2UKGgGR0Bg74HZ9NN8aAdN6ANoCEdAocRyPp6hQHV9lChoBkdAbBU801qFiGgHTacBaAhHQKHEgzMzMzN1fZQoaAZHQGS8269TP0JoB03oA2gIR0ChxJONPxhEdX2UKGgGR0BtoI6Mir1eaAdNLwNoCEdAocTZy4nWrnV9lChoBkdAbwXwF1SwW2gHTc0CaAhHQKHE9OJtSAJ1fZQoaAZHQG2QV9F4LThoB01JAmgIR0ChxWUnXumadX2UKGgGR0BxApByCFsYaAdNYAJoCEdAoca9qxkd3nV9lChoBkdAcIqNJe3QU2gHTcgCaAhHQKHHVNsWO6x1fZQoaAZHQGN/k1dgOSZoB03oA2gIR0ChyLEu6ErYdX2UKGgGR0BuxnMINVinaAdNdQNoCEdAocjDHyVfNXV9lChoBkdAbi9Mvh60IGgHTV8BaAhHQKHKRcW0qpd1fZQoaAZHQG9TZpi7TUloB01PAmgIR0ChynrZ8KG+dX2UKGgGR0BwVzijtXxOaAdNOwJoCEdAocrpsuWa+nV9lChoBkdAblRfdAPd22gHTVkBaAhHQKHM068QI2R1fZQoaAZHQG7flWwNb1RoB02ZAWgIR0Chz6W3azu4dX2UKGgGR0BvhQ7LdN34aAdNdwFoCEdAodHx7/n4f3V9lChoBkdAb065BkZrHmgHTbIBaAhHQKHS6y8jAzp1fZQoaAZHQHAX6TwDvE1oB02hAWgIR0Ch1VCwKSgXdX2UKGgGR0BsaCkXUH6eaAdN5gJoCEdAodcf5JsfrHV9lChoBkdAY/d7XxvvSmgHTegDaAhHQKHXP/EwWWR1fZQoaAZHQG+XWcz67/ZoB01yAWgIR0Ch2OWZiNKidX2UKGgGR0BwqcwRGtp3aAdNzAJoCEdAodlSfDk2gnV9lChoBkdAbVklvZRKpWgHTcYCaAhHQKHZqasp5NZ1fZQoaAZHQG39GnGbTc9oB005AmgIR0Ch2g6/ATIvdX2UKGgGR0BwAy7xusLfaAdN6QFoCEdAodoPJ9y93HV9lChoBkdAazLi7TUiIWgHTQEDaAhHQKHaMfOD8Lt1fZQoaAZHQF8/Rw6ySmtoB03oA2gIR0Ch3JIBaLXMdX2UKGgGR0BrRCxJNCZ4aAdNwwFoCEdAod9LOoo/inV9lChoBkdAY5pblA/s3WgHTegDaAhHQKHf3NWU8mt1fZQoaAZHQHHV5owmE5BoB01aAWgIR0Ch4CFPSDywdX2UKGgGR0A1r7O3UhFFaAdNHwFoCEdAoevRQHiWFHV9lChoBkdAbu3WQwK0D2gHTSYDaAhHQKHsYJDVpbl1fZQoaAZHQHBGicCo0hxoB01QA2gIR0Ch7kGjbi6ydX2UKGgGR0BuooNVinYQaAdN5gJoCEdAoe736O5rg3V9lChoBkdAcIsH9m6GxmgHTQADaAhHQKHx40l7dBV1fZQoaAZHQHEBD8xbjcVoB02kAmgIR0Ch8l6y8jA0dX2UKGgGR0BwDvrTpgTiaAdNGgJoCEdAofMRa9sabXV9lChoBkdAbOH0W/JvHmgHTZoCaAhHQKH1XUvwmVt1fZQoaAZHQHB8GyxA0KtoB02bAmgIR0Ch9ikQwsXjdX2UKGgGR0BxFAaIeo1laAdNZAFoCEdAofaBBcAzYXV9lChoBkdAcjCIo3JgcGgHTYoBaAhHQKH26tTUAkt1fZQoaAZHQHC9aZx7zCloB03OAmgIR0Ch9x90Rvm6dX2UKGgGR0BuyiiM5wOwaAdNhgJoCEdAofjn/JeVs3V9lChoBkdAbZY0svqTr2gHTZ4BaAhHQKH5tfMOf/Z1fZQoaAZHQHCvCyprDZVoB01FAmgIR0Ch+fG0VrRCdX2UKGgGR0BjnMlolD4QaAdN6ANoCEdAofyJ/G2kSHV9lChoBkdAbuamuTzNEGgHTZ8CaAhHQKH8683++/R1fZQoaAZHQHHqgwGnn+1oB013AWgIR0Ch/TYUWVNYdX2UKGgGR0Bvmnww0wajaAdNagFoCEdAof955xBE8nV9lChoBkdAYd0G+K0laGgHTegDaAhHQKIADpeNT991fZQoaAZHQG/Va42CNCJoB01aAmgIR0CiAD3FcY65dX2UKGgGR0Bu0i/sVtXQaAdNlwFoCEdAogGMCRwIdHV9lChoBkdAcMdt7KJVKmgHTS8DaAhHQKIBsxEfDDV1fZQoaAZHQGwqLwF1SwZoB01lAWgIR0CiA/F7laKUdX2UKGgGR0BxRvXiBGx2aAdNjgJoCEdAogP9x0dRznV9lChoBkdAbdjVBlcyFmgHTeYBaAhHQKIELExZdOZ1fZQoaAZHQHGm1o+Ofd1oB02UAWgIR0CiBNjkdV/+dX2UKGgGR0Bt5Ntj0+TvaAdNYQFoCEdAogY5KjBVMnVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdwIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBNudW1weS5fY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolggAAAAAAAAAAQEBAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolggAAAAAAAAAAQEBAQEBAQGUaBVLCIWUaBl0lFKUjAZfc2hhcGWUSwiFlIwDbG93lGgRKJYgAAAAAAAAAAAAtMIAALTCAACgwAAAoMDbD0nAAACgwAAAAIAAAACAlGgLSwiFlGgZdJRSlIwEaGlnaJRoESiWIAAAAAAAAAAAALRCAAC0QgAAoEAAAKBA2w9JQAAAoEAAAIA/AACAP5RoC0sIhZRoGXSUUpSMCGxvd19yZXBylIxbWy05MC4gICAgICAgIC05MC4gICAgICAgICAtNS4gICAgICAgICAtNS4gICAgICAgICAtMy4xNDE1OTI3ICAtNS4KICAtMC4gICAgICAgICAtMC4gICAgICAgXZSMCWhpZ2hfcmVwcpSMU1s5MC4gICAgICAgIDkwLiAgICAgICAgIDUuICAgICAgICAgNS4gICAgICAgICAzLjE0MTU5MjcgIDUuCiAgMS4gICAgICAgICAxLiAgICAgICBdlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV3AAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFm51bXB5Ll9jb3JlLm11bHRpYXJyYXmUjAZzY2FsYXKUk5SMBW51bXB5lIwFZHR5cGWUk5SMAmk4lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJDCAQAAAAAAAAAlIaUUpSMBXN0YXJ0lGgIaA5DCAAAAAAAAAAAlIaUUpSMBl9zaGFwZZQpjAVkdHlwZZRoDowKX25wX3JhbmRvbZROdWIu", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWV1gIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjExL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUS4RDCPiAANgPEogKlEMAlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTEvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpRoAIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCF9lH2UKGgYjARmdW5jlIwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBmMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV1gIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjExL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUS4RDCPiAANgPEogKlEMAlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTEvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpRoAIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCF9lH2UKGgYjARmdW5jlIwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBmMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024", "Python": "3.11.11", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.6.0+cu124", "GPU Enabled": "True", "Numpy": "2.0.2", "Cloudpickle": "3.1.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
ppo-LunarLander-v2.zip
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:7201d3b5f0feb5fa22a3e5fa78def19bc10107c206abdc0fd45fa809eb31f69e
|
| 3 |
+
size 148135
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
2.0.0a5
|
ppo-LunarLander-v2/data
ADDED
|
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"policy_class": {
|
| 3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
| 4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
| 5 |
+
"__module__": "stable_baselines3.common.policies",
|
| 6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
| 7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7abb629a2160>",
|
| 8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7abb629a2200>",
|
| 9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7abb629a22a0>",
|
| 10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7abb629a2340>",
|
| 11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7abb629a23e0>",
|
| 12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7abb629a2480>",
|
| 13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7abb629a2520>",
|
| 14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7abb629a25c0>",
|
| 15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7abb629a2660>",
|
| 16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7abb629a2700>",
|
| 17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7abb629a27a0>",
|
| 18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7abb629a2840>",
|
| 19 |
+
"__abstractmethods__": "frozenset()",
|
| 20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7abb68c4e900>"
|
| 21 |
+
},
|
| 22 |
+
"verbose": 1,
|
| 23 |
+
"policy_kwargs": {},
|
| 24 |
+
"num_timesteps": 1015808,
|
| 25 |
+
"_total_timesteps": 1000000,
|
| 26 |
+
"_num_timesteps_at_start": 0,
|
| 27 |
+
"seed": null,
|
| 28 |
+
"action_noise": null,
|
| 29 |
+
"start_time": 1744238717928506612,
|
| 30 |
+
"learning_rate": 0.0003,
|
| 31 |
+
"tensorboard_log": null,
|
| 32 |
+
"_last_obs": {
|
| 33 |
+
":type:": "<class 'numpy.ndarray'>",
|
| 34 |
+
":serialized:": "gAWVdgIAAAAAAACME251bXB5Ll9jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAAIAAAAAAACmpmc+54ASvZS4AruSRK05jnyBvteoMzoAAIA/AACAP2anET1aWPM+ODUqvfNAa77zX6w8+PeQvQAAAAAAAAAAYKU5PtdZJD+vsRC+XJ1nvg5cNb3CmvY8AAAAAAAAAAAaXIm9SL2yPx0+Z76uFY+++9q0vQgclL0AAAAAAAAAAM1ryz3h9JW69waetVN6BbBypby62oiuNAAAgD8AAIA/YOkYPqwHTz4WIw+9eyVgvq9AfT3U7wa+AAAAAAAAAAAzXNW8p8FoP05KsbqfCGi+dBq8vRW+oDwAAAAAAAAAAKZ5Ej6oTjQ/kGWevb1HTL6HUjK9zmR+PAAAAAAAAAAAs1SQvcNpU7o1qgS4r7EQMh1Dsrpa4hg3AACAPwAAgD/A4Yg+7ptZPxvvWL1NOVe+pgb6PfufHL4AAAAAAAAAAICtj72kcA23/82ctRFJh6/aiWi7OuKvNAAAgD8AAIA/ZnPKvMlBEz2SvIU9mdxIvs4QtjweCQS9AAAAAAAAAACaYSI+JOQkPOfDzDX9INIzykiyPVKRHbUAAIA/AACAP81MU7kc22q8NbppPCXFsr3T1CA8vkoGPgAAgD8AAIA/zTYRPRRFgLy+QSm6d1AgPPn48L15Fw49AACAPwAAgD9m+pi9H83huSjgl7tVQjC18nGfOb9gsDoAAIA/AAAAAJSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJLEEsIhpSMAUOUdJRSlC4="
|
| 35 |
+
},
|
| 36 |
+
"_last_episode_starts": {
|
| 37 |
+
":type:": "<class 'numpy.ndarray'>",
|
| 38 |
+
":serialized:": "gAWVhAAAAAAAAACME251bXB5Ll9jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksQhZSMAUOUdJRSlC4="
|
| 39 |
+
},
|
| 40 |
+
"_last_original_obs": null,
|
| 41 |
+
"_episode_num": 0,
|
| 42 |
+
"use_sde": false,
|
| 43 |
+
"sde_sample_freq": -1,
|
| 44 |
+
"_current_progress_remaining": -0.015808000000000044,
|
| 45 |
+
"_stats_window_size": 100,
|
| 46 |
+
"ep_info_buffer": {
|
| 47 |
+
":type:": "<class 'collections.deque'>",
|
| 48 |
+
":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGWuC1Z1V5uMAWyUTegDjAF0lEdAoVtsCDEm6XV9lChoBkdAYUtW4mTkhmgHTegDaAhHQKFiROjZcs11fZQoaAZHQHItqVyFPBVoB02RAWgIR0ChY8XGXHBDdX2UKGgGR0BhkuL9/BnBaAdN6ANoCEdAoW+U0m+j/XV9lChoBkdAa/ZVZs9B8mgHTXcCaAhHQKFxG5uqFRJ1fZQoaAZHQGKGSteUpuxoB03oA2gIR0ChcTuYx+KCdX2UKGgGR0BjR7M5fdAPaAdN6ANoCEdAoXFaTEBKc3V9lChoBkdAYjsI0qH45GgHTegDaAhHQKFxxWp6yB11fZQoaAZHQGfb90Rvm5loB03oA2gIR0Chcc1hkRSQdX2UKGgGR0BdQy31BdD6aAdN6ANoCEdAoXID+Haew3V9lChoBkdAYKGhkAggYGgHTegDaAhHQKF1+oCMglp1fZQoaAZHQF6PAyEcsDpoB03oA2gIR0CheD2X9itrdX2UKGgGR0BkT3Y150KaaAdN6ANoCEdAoX1OB8QZoHV9lChoBkdAZF/2i+L3sWgHTegDaAhHQKF+ovXbudB1fZQoaAZHQF9kaTwDvE1oB03oA2gIR0Chgx82R7qqdX2UKGgGR0BuUAtDlYEGaAdNbwJoCEdAoYNm+PBBRnV9lChoBkdAW9ywGGEf1mgHTegDaAhHQKGDjY150KZ1fZQoaAZHQGLRvrnkkrxoB03oA2gIR0Chho0ZeiSJdX2UKGgGR0ByU489wFTvaAdNyAFoCEdAoYgGB19v0nV9lChoBkdAcarJ8OTaCmgHTeQCaAhHQKGJP/DtPYZ1fZQoaAZHQF9f3RG+bmVoB03oA2gIR0ChjLrYf4h2dX2UKGgGR0Bikc56t1ZDaAdN6ANoCEdAoY4htm+TNnV9lChoBkdAZJX3cHnln2gHTegDaAhHQKGa5xqfvnd1fZQoaAZHQGemUbcXWOJoB03oA2gIR0ChmxQr1/UfdX2UKGgGR0BlYz/sE7nxaAdN6ANoCEdAoZs/8Kohp3V9lChoBkdAYOfrleWv82gHTegDaAhHQKGb67jDKo11fZQoaAZHQGUVpobn5i5oB03oA2gIR0ChnD/EwWWQdX2UKGgGR0BmZLsSkCV9aAdN6ANoCEdAoaEdZvDP4XV9lChoBkdAcmtlwLmZE2gHTbQBaAhHQKGhYoF3Y+V1fZQoaAZHQGrz7hvR7Z5oB01/AmgIR0ChoaQ9aEBbdX2UKGgGR0BuX435vcagaAdNfAFoCEdAoaQj6UJOWXV9lChoBkdAIrDbzshPkGgHTRwBaAhHQKGkU/8l5W11fZQoaAZHQGaQzBqKxcFoB03oA2gIR0Chp3CB5HEudX2UKGgGR0BhvQr4FiazaAdN6ANoCEdAoaipV+7UX3V9lChoBkdAbJXSLqD9O2gHTZIDaAhHQKGp1cwg1WN1fZQoaAZHQGUN2+49X91oB03oA2gIR0ChrIX7DVH4dX2UKGgGR0Bi2BQm/nGLaAdN6ANoCEdAoa8dwLmZE3V9lChoBkdAcjG3yqdYn2gHTYkCaAhHQKGvlkkrwvx1fZQoaAZHQGbEwEIPbwloB03oA2gIR0ChsLeYD1XedX2UKGgGR0Bj0fkkrwvyaAdN6ANoCEdAobayDqW1MXV9lChoBkdAcCkjt5UtI2gHTYkDaAhHQKG380elsP91fZQoaAZHQG1AHM2WIGhoB03IAmgIR0ChuCrOiWVvdX2UKGgGR0Bg74HZ9NN8aAdN6ANoCEdAocRyPp6hQHV9lChoBkdAbBU801qFiGgHTacBaAhHQKHEgzMzMzN1fZQoaAZHQGS8269TP0JoB03oA2gIR0ChxJONPxhEdX2UKGgGR0BtoI6Mir1eaAdNLwNoCEdAocTZy4nWrnV9lChoBkdAbwXwF1SwW2gHTc0CaAhHQKHE9OJtSAJ1fZQoaAZHQG2QV9F4LThoB01JAmgIR0ChxWUnXumadX2UKGgGR0BxApByCFsYaAdNYAJoCEdAoca9qxkd3nV9lChoBkdAcIqNJe3QU2gHTcgCaAhHQKHHVNsWO6x1fZQoaAZHQGN/k1dgOSZoB03oA2gIR0ChyLEu6ErYdX2UKGgGR0BuxnMINVinaAdNdQNoCEdAocjDHyVfNXV9lChoBkdAbi9Mvh60IGgHTV8BaAhHQKHKRcW0qpd1fZQoaAZHQG9TZpi7TUloB01PAmgIR0ChynrZ8KG+dX2UKGgGR0BwVzijtXxOaAdNOwJoCEdAocrpsuWa+nV9lChoBkdAblRfdAPd22gHTVkBaAhHQKHM068QI2R1fZQoaAZHQG7flWwNb1RoB02ZAWgIR0Chz6W3azu4dX2UKGgGR0BvhQ7LdN34aAdNdwFoCEdAodHx7/n4f3V9lChoBkdAb065BkZrHmgHTbIBaAhHQKHS6y8jAzp1fZQoaAZHQHAX6TwDvE1oB02hAWgIR0Ch1VCwKSgXdX2UKGgGR0BsaCkXUH6eaAdN5gJoCEdAodcf5JsfrHV9lChoBkdAY/d7XxvvSmgHTegDaAhHQKHXP/EwWWR1fZQoaAZHQG+XWcz67/ZoB01yAWgIR0Ch2OWZiNKidX2UKGgGR0BwqcwRGtp3aAdNzAJoCEdAodlSfDk2gnV9lChoBkdAbVklvZRKpWgHTcYCaAhHQKHZqasp5NZ1fZQoaAZHQG39GnGbTc9oB005AmgIR0Ch2g6/ATIvdX2UKGgGR0BwAy7xusLfaAdN6QFoCEdAodoPJ9y93HV9lChoBkdAazLi7TUiIWgHTQEDaAhHQKHaMfOD8Lt1fZQoaAZHQF8/Rw6ySmtoB03oA2gIR0Ch3JIBaLXMdX2UKGgGR0BrRCxJNCZ4aAdNwwFoCEdAod9LOoo/inV9lChoBkdAY5pblA/s3WgHTegDaAhHQKHf3NWU8mt1fZQoaAZHQHHV5owmE5BoB01aAWgIR0Ch4CFPSDywdX2UKGgGR0A1r7O3UhFFaAdNHwFoCEdAoevRQHiWFHV9lChoBkdAbu3WQwK0D2gHTSYDaAhHQKHsYJDVpbl1fZQoaAZHQHBGicCo0hxoB01QA2gIR0Ch7kGjbi6ydX2UKGgGR0BuooNVinYQaAdN5gJoCEdAoe736O5rg3V9lChoBkdAcIsH9m6GxmgHTQADaAhHQKHx40l7dBV1fZQoaAZHQHEBD8xbjcVoB02kAmgIR0Ch8l6y8jA0dX2UKGgGR0BwDvrTpgTiaAdNGgJoCEdAofMRa9sabXV9lChoBkdAbOH0W/JvHmgHTZoCaAhHQKH1XUvwmVt1fZQoaAZHQHB8GyxA0KtoB02bAmgIR0Ch9ikQwsXjdX2UKGgGR0BxFAaIeo1laAdNZAFoCEdAofaBBcAzYXV9lChoBkdAcjCIo3JgcGgHTYoBaAhHQKH26tTUAkt1fZQoaAZHQHC9aZx7zCloB03OAmgIR0Ch9x90Rvm6dX2UKGgGR0BuyiiM5wOwaAdNhgJoCEdAofjn/JeVs3V9lChoBkdAbZY0svqTr2gHTZ4BaAhHQKH5tfMOf/Z1fZQoaAZHQHCvCyprDZVoB01FAmgIR0Ch+fG0VrRCdX2UKGgGR0BjnMlolD4QaAdN6ANoCEdAofyJ/G2kSHV9lChoBkdAbuamuTzNEGgHTZ8CaAhHQKH8683++/R1fZQoaAZHQHHqgwGnn+1oB013AWgIR0Ch/TYUWVNYdX2UKGgGR0Bvmnww0wajaAdNagFoCEdAof955xBE8nV9lChoBkdAYd0G+K0laGgHTegDaAhHQKIADpeNT991fZQoaAZHQG/Va42CNCJoB01aAmgIR0CiAD3FcY65dX2UKGgGR0Bu0i/sVtXQaAdNlwFoCEdAogGMCRwIdHV9lChoBkdAcMdt7KJVKmgHTS8DaAhHQKIBsxEfDDV1fZQoaAZHQGwqLwF1SwZoB01lAWgIR0CiA/F7laKUdX2UKGgGR0BxRvXiBGx2aAdNjgJoCEdAogP9x0dRznV9lChoBkdAbdjVBlcyFmgHTeYBaAhHQKIELExZdOZ1fZQoaAZHQHGm1o+Ofd1oB02UAWgIR0CiBNjkdV/+dX2UKGgGR0Bt5Ntj0+TvaAdNYQFoCEdAogY5KjBVMnVlLg=="
|
| 49 |
+
},
|
| 50 |
+
"ep_success_buffer": {
|
| 51 |
+
":type:": "<class 'collections.deque'>",
|
| 52 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
| 53 |
+
},
|
| 54 |
+
"_n_updates": 248,
|
| 55 |
+
"observation_space": {
|
| 56 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
| 57 |
+
":serialized:": "gAWVdwIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBNudW1weS5fY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolggAAAAAAAAAAQEBAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolggAAAAAAAAAAQEBAQEBAQGUaBVLCIWUaBl0lFKUjAZfc2hhcGWUSwiFlIwDbG93lGgRKJYgAAAAAAAAAAAAtMIAALTCAACgwAAAoMDbD0nAAACgwAAAAIAAAACAlGgLSwiFlGgZdJRSlIwEaGlnaJRoESiWIAAAAAAAAAAAALRCAAC0QgAAoEAAAKBA2w9JQAAAoEAAAIA/AACAP5RoC0sIhZRoGXSUUpSMCGxvd19yZXBylIxbWy05MC4gICAgICAgIC05MC4gICAgICAgICAtNS4gICAgICAgICAtNS4gICAgICAgICAtMy4xNDE1OTI3ICAtNS4KICAtMC4gICAgICAgICAtMC4gICAgICAgXZSMCWhpZ2hfcmVwcpSMU1s5MC4gICAgICAgIDkwLiAgICAgICAgIDUuICAgICAgICAgNS4gICAgICAgICAzLjE0MTU5MjcgIDUuCiAgMS4gICAgICAgICAxLiAgICAgICBdlIwKX25wX3JhbmRvbZROdWIu",
|
| 58 |
+
"dtype": "float32",
|
| 59 |
+
"bounded_below": "[ True True True True True True True True]",
|
| 60 |
+
"bounded_above": "[ True True True True True True True True]",
|
| 61 |
+
"_shape": [
|
| 62 |
+
8
|
| 63 |
+
],
|
| 64 |
+
"low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
| 65 |
+
"high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
| 66 |
+
"low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
| 67 |
+
"high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
| 68 |
+
"_np_random": null
|
| 69 |
+
},
|
| 70 |
+
"action_space": {
|
| 71 |
+
":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
|
| 72 |
+
":serialized:": "gAWV3AAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFm51bXB5Ll9jb3JlLm11bHRpYXJyYXmUjAZzY2FsYXKUk5SMBW51bXB5lIwFZHR5cGWUk5SMAmk4lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJDCAQAAAAAAAAAlIaUUpSMBXN0YXJ0lGgIaA5DCAAAAAAAAAAAlIaUUpSMBl9zaGFwZZQpjAVkdHlwZZRoDowKX25wX3JhbmRvbZROdWIu",
|
| 73 |
+
"n": "4",
|
| 74 |
+
"start": "0",
|
| 75 |
+
"_shape": [],
|
| 76 |
+
"dtype": "int64",
|
| 77 |
+
"_np_random": null
|
| 78 |
+
},
|
| 79 |
+
"n_envs": 16,
|
| 80 |
+
"n_steps": 1024,
|
| 81 |
+
"gamma": 0.999,
|
| 82 |
+
"gae_lambda": 0.98,
|
| 83 |
+
"ent_coef": 0.01,
|
| 84 |
+
"vf_coef": 0.5,
|
| 85 |
+
"max_grad_norm": 0.5,
|
| 86 |
+
"batch_size": 64,
|
| 87 |
+
"n_epochs": 4,
|
| 88 |
+
"clip_range": {
|
| 89 |
+
":type:": "<class 'function'>",
|
| 90 |
+
":serialized:": "gAWV1gIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjExL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUS4RDCPiAANgPEogKlEMAlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTEvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpRoAIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCF9lH2UKGgYjARmdW5jlIwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBmMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
|
| 91 |
+
},
|
| 92 |
+
"clip_range_vf": null,
|
| 93 |
+
"normalize_advantage": true,
|
| 94 |
+
"target_kl": null,
|
| 95 |
+
"lr_schedule": {
|
| 96 |
+
":type:": "<class 'function'>",
|
| 97 |
+
":serialized:": "gAWV1gIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjExL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUS4RDCPiAANgPEogKlEMAlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTEvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpRoAIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCF9lH2UKGgYjARmdW5jlIwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBmMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
|
| 98 |
+
}
|
| 99 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:589fdbd7a2f5a6e9213320716406360ccd373956c368b56b5e7a54f1a214649e
|
| 3 |
+
size 88362
|
ppo-LunarLander-v2/policy.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:45b95c28f89506b05a68ae79c45f50ae1e65ccbeff5f647e4de322a8913acfa3
|
| 3 |
+
size 43762
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
|
| 3 |
+
size 864
|
ppo-LunarLander-v2/system_info.txt
ADDED
|
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
- OS: Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024
|
| 2 |
+
- Python: 3.11.11
|
| 3 |
+
- Stable-Baselines3: 2.0.0a5
|
| 4 |
+
- PyTorch: 2.6.0+cu124
|
| 5 |
+
- GPU Enabled: True
|
| 6 |
+
- Numpy: 2.0.2
|
| 7 |
+
- Cloudpickle: 3.1.1
|
| 8 |
+
- Gymnasium: 0.28.1
|
| 9 |
+
- OpenAI Gym: 0.25.2
|
replay.mp4
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:f167d1b97311a27ba0f2bce9ee483274154a6f07ce3c59812156b14fdfc797ed
|
| 3 |
+
size 141729
|
results.json
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
{"mean_reward": 250.6440905, "std_reward": 19.63355879590461, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2025-04-09T23:17:55.973848"}
|