File size: 4,015 Bytes
			
			84eefe7 66beabc 342ae20 66beabc 25f6abf 3eb2d42 cd995c7 3eb2d42 d2454b0 3eb2d42 25f6abf  | 
								1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97  | 
								---
license: apache-2.0
base_model:
- Qwen/Qwen3-VL-4B-Thinking
language:
- en
pipeline_tag: image-text-to-text
library_name: transformers
tags:
- text-generation-inference
- abliterated
- v1.0
- agent
---

# **Qwen3-VL-4B-Thinking-abliterated**
> **Qwen3-VL-4B-Thinking-abliterated** is an abliterated (v1.0) variant of Qwen3-VL-4B-Thinking, designed for Abliterated Reasoning and Captioning. This model generates detailed captions and reasoning outputs across a wide range of visual and multimodal contexts, including complex, sensitive, or nuanced content, and supports diverse aspect ratios and resolutions.
<img src="https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/1xWD8FQ2qvqQzyqOzy05I.jpeg" alt="1" style="border-radius: 30px;"/>
# Key Highlights
* **Abliterated / Uncensored Captioning**: Fine-tuned to bypass standard content filters while preserving factual, descriptive, and reasoning-rich outputs.
* **High-Fidelity Descriptions**: Produces comprehensive captions and reasoning for general, artistic, technical, abstract, or low-context images.
* **Robust Across Aspect Ratios**: Supports wide, tall, square, and irregular image dimensions with consistent accuracy.
* **Variational Detail Control**: Generates outputs ranging from high-level summaries to fine-grained, intricate descriptions and reasoning.
* **Foundation on Qwen3-VL-4B-Thinking Architecture**: Leverages Qwen3-VL-4B-Thinking’s multimodal reasoning and instruction-following capabilities.
* **Multilingual Output Capability**: Primarily English, with adaptability for multilingual prompts via prompt engineering.
# Quick Start with Transformers
```python
from transformers import Qwen3VLForConditionalGeneration, AutoProcessor
from qwen_vl_utils import process_vision_info
import torch
model = Qwen3VLForConditionalGeneration.from_pretrained(
    "prithivMLmods/Qwen3-VL-4B-Thinking-abliterated", torch_dtype="auto", device_map="auto"
)
processor = AutoProcessor.from_pretrained("prithivMLmods/Qwen3-VL-4B-Thinking-abliterated")
messages = [
    {
        "role": "user",
        "content": [
            {
                "type": "image",
                "image": "https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen-VL/assets/demo.jpeg",
            },
            {"type": "text", "text": "Provide a detailed caption and reasoning for this image."},
        ],
    }
]
text = processor.apply_chat_template(
    messages, tokenize=False, add_generation_prompt=True
)
image_inputs, video_inputs = process_vision_info(messages)
inputs = processor(
    text=[text],
    images=image_inputs,
    videos=video_inputs,
    padding=True,
    return_tensors="pt",
)
inputs = inputs.to("cuda")
generated_ids = model.generate(**inputs, max_new_tokens=128)
generated_ids_trimmed = [
    out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
]
output_text = processor.batch_decode(
    generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
)
print(output_text)
```
# Intended Use
This model is suited for:
* Generating detailed, uncensored captions and reasoning for general-purpose or artistic datasets.
* Research in content moderation, red-teaming, and generative safety evaluation.
* Enabling descriptive captioning and reasoning for visual datasets typically excluded from mainstream models.
* Creative applications such as storytelling, art generation, or multimodal reasoning tasks.
* Captioning and reasoning for non-standard aspect ratios and stylized visual content.
# Limitations
* May produce explicit, sensitive, or offensive descriptions depending on image content and prompts.
* Not recommended for production systems requiring strict content moderation.
* Output style, tone, and reasoning can vary depending on input phrasing.
* Accuracy may vary for unfamiliar, synthetic, or highly abstract visual content. |