File size: 4,015 Bytes
84eefe7
 
 
 
66beabc
 
342ae20
66beabc
 
 
 
 
25f6abf
3eb2d42
 
cd995c7
 
3eb2d42
 
 
 
d2454b0
 
3eb2d42
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
25f6abf
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
---
license: apache-2.0
base_model:
- Qwen/Qwen3-VL-4B-Thinking
language:
- en
pipeline_tag: image-text-to-text
library_name: transformers
tags:
- text-generation-inference
- abliterated
- v1.0
- agent
---

![15](https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/zHlkg1wooTqNCDCFrNcGF.png)

# **Qwen3-VL-4B-Thinking-abliterated**

> **Qwen3-VL-4B-Thinking-abliterated** is an abliterated (v1.0) variant of Qwen3-VL-4B-Thinking, designed for Abliterated Reasoning and Captioning. This model generates detailed captions and reasoning outputs across a wide range of visual and multimodal contexts, including complex, sensitive, or nuanced content, and supports diverse aspect ratios and resolutions.

<img src="https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/1xWD8FQ2qvqQzyqOzy05I.jpeg" alt="1" style="border-radius: 30px;"/>

# Key Highlights

* **Abliterated / Uncensored Captioning**: Fine-tuned to bypass standard content filters while preserving factual, descriptive, and reasoning-rich outputs.
* **High-Fidelity Descriptions**: Produces comprehensive captions and reasoning for general, artistic, technical, abstract, or low-context images.
* **Robust Across Aspect Ratios**: Supports wide, tall, square, and irregular image dimensions with consistent accuracy.
* **Variational Detail Control**: Generates outputs ranging from high-level summaries to fine-grained, intricate descriptions and reasoning.
* **Foundation on Qwen3-VL-4B-Thinking Architecture**: Leverages Qwen3-VL-4B-Thinking’s multimodal reasoning and instruction-following capabilities.
* **Multilingual Output Capability**: Primarily English, with adaptability for multilingual prompts via prompt engineering.

# Quick Start with Transformers

```python
from transformers import Qwen3VLForConditionalGeneration, AutoProcessor
from qwen_vl_utils import process_vision_info
import torch

model = Qwen3VLForConditionalGeneration.from_pretrained(
    "prithivMLmods/Qwen3-VL-4B-Thinking-abliterated", torch_dtype="auto", device_map="auto"
)

processor = AutoProcessor.from_pretrained("prithivMLmods/Qwen3-VL-4B-Thinking-abliterated")

messages = [
    {
        "role": "user",
        "content": [
            {
                "type": "image",
                "image": "https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen-VL/assets/demo.jpeg",
            },
            {"type": "text", "text": "Provide a detailed caption and reasoning for this image."},
        ],
    }
]

text = processor.apply_chat_template(
    messages, tokenize=False, add_generation_prompt=True
)
image_inputs, video_inputs = process_vision_info(messages)
inputs = processor(
    text=[text],
    images=image_inputs,
    videos=video_inputs,
    padding=True,
    return_tensors="pt",
)
inputs = inputs.to("cuda")

generated_ids = model.generate(**inputs, max_new_tokens=128)
generated_ids_trimmed = [
    out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
]
output_text = processor.batch_decode(
    generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
)
print(output_text)
```

# Intended Use

This model is suited for:

* Generating detailed, uncensored captions and reasoning for general-purpose or artistic datasets.
* Research in content moderation, red-teaming, and generative safety evaluation.
* Enabling descriptive captioning and reasoning for visual datasets typically excluded from mainstream models.
* Creative applications such as storytelling, art generation, or multimodal reasoning tasks.
* Captioning and reasoning for non-standard aspect ratios and stylized visual content.

# Limitations

* May produce explicit, sensitive, or offensive descriptions depending on image content and prompts.
* Not recommended for production systems requiring strict content moderation.
* Output style, tone, and reasoning can vary depending on input phrasing.
* Accuracy may vary for unfamiliar, synthetic, or highly abstract visual content.