Upload configuration_phi3.py
Browse files- configuration_phi3.py +226 -0
    	
        configuration_phi3.py
    ADDED
    
    | @@ -0,0 +1,226 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            # coding=utf-8
         | 
| 2 | 
            +
            # Copyright 2024 Microsoft and the HuggingFace Inc. team. All rights reserved.
         | 
| 3 | 
            +
            #
         | 
| 4 | 
            +
            # Licensed under the Apache License, Version 2.0 (the "License");
         | 
| 5 | 
            +
            # you may not use this file except in compliance with the License.
         | 
| 6 | 
            +
            # You may obtain a copy of the License at
         | 
| 7 | 
            +
            #
         | 
| 8 | 
            +
            #     http://www.apache.org/licenses/LICENSE-2.0
         | 
| 9 | 
            +
            #
         | 
| 10 | 
            +
            # Unless required by applicable law or agreed to in writing, software
         | 
| 11 | 
            +
            # distributed under the License is distributed on an "AS IS" BASIS,
         | 
| 12 | 
            +
            # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
         | 
| 13 | 
            +
            # See the License for the specific language governing permissions and
         | 
| 14 | 
            +
            # limitations under the License.
         | 
| 15 | 
            +
             | 
| 16 | 
            +
            """Phi-3 model configuration"""
         | 
| 17 | 
            +
             | 
| 18 | 
            +
            from transformers.configuration_utils import PretrainedConfig
         | 
| 19 | 
            +
            from transformers.utils import logging
         | 
| 20 | 
            +
             | 
| 21 | 
            +
             | 
| 22 | 
            +
            logger = logging.get_logger(__name__)
         | 
| 23 | 
            +
             | 
| 24 | 
            +
             | 
| 25 | 
            +
            class Phi3Config(PretrainedConfig):
         | 
| 26 | 
            +
                r"""
         | 
| 27 | 
            +
                This is the configuration class to store the configuration of a [`Phi3Model`]. It is used to instantiate a Phi-3
         | 
| 28 | 
            +
                model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
         | 
| 29 | 
            +
                defaults will yield a similar configuration to that of the
         | 
| 30 | 
            +
                [microsoft/Phi-3-mini-4k-instruct](https://huggingface.co/microsoft/Phi-3-mini-4k-instruct).
         | 
| 31 | 
            +
             | 
| 32 | 
            +
                Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
         | 
| 33 | 
            +
                documentation from [`PretrainedConfig`] for more information.
         | 
| 34 | 
            +
             | 
| 35 | 
            +
                Args:
         | 
| 36 | 
            +
                    vocab_size (`int`, *optional*, defaults to 32064):
         | 
| 37 | 
            +
                        Vocabulary size of the Phi-3 model. Defines the number of different tokens that can be represented by the
         | 
| 38 | 
            +
                        `inputs_ids` passed when calling [`Phi3Model`].
         | 
| 39 | 
            +
                    hidden_size (`int`, *optional*, defaults to 3072):
         | 
| 40 | 
            +
                        Dimension of the hidden representations.
         | 
| 41 | 
            +
                    intermediate_size (`int`, *optional*, defaults to 8192):
         | 
| 42 | 
            +
                        Dimension of the MLP representations.
         | 
| 43 | 
            +
                    num_hidden_layers (`int`, *optional*, defaults to 32):
         | 
| 44 | 
            +
                        Number of hidden layers in the Transformer decoder.
         | 
| 45 | 
            +
                    num_attention_heads (`int`, *optional*, defaults to 32):
         | 
| 46 | 
            +
                        Number of attention heads for each attention layer in the Transformer decoder.
         | 
| 47 | 
            +
                    num_key_value_heads (`int`, *optional*):
         | 
| 48 | 
            +
                        This is the number of key_value heads that should be used to implement Grouped Query Attention. If
         | 
| 49 | 
            +
                        `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
         | 
| 50 | 
            +
                        `num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When
         | 
| 51 | 
            +
                        converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
         | 
| 52 | 
            +
                        by meanpooling all the original heads within that group. For more details checkout [this
         | 
| 53 | 
            +
                        paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
         | 
| 54 | 
            +
                        `num_attention_heads`.
         | 
| 55 | 
            +
                    resid_pdrop (`float`, *optional*, defaults to 0.0):
         | 
| 56 | 
            +
                        Dropout probability for mlp outputs.
         | 
| 57 | 
            +
                    embd_pdrop (`int`, *optional*, defaults to 0.0):
         | 
| 58 | 
            +
                        The dropout ratio for the embeddings.
         | 
| 59 | 
            +
                    attention_dropout (`float`, *optional*, defaults to 0.0):
         | 
| 60 | 
            +
                        The dropout ratio after computing the attention scores.
         | 
| 61 | 
            +
                    hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
         | 
| 62 | 
            +
                        The non-linear activation function (function or string) in the decoder.
         | 
| 63 | 
            +
                    max_position_embeddings (`int`, *optional*, defaults to 4096):
         | 
| 64 | 
            +
                        The maximum sequence length that this model might ever be used with.
         | 
| 65 | 
            +
                    original_max_position_embeddings (`int`, *optional*, defaults to 4096):
         | 
| 66 | 
            +
                        The maximum sequence length that this model was trained with. This is used to determine the size of the
         | 
| 67 | 
            +
                        original RoPE embeddings when using long scaling.
         | 
| 68 | 
            +
                    initializer_range (`float`, *optional*, defaults to 0.02):
         | 
| 69 | 
            +
                        The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
         | 
| 70 | 
            +
                    rms_norm_eps (`float`, *optional*, defaults to 1e-05):
         | 
| 71 | 
            +
                        The epsilon value used for the RMSNorm.
         | 
| 72 | 
            +
                    use_cache (`bool`, *optional*, defaults to `True`):
         | 
| 73 | 
            +
                        Whether or not the model should return the last key/values attentions (not used by all models). Only
         | 
| 74 | 
            +
                        relevant if `config.is_decoder=True`. Whether to tie weight embeddings or not.
         | 
| 75 | 
            +
                    tie_word_embeddings (`bool`, *optional*, defaults to `False`):
         | 
| 76 | 
            +
                        Whether to tie weight embeddings
         | 
| 77 | 
            +
                    rope_theta (`float`, *optional*, defaults to 10000.0):
         | 
| 78 | 
            +
                        The base period of the RoPE embeddings.
         | 
| 79 | 
            +
                    rope_scaling (`dict`, *optional*):
         | 
| 80 | 
            +
                        The scaling strategy for the RoPE embeddings. If `None`, no scaling is applied. If a dictionary, it must
         | 
| 81 | 
            +
                        contain the following keys: `type`, `short_factor` and `long_factor`. The `type` must be `longrope` and
         | 
| 82 | 
            +
                        the `short_factor` and `long_factor` must be lists of numbers with the same length as the hidden size
         | 
| 83 | 
            +
                        divided by the number of attention heads divided by 2.
         | 
| 84 | 
            +
                    partial_rotary_factor (`float`, *optional*, defaults to 1.0):
         | 
| 85 | 
            +
                        Percentage of the query and keys which will have rotary embedding. Must be between 0.0 and 1.0.
         | 
| 86 | 
            +
                    bos_token_id (`int`, *optional*, defaults to 1):
         | 
| 87 | 
            +
                        The id of the "beginning-of-sequence" token.
         | 
| 88 | 
            +
                    eos_token_id (`int`, *optional*, defaults to 32000):
         | 
| 89 | 
            +
                        The id of the "end-of-sequence" token.
         | 
| 90 | 
            +
                    pad_token_id (`int`, *optional*, defaults to 32000):
         | 
| 91 | 
            +
                        The id of the padding token.
         | 
| 92 | 
            +
                    sliding_window (`int`, *optional*):
         | 
| 93 | 
            +
                        Sliding window attention window size. If `None`, no sliding window is applied.
         | 
| 94 | 
            +
             | 
| 95 | 
            +
                Example:
         | 
| 96 | 
            +
             | 
| 97 | 
            +
                ```python
         | 
| 98 | 
            +
                >>> from transformers import Phi3Model, Phi3Config
         | 
| 99 | 
            +
             | 
| 100 | 
            +
                >>> # Initializing a Phi-3 style configuration
         | 
| 101 | 
            +
                >>> configuration = Phi3Config.from_pretrained("microsoft/Phi-3-mini-4k-instruct")
         | 
| 102 | 
            +
             | 
| 103 | 
            +
                >>> # Initializing a model from the configuration
         | 
| 104 | 
            +
                >>> model = Phi3Model(configuration)
         | 
| 105 | 
            +
             | 
| 106 | 
            +
                >>> # Accessing the model configuration
         | 
| 107 | 
            +
                >>> configuration = model.config
         | 
| 108 | 
            +
                ```"""
         | 
| 109 | 
            +
             | 
| 110 | 
            +
                model_type = "phi3"
         | 
| 111 | 
            +
                keys_to_ignore_at_inference = ["past_key_values"]
         | 
| 112 | 
            +
             | 
| 113 | 
            +
                def __init__(
         | 
| 114 | 
            +
                    self,
         | 
| 115 | 
            +
                    vocab_size=32064,
         | 
| 116 | 
            +
                    hidden_size=3072,
         | 
| 117 | 
            +
                    intermediate_size=8192,
         | 
| 118 | 
            +
                    num_hidden_layers=32,
         | 
| 119 | 
            +
                    num_attention_heads=32,
         | 
| 120 | 
            +
                    num_key_value_heads=None,
         | 
| 121 | 
            +
                    resid_pdrop=0.0,
         | 
| 122 | 
            +
                    embd_pdrop=0.0,
         | 
| 123 | 
            +
                    attention_dropout=0.0,
         | 
| 124 | 
            +
                    hidden_act="silu",
         | 
| 125 | 
            +
                    max_position_embeddings=4096,
         | 
| 126 | 
            +
                    original_max_position_embeddings=4096,
         | 
| 127 | 
            +
                    initializer_range=0.02,
         | 
| 128 | 
            +
                    rms_norm_eps=1e-5,
         | 
| 129 | 
            +
                    use_cache=True,
         | 
| 130 | 
            +
                    tie_word_embeddings=False,
         | 
| 131 | 
            +
                    rope_theta=10000.0,
         | 
| 132 | 
            +
                    rope_scaling=None,
         | 
| 133 | 
            +
                    partial_rotary_factor=1.0,
         | 
| 134 | 
            +
                    bos_token_id=1,
         | 
| 135 | 
            +
                    eos_token_id=32000,
         | 
| 136 | 
            +
                    pad_token_id=32000,
         | 
| 137 | 
            +
                    sliding_window=None,
         | 
| 138 | 
            +
                    **kwargs,
         | 
| 139 | 
            +
                ):
         | 
| 140 | 
            +
                    self.vocab_size = vocab_size
         | 
| 141 | 
            +
                    self.hidden_size = hidden_size
         | 
| 142 | 
            +
                    self.intermediate_size = intermediate_size
         | 
| 143 | 
            +
                    self.num_hidden_layers = num_hidden_layers
         | 
| 144 | 
            +
                    self.num_attention_heads = num_attention_heads
         | 
| 145 | 
            +
             | 
| 146 | 
            +
                    if num_key_value_heads is None:
         | 
| 147 | 
            +
                        num_key_value_heads = num_attention_heads
         | 
| 148 | 
            +
             | 
| 149 | 
            +
                    self.num_key_value_heads = num_key_value_heads
         | 
| 150 | 
            +
                    self.resid_pdrop = resid_pdrop
         | 
| 151 | 
            +
                    self.embd_pdrop = embd_pdrop
         | 
| 152 | 
            +
                    self.attention_dropout = attention_dropout
         | 
| 153 | 
            +
                    self.hidden_act = hidden_act
         | 
| 154 | 
            +
                    self.max_position_embeddings = max_position_embeddings
         | 
| 155 | 
            +
                    self.original_max_position_embeddings = original_max_position_embeddings
         | 
| 156 | 
            +
                    self.initializer_range = initializer_range
         | 
| 157 | 
            +
                    self.rms_norm_eps = rms_norm_eps
         | 
| 158 | 
            +
                    self.use_cache = use_cache
         | 
| 159 | 
            +
                    self.rope_theta = rope_theta
         | 
| 160 | 
            +
                    self.rope_scaling = rope_scaling
         | 
| 161 | 
            +
                    self.partial_rotary_factor = partial_rotary_factor
         | 
| 162 | 
            +
                    self._rope_scaling_adjustment()
         | 
| 163 | 
            +
                    self._rope_scaling_validation()
         | 
| 164 | 
            +
                    self.sliding_window = sliding_window
         | 
| 165 | 
            +
             | 
| 166 | 
            +
                    super().__init__(
         | 
| 167 | 
            +
                        bos_token_id=bos_token_id,
         | 
| 168 | 
            +
                        eos_token_id=eos_token_id,
         | 
| 169 | 
            +
                        pad_token_id=pad_token_id,
         | 
| 170 | 
            +
                        tie_word_embeddings=tie_word_embeddings,
         | 
| 171 | 
            +
                        **kwargs,
         | 
| 172 | 
            +
                    )
         | 
| 173 | 
            +
             | 
| 174 | 
            +
                def _rope_scaling_adjustment(self):
         | 
| 175 | 
            +
                    """
         | 
| 176 | 
            +
                    Adjust the `type` of the `rope_scaling` configuration for backward compatibility.
         | 
| 177 | 
            +
                    """
         | 
| 178 | 
            +
                    if self.rope_scaling is None:
         | 
| 179 | 
            +
                        return
         | 
| 180 | 
            +
             | 
| 181 | 
            +
                    rope_scaling_type = self.rope_scaling.get("type", None)
         | 
| 182 | 
            +
             | 
| 183 | 
            +
                    # For backward compatibility if previous version used "su" or "yarn"
         | 
| 184 | 
            +
                    if rope_scaling_type is not None and rope_scaling_type in ["su", "yarn"]:
         | 
| 185 | 
            +
                        self.rope_scaling["type"] = "longrope"
         | 
| 186 | 
            +
             | 
| 187 | 
            +
                def _rope_scaling_validation(self):
         | 
| 188 | 
            +
                    """
         | 
| 189 | 
            +
                    Validate the `rope_scaling` configuration.
         | 
| 190 | 
            +
                    """
         | 
| 191 | 
            +
                    if self.rope_scaling is None:
         | 
| 192 | 
            +
                        return
         | 
| 193 | 
            +
             | 
| 194 | 
            +
                    if not isinstance(self.rope_scaling, dict) or len(self.rope_scaling) != 3:
         | 
| 195 | 
            +
                        raise ValueError(
         | 
| 196 | 
            +
                            "`rope_scaling` must be a dictionary with three fields, `type`, `short_factor` and `long_factor`, "
         | 
| 197 | 
            +
                            f"got {self.rope_scaling}"
         | 
| 198 | 
            +
                        )
         | 
| 199 | 
            +
                    rope_scaling_type = self.rope_scaling.get("type", None)
         | 
| 200 | 
            +
                    rope_scaling_short_factor = self.rope_scaling.get("short_factor", None)
         | 
| 201 | 
            +
                    rope_scaling_long_factor = self.rope_scaling.get("long_factor", None)
         | 
| 202 | 
            +
                    if rope_scaling_type is None or rope_scaling_type not in ["longrope"]:
         | 
| 203 | 
            +
                        raise ValueError(f"`rope_scaling`'s type field must be one of ['longrope'], got {rope_scaling_type}")
         | 
| 204 | 
            +
                    if not (
         | 
| 205 | 
            +
                        isinstance(rope_scaling_short_factor, list)
         | 
| 206 | 
            +
                        and all(isinstance(x, (int, float)) for x in rope_scaling_short_factor)
         | 
| 207 | 
            +
                    ):
         | 
| 208 | 
            +
                        raise ValueError(
         | 
| 209 | 
            +
                            f"`rope_scaling`'s short_factor field must be a list of numbers, got {rope_scaling_short_factor}"
         | 
| 210 | 
            +
                        )
         | 
| 211 | 
            +
                    rotary_ndims = int(self.hidden_size // self.num_attention_heads * self.partial_rotary_factor)
         | 
| 212 | 
            +
                    if not len(rope_scaling_short_factor) == rotary_ndims // 2:
         | 
| 213 | 
            +
                        raise ValueError(
         | 
| 214 | 
            +
                            f"`rope_scaling`'s short_factor field must have length {rotary_ndims // 2}, got {len(rope_scaling_short_factor)}"
         | 
| 215 | 
            +
                        )
         | 
| 216 | 
            +
                    if not (
         | 
| 217 | 
            +
                        isinstance(rope_scaling_long_factor, list)
         | 
| 218 | 
            +
                        and all(isinstance(x, (int, float)) for x in rope_scaling_long_factor)
         | 
| 219 | 
            +
                    ):
         | 
| 220 | 
            +
                        raise ValueError(
         | 
| 221 | 
            +
                            f"`rope_scaling`'s long_factor field must be a list of numbers, got {rope_scaling_long_factor}"
         | 
| 222 | 
            +
                        )
         | 
| 223 | 
            +
                    if not len(rope_scaling_long_factor) == rotary_ndims // 2:
         | 
| 224 | 
            +
                        raise ValueError(
         | 
| 225 | 
            +
                            f"`rope_scaling`'s long_factor field must have length {rotary_ndims // 2}, got {len(rope_scaling_long_factor)}"
         | 
| 226 | 
            +
                        )
         | 
