Create README.md
Browse files
README.md
ADDED
|
@@ -0,0 +1,216 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
license: apache-2.0
|
| 3 |
+
datasets:
|
| 4 |
+
- kaist-ai/Perception-Collection
|
| 5 |
+
- kaist-ai/Perception-Bench
|
| 6 |
+
language:
|
| 7 |
+
- en
|
| 8 |
+
metrics:
|
| 9 |
+
- pearsonr
|
| 10 |
+
- spearmanr
|
| 11 |
+
library_name: transformers
|
| 12 |
+
pipeline_tag: image-to-text
|
| 13 |
+
tags:
|
| 14 |
+
- Image-to-Text
|
| 15 |
+
- Visual Question Answering
|
| 16 |
+
- Text2Text Generation
|
| 17 |
+
---
|
| 18 |
+
## Links for Reference
|
| 19 |
+
- **Homepage:**
|
| 20 |
+
- **Repository: https://github.com/kaistAI/prometheus-vision**
|
| 21 |
+
- **Paper: https://arxiv.org/abs/2401.06591**
|
| 22 |
+
- **Point of Contact: seongyun@kaist.ac.kr**
|
| 23 |
+
# TL;DR
|
| 24 |
+
Prometheus-Vision is the first open-source VLM specialized for evaluation purposes. Prometheus-Vision shows a high correlation with both GPT-4V and human evaluators, indicating its potential to be used as a cheap alternative for GPT-4V evaluation.
|
| 25 |
+

|
| 26 |
+
# Model Details
|
| 27 |
+
|
| 28 |
+
## Model Description
|
| 29 |
+
- **Model type:** Vision-Language Model
|
| 30 |
+
- **Language(s) (NLP):** English
|
| 31 |
+
- **License:** Apache 2.0
|
| 32 |
+
- **Related Models:** [All Prometheus Checkpoints](https://huggingface.co/models?search=kaist-ai/Prometheus-Vision)
|
| 33 |
+
- **Resources for more information:**
|
| 34 |
+
- [Research paper](https://arxiv.org/abs/2401.06591)
|
| 35 |
+
- [GitHub Repo](https://github.com/kaistAI/prometheus-vision)
|
| 36 |
+
|
| 37 |
+
Prometheu-Vision is trained with two different sizes (7B and 13B).
|
| 38 |
+
You could check the 13B sized VLM on [this page](https://huggingface.co/kaist-ai/prometheus-vision-13b-v1.0).
|
| 39 |
+
Also, check out our dataset as well on [this page](https://huggingface.co/datasets/kaist-ai/Perception-Collection).
|
| 40 |
+
## Prompt Format
|
| 41 |
+
Prometheus-Vision requires 5 components in the input: An image, an instruction, a response to evaluate, a score rubric, and a reference answer. You could refer to the prompt format below.
|
| 42 |
+
You should fill in the instruction, response, reference answer, criteria description, and score description for score in range of 1 to 5.
|
| 43 |
+
```
|
| 44 |
+
###Task Description:
|
| 45 |
+
An instruction (might include an Input inside it), a response to evaluate, a reference answer that gets a score of 5, an image and a score rubric representing an evaluation criterion is given.
|
| 46 |
+
1. Write a detailed feedback that assess the quality of the response strictly based on the given score rubric, not evaluating in general.
|
| 47 |
+
2. After writing a feedback, write a score that is an integer between 1 and 5. You should refer to the score rubric.
|
| 48 |
+
3. The output format should look as follows: \"Feedback: (write a feedback for criteria) [RESULT] (an integer number between 1 and 5)\"
|
| 49 |
+
4. Please do not generate any other opening, closing, and explanations.
|
| 50 |
+
|
| 51 |
+
###The instruction to evaluate:
|
| 52 |
+
{instruction}
|
| 53 |
+
|
| 54 |
+
###Response to evaluate:
|
| 55 |
+
{response}
|
| 56 |
+
|
| 57 |
+
###Reference Answer (Score 5):
|
| 58 |
+
{reference_answer}
|
| 59 |
+
|
| 60 |
+
###Score Rubrics:
|
| 61 |
+
[{criteria_description}]
|
| 62 |
+
Score 1: {score1_description}
|
| 63 |
+
Score 2: {score2_description}
|
| 64 |
+
Score 3: {score3_description}
|
| 65 |
+
Score 4: {score4_description}
|
| 66 |
+
Score 5: {score5_description}
|
| 67 |
+
|
| 68 |
+
###Feedback:
|
| 69 |
+
```
|
| 70 |
+
Also, we use the following output format. During inference, you could parse the score by splitting the number that is generated next to the [RESULT] phrase.
|
| 71 |
+
```
|
| 72 |
+
{orig_feedback}
|
| 73 |
+
[RESULT] {orig_score}
|
| 74 |
+
```
|
| 75 |
+
## License
|
| 76 |
+
Perception Collection and Prometheus-Vision are subject to OpenAI's Terms of Use for the generated data. If you suspect any violations, please reach out to us.
|
| 77 |
+
# Usage
|
| 78 |
+
Find below some example scripts on how to use the model in `transformers`:
|
| 79 |
+
## Using the Pytorch model
|
| 80 |
+
### Running the model on a GPU
|
| 81 |
+
<details>
|
| 82 |
+
<summary> Click to expand </summary>
|
| 83 |
+
|
| 84 |
+
```python
|
| 85 |
+
import argparse
|
| 86 |
+
import torch
|
| 87 |
+
import os
|
| 88 |
+
import json
|
| 89 |
+
from tqdm import tqdm
|
| 90 |
+
import shortuuid
|
| 91 |
+
|
| 92 |
+
from llava.constants import IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN
|
| 93 |
+
from llava.conversation import conv_templates, SeparatorStyle
|
| 94 |
+
from llava.model.builder import load_pretrained_model
|
| 95 |
+
from llava.utils import disable_torch_init
|
| 96 |
+
from llava.mm_utils import tokenizer_image_token, get_model_name_from_path, KeywordsStoppingCriteria
|
| 97 |
+
|
| 98 |
+
from PIL import Image
|
| 99 |
+
import math
|
| 100 |
+
|
| 101 |
+
|
| 102 |
+
def split_list(lst, n):
|
| 103 |
+
"""Split a list into n (roughly) equal-sized chunks"""
|
| 104 |
+
chunk_size = math.ceil(len(lst) / n) # integer division
|
| 105 |
+
return [lst[i:i+chunk_size] for i in range(0, len(lst), chunk_size)]
|
| 106 |
+
|
| 107 |
+
|
| 108 |
+
def get_chunk(lst, n, k):
|
| 109 |
+
chunks = split_list(lst, n)
|
| 110 |
+
return chunks[k]
|
| 111 |
+
|
| 112 |
+
|
| 113 |
+
def eval_model(args):
|
| 114 |
+
# Model
|
| 115 |
+
disable_torch_init()
|
| 116 |
+
model_path = 'kaist-ai/prometheus-vision-7b-v1.0'
|
| 117 |
+
model_name = 'llava-v1.5'
|
| 118 |
+
tokenizer, model, image_processor, context_len = load_pretrained_model(model_path, args.model_base, model_name)
|
| 119 |
+
|
| 120 |
+
questions = [json.loads(q) for q in open(os.path.expanduser(args.question_file), "r")]
|
| 121 |
+
questions = get_chunk(questions, args.num_chunks, args.chunk_idx)
|
| 122 |
+
answers_file = os.path.expanduser(args.answers_file)
|
| 123 |
+
os.makedirs(os.path.dirname(answers_file), exist_ok=True)
|
| 124 |
+
ans_file = open(answers_file, "w")
|
| 125 |
+
for line in tqdm(questions):
|
| 126 |
+
idx = line["question_id"]
|
| 127 |
+
image_file = line["image"]
|
| 128 |
+
qs = line["text"]
|
| 129 |
+
cur_prompt = qs
|
| 130 |
+
if model.config.mm_use_im_start_end:
|
| 131 |
+
qs = DEFAULT_IM_START_TOKEN + DEFAULT_IMAGE_TOKEN + DEFAULT_IM_END_TOKEN + '\n' + qs
|
| 132 |
+
else:
|
| 133 |
+
qs = DEFAULT_IMAGE_TOKEN + '\n' + qs
|
| 134 |
+
|
| 135 |
+
conv = conv_templates[args.conv_mode].copy()
|
| 136 |
+
conv.append_message(conv.roles[0], qs)
|
| 137 |
+
conv.append_message(conv.roles[1], None)
|
| 138 |
+
prompt = conv.get_prompt()
|
| 139 |
+
|
| 140 |
+
input_ids = tokenizer_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors='pt').unsqueeze(0).cuda()
|
| 141 |
+
|
| 142 |
+
image = Image.open(os.path.join(args.image_folder, image_file))
|
| 143 |
+
image_tensor = image_processor.preprocess(image, return_tensors='pt')['pixel_values'][0]
|
| 144 |
+
|
| 145 |
+
stop_str = conv.sep if conv.sep_style != SeparatorStyle.TWO else conv.sep2
|
| 146 |
+
keywords = [stop_str]
|
| 147 |
+
stopping_criteria = KeywordsStoppingCriteria(keywords, tokenizer, input_ids)
|
| 148 |
+
|
| 149 |
+
with torch.inference_mode():
|
| 150 |
+
output_ids = model.generate(
|
| 151 |
+
input_ids,
|
| 152 |
+
images=image_tensor.unsqueeze(0).half().cuda(),
|
| 153 |
+
do_sample=True if args.temperature > 0 else False,
|
| 154 |
+
temperature=args.temperature,
|
| 155 |
+
top_p=args.top_p,
|
| 156 |
+
num_beams=args.num_beams,
|
| 157 |
+
# no_repeat_ngram_size=3,
|
| 158 |
+
max_new_tokens=1024,
|
| 159 |
+
use_cache=True)
|
| 160 |
+
|
| 161 |
+
input_token_len = input_ids.shape[1]
|
| 162 |
+
n_diff_input_output = (input_ids != output_ids[:, :input_token_len]).sum().item()
|
| 163 |
+
if n_diff_input_output > 0:
|
| 164 |
+
print(f'[Warning] {n_diff_input_output} output_ids are not the same as the input_ids')
|
| 165 |
+
outputs = tokenizer.batch_decode(output_ids[:, input_token_len:], skip_special_tokens=True)[0]
|
| 166 |
+
outputs = outputs.strip()
|
| 167 |
+
if outputs.endswith(stop_str):
|
| 168 |
+
outputs = outputs[:-len(stop_str)]
|
| 169 |
+
outputs = outputs.strip()
|
| 170 |
+
|
| 171 |
+
ans_id = shortuuid.uuid()
|
| 172 |
+
ans_file.write(json.dumps({"question_id": idx,
|
| 173 |
+
"prompt": cur_prompt,
|
| 174 |
+
"text": outputs,
|
| 175 |
+
"answer_id": ans_id,
|
| 176 |
+
"model_id": model_name,
|
| 177 |
+
"metadata": {}}) + "\n")
|
| 178 |
+
ans_file.flush()
|
| 179 |
+
ans_file.close()
|
| 180 |
+
|
| 181 |
+
if __name__ == "__main__":
|
| 182 |
+
parser = argparse.ArgumentParser()
|
| 183 |
+
parser.add_argument("--model-path", type=str, default="facebook/opt-350m")
|
| 184 |
+
parser.add_argument("--model-base", type=str, default=None)
|
| 185 |
+
parser.add_argument("--image-folder", type=str, default="")
|
| 186 |
+
parser.add_argument("--question-file", type=str, default="tables/question.jsonl")
|
| 187 |
+
parser.add_argument("--answers-file", type=str, default="answer.jsonl")
|
| 188 |
+
parser.add_argument("--conv-mode", type=str, default="llava_v1")
|
| 189 |
+
parser.add_argument("--num-chunks", type=int, default=1)
|
| 190 |
+
parser.add_argument("--chunk-idx", type=int, default=0)
|
| 191 |
+
parser.add_argument("--temperature", type=float, default=0.2)
|
| 192 |
+
parser.add_argument("--top_p", type=float, default=None)
|
| 193 |
+
parser.add_argument("--num_beams", type=int, default=1)
|
| 194 |
+
args = parser.parse_args()
|
| 195 |
+
|
| 196 |
+
eval_model(args)
|
| 197 |
+
|
| 198 |
+
```
|
| 199 |
+
</details>
|
| 200 |
+
|
| 201 |
+
# Citation
|
| 202 |
+
|
| 203 |
+
If you find the following model helpful, please consider citing our paper!
|
| 204 |
+
|
| 205 |
+
**BibTeX:**
|
| 206 |
+
|
| 207 |
+
```bibtex
|
| 208 |
+
@misc{lee2024prometheusvision,
|
| 209 |
+
title={Prometheus-Vision: Vision-Language Model as a Judge for Fine-Grained Evaluation},
|
| 210 |
+
author={Seongyun Lee and Seungone Kim and Sue Hyun Park and Geewook Kim and Minjoon Seo},
|
| 211 |
+
year={2024},
|
| 212 |
+
eprint={2401.06591},
|
| 213 |
+
archivePrefix={arXiv},
|
| 214 |
+
primaryClass={cs.CL}
|
| 215 |
+
}
|
| 216 |
+
```
|