Update README.md
Browse files
README.md
CHANGED
|
@@ -1,24 +1,59 @@
|
|
| 1 |
---
|
| 2 |
-
license:
|
| 3 |
base_model: microsoft/deberta-v3-base
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 4 |
tags:
|
|
|
|
|
|
|
|
|
|
| 5 |
- generated_from_trainer
|
| 6 |
metrics:
|
| 7 |
- accuracy
|
| 8 |
- recall
|
| 9 |
- precision
|
| 10 |
- f1
|
|
|
|
| 11 |
model-index:
|
| 12 |
-
- name: deberta-v3-base-prompt-injection
|
| 13 |
-
results:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 14 |
---
|
| 15 |
|
| 16 |
-
|
| 17 |
-
should probably proofread and complete it, then remove this comment. -->
|
| 18 |
|
| 19 |
-
|
|
|
|
|
|
|
| 20 |
|
| 21 |
-
This model is a fine-tuned version of [microsoft/deberta-v3-base](https://huggingface.co/microsoft/deberta-v3-base) on an unknown dataset.
|
| 22 |
It achieves the following results on the evaluation set:
|
| 23 |
- Loss: 0.0010
|
| 24 |
- Accuracy: 0.9999
|
|
@@ -26,17 +61,46 @@ It achieves the following results on the evaluation set:
|
|
| 26 |
- Precision: 0.9998
|
| 27 |
- F1: 0.9998
|
| 28 |
|
| 29 |
-
## Model
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 30 |
|
| 31 |
-
|
| 32 |
|
| 33 |
-
|
|
|
|
|
|
|
| 34 |
|
| 35 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 36 |
|
| 37 |
## Training and evaluation data
|
| 38 |
|
| 39 |
-
|
| 40 |
|
| 41 |
## Training procedure
|
| 42 |
|
|
@@ -67,3 +131,15 @@ The following hyperparameters were used during training:
|
|
| 67 |
- Pytorch 2.1.1+cu121
|
| 68 |
- Datasets 2.15.0
|
| 69 |
- Tokenizers 0.15.0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
---
|
| 2 |
+
license: apache-2.0
|
| 3 |
base_model: microsoft/deberta-v3-base
|
| 4 |
+
datasets:
|
| 5 |
+
- Lakera/gandalf_ignore_instructions
|
| 6 |
+
- rubend18/ChatGPT-Jailbreak-Prompts
|
| 7 |
+
- imoxto/prompt_injection_cleaned_dataset-v2
|
| 8 |
+
- hackaprompt/hackaprompt-dataset
|
| 9 |
+
- fka/awesome-chatgpt-prompts
|
| 10 |
+
- teven/prompted_examples
|
| 11 |
+
- Dahoas/synthetic-hh-rlhf-prompts
|
| 12 |
+
- Dahoas/hh_prompt_format
|
| 13 |
+
- MohamedRashad/ChatGPT-prompts
|
| 14 |
+
- HuggingFaceH4/instruction-dataset
|
| 15 |
+
- HuggingFaceH4/no_robots
|
| 16 |
+
- HuggingFaceH4/ultrachat_200k
|
| 17 |
+
language:
|
| 18 |
+
- en
|
| 19 |
tags:
|
| 20 |
+
- prompt-injection
|
| 21 |
+
- injection
|
| 22 |
+
- security
|
| 23 |
- generated_from_trainer
|
| 24 |
metrics:
|
| 25 |
- accuracy
|
| 26 |
- recall
|
| 27 |
- precision
|
| 28 |
- f1
|
| 29 |
+
pipeline_tag: text-classification
|
| 30 |
model-index:
|
| 31 |
+
- name: deberta-v3-base-prompt-injection
|
| 32 |
+
results:
|
| 33 |
+
- task:
|
| 34 |
+
type: text-classification
|
| 35 |
+
name: Prompt Injection Detection
|
| 36 |
+
metrics:
|
| 37 |
+
- type: precision
|
| 38 |
+
value: 0.9998
|
| 39 |
+
- type: f1
|
| 40 |
+
value: 0.9998
|
| 41 |
+
- type: accuracy
|
| 42 |
+
value: 0.9999
|
| 43 |
+
- type: recall
|
| 44 |
+
value: 0.9997
|
| 45 |
+
co2_eq_emissions:
|
| 46 |
+
emissions: 0.9990662916168788
|
| 47 |
+
source: "code carbon"
|
| 48 |
+
training_type: "fine-tuning"
|
| 49 |
---
|
| 50 |
|
| 51 |
+
# Model Card for deberta-v3-base-prompt-injection
|
|
|
|
| 52 |
|
| 53 |
+
This model is a fine-tuned version of [microsoft/deberta-v3-base](https://huggingface.co/microsoft/deberta-v3-base) on multiple combined datasets of prompt injections and normal prompts.
|
| 54 |
+
|
| 55 |
+
It aims to identify prompt injections, classifying inputs into two categories: `0` for no injection and `1` for injection detected.
|
| 56 |
|
|
|
|
| 57 |
It achieves the following results on the evaluation set:
|
| 58 |
- Loss: 0.0010
|
| 59 |
- Accuracy: 0.9999
|
|
|
|
| 61 |
- Precision: 0.9998
|
| 62 |
- F1: 0.9998
|
| 63 |
|
| 64 |
+
## Model details
|
| 65 |
+
|
| 66 |
+
- **Fine-tuned by:** Laiyer.ai
|
| 67 |
+
- **Model type:** deberta-v3
|
| 68 |
+
- **Language(s) (NLP):** English
|
| 69 |
+
- **License:** Apache license 2.0
|
| 70 |
+
- **Finetuned from model:** [microsoft/deberta-v3-base](https://huggingface.co/microsoft/deberta-v3-base)
|
| 71 |
+
|
| 72 |
+
## Intended Uses & Limitations
|
| 73 |
+
|
| 74 |
+
It aims to identify prompt injections, classifying inputs into two categories: `0` for no injection and `1` for injection detected.
|
| 75 |
+
|
| 76 |
+
The model's performance is dependent on the nature and quality of the training data. It might not perform well on text styles or topics not represented in the training set.
|
| 77 |
|
| 78 |
+
## How to Get Started with the Model
|
| 79 |
|
| 80 |
+
```python
|
| 81 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
| 82 |
+
import torch
|
| 83 |
|
| 84 |
+
tokenizer = AutoTokenizer.from_pretrained("laiyer/deberta-v3-base-prompt-injection")
|
| 85 |
+
model = AutoModelForSequenceClassification.from_pretrained("laiyer/deberta-v3-base-prompt-injection")
|
| 86 |
+
|
| 87 |
+
text = "Your prompt injection is here"
|
| 88 |
+
|
| 89 |
+
classifier = pipeline(
|
| 90 |
+
"text-classification",
|
| 91 |
+
model=model,
|
| 92 |
+
tokenizer=tokenizer,
|
| 93 |
+
truncation=True,
|
| 94 |
+
max_length=512,
|
| 95 |
+
device=torch.device("cuda" if torch.cuda.is_available() else "cpu"),
|
| 96 |
+
)
|
| 97 |
+
|
| 98 |
+
print(classifier(text))
|
| 99 |
+
```
|
| 100 |
|
| 101 |
## Training and evaluation data
|
| 102 |
|
| 103 |
+
The model was trained on a custom dataset from multiple open-source ones. We used ~30% prompt injections and ~70% of good prompts.
|
| 104 |
|
| 105 |
## Training procedure
|
| 106 |
|
|
|
|
| 131 |
- Pytorch 2.1.1+cu121
|
| 132 |
- Datasets 2.15.0
|
| 133 |
- Tokenizers 0.15.0
|
| 134 |
+
|
| 135 |
+
## Citation
|
| 136 |
+
|
| 137 |
+
```
|
| 138 |
+
@misc{deberta-v3-base-prompt-injection,
|
| 139 |
+
author = {Laiyer.ai},
|
| 140 |
+
title = {Fine-Tuned DeBERTa-v3 for Prompt Injection Detection},
|
| 141 |
+
year = {2023},
|
| 142 |
+
publisher = {HuggingFace},
|
| 143 |
+
url = {https://huggingface.co/laiyer/deberta-v3-base-prompt-injection},
|
| 144 |
+
}
|
| 145 |
+
```
|