Add new SentenceTransformer model
Browse files- README.md +318 -22
- model.safetensors +1 -1
README.md
CHANGED
|
@@ -81,28 +81,28 @@ model-index:
|
|
| 81 |
type: test
|
| 82 |
metrics:
|
| 83 |
- type: cosine_accuracy@1
|
| 84 |
-
value: 0.
|
| 85 |
name: Cosine Accuracy@1
|
| 86 |
- type: cosine_precision@1
|
| 87 |
-
value: 0.
|
| 88 |
name: Cosine Precision@1
|
| 89 |
- type: cosine_recall@1
|
| 90 |
-
value: 0.
|
| 91 |
name: Cosine Recall@1
|
| 92 |
- type: cosine_ndcg@10
|
| 93 |
-
value: 0.
|
| 94 |
name: Cosine Ndcg@10
|
| 95 |
- type: cosine_mrr@1
|
| 96 |
-
value: 0.
|
| 97 |
name: Cosine Mrr@1
|
| 98 |
- type: cosine_map@100
|
| 99 |
-
value: 0.
|
| 100 |
name: Cosine Map@100
|
| 101 |
- type: cosine_auc_precision_cache_hit_ratio
|
| 102 |
-
value: 0.
|
| 103 |
name: Cosine Auc Precision Cache Hit Ratio
|
| 104 |
- type: cosine_auc_similarity_distribution
|
| 105 |
-
value: 0.
|
| 106 |
name: Cosine Auc Similarity Distribution
|
| 107 |
---
|
| 108 |
|
|
@@ -167,9 +167,9 @@ print(embeddings.shape)
|
|
| 167 |
# Get the similarity scores for the embeddings
|
| 168 |
similarities = model.similarity(embeddings, embeddings)
|
| 169 |
print(similarities)
|
| 170 |
-
# tensor([[1.0000, 0.
|
| 171 |
-
# [0.
|
| 172 |
-
# [0.
|
| 173 |
```
|
| 174 |
|
| 175 |
<!--
|
|
@@ -207,14 +207,14 @@ You can finetune this model on your own dataset.
|
|
| 207 |
|
| 208 |
| Metric | Value |
|
| 209 |
|:-------------------------------------|:-----------|
|
| 210 |
-
| cosine_accuracy@1 | 0.
|
| 211 |
-
| cosine_precision@1 | 0.
|
| 212 |
-
| cosine_recall@1 | 0.
|
| 213 |
-
| **cosine_ndcg@10** | **0.
|
| 214 |
-
| cosine_mrr@1 | 0.
|
| 215 |
-
| cosine_map@100 | 0.
|
| 216 |
-
| cosine_auc_precision_cache_hit_ratio | 0.
|
| 217 |
-
| cosine_auc_similarity_distribution | 0.
|
| 218 |
|
| 219 |
<!--
|
| 220 |
## Bias, Risks and Limitations
|
|
@@ -284,11 +284,307 @@ You can finetune this model on your own dataset.
|
|
| 284 |
}
|
| 285 |
```
|
| 286 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 287 |
### Training Logs
|
| 288 |
-
|
| 289 |
-
|:-----:|:----:|:-------------------:|
|
| 290 |
-
| -1 | -1 | 0.6274 |
|
| 291 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 292 |
|
| 293 |
### Framework Versions
|
| 294 |
- Python: 3.12.3
|
|
|
|
| 81 |
type: test
|
| 82 |
metrics:
|
| 83 |
- type: cosine_accuracy@1
|
| 84 |
+
value: 0.6070776173931731
|
| 85 |
name: Cosine Accuracy@1
|
| 86 |
- type: cosine_precision@1
|
| 87 |
+
value: 0.6070776173931731
|
| 88 |
name: Cosine Precision@1
|
| 89 |
- type: cosine_recall@1
|
| 90 |
+
value: 0.588632794022045
|
| 91 |
name: Cosine Recall@1
|
| 92 |
- type: cosine_ndcg@10
|
| 93 |
+
value: 0.7755359823507149
|
| 94 |
name: Cosine Ndcg@10
|
| 95 |
- type: cosine_mrr@1
|
| 96 |
+
value: 0.6070776173931731
|
| 97 |
name: Cosine Mrr@1
|
| 98 |
- type: cosine_map@100
|
| 99 |
+
value: 0.7291245351244533
|
| 100 |
name: Cosine Map@100
|
| 101 |
- type: cosine_auc_precision_cache_hit_ratio
|
| 102 |
+
value: 0.348058858138603
|
| 103 |
name: Cosine Auc Precision Cache Hit Ratio
|
| 104 |
- type: cosine_auc_similarity_distribution
|
| 105 |
+
value: 0.21125989323367672
|
| 106 |
name: Cosine Auc Similarity Distribution
|
| 107 |
---
|
| 108 |
|
|
|
|
| 167 |
# Get the similarity scores for the embeddings
|
| 168 |
similarities = model.similarity(embeddings, embeddings)
|
| 169 |
print(similarities)
|
| 170 |
+
# tensor([[1.0000, 0.9609, 0.4414],
|
| 171 |
+
# [0.9609, 1.0000, 0.4395],
|
| 172 |
+
# [0.4414, 0.4395, 1.0000]], dtype=torch.bfloat16)
|
| 173 |
```
|
| 174 |
|
| 175 |
<!--
|
|
|
|
| 207 |
|
| 208 |
| Metric | Value |
|
| 209 |
|:-------------------------------------|:-----------|
|
| 210 |
+
| cosine_accuracy@1 | 0.6071 |
|
| 211 |
+
| cosine_precision@1 | 0.6071 |
|
| 212 |
+
| cosine_recall@1 | 0.5886 |
|
| 213 |
+
| **cosine_ndcg@10** | **0.7755** |
|
| 214 |
+
| cosine_mrr@1 | 0.6071 |
|
| 215 |
+
| cosine_map@100 | 0.7291 |
|
| 216 |
+
| cosine_auc_precision_cache_hit_ratio | 0.3481 |
|
| 217 |
+
| cosine_auc_similarity_distribution | 0.2113 |
|
| 218 |
|
| 219 |
<!--
|
| 220 |
## Bias, Risks and Limitations
|
|
|
|
| 284 |
}
|
| 285 |
```
|
| 286 |
|
| 287 |
+
### Training Hyperparameters
|
| 288 |
+
#### Non-Default Hyperparameters
|
| 289 |
+
|
| 290 |
+
- `eval_strategy`: steps
|
| 291 |
+
- `per_device_train_batch_size`: 100
|
| 292 |
+
- `per_device_eval_batch_size`: 100
|
| 293 |
+
- `weight_decay`: 0.001
|
| 294 |
+
- `adam_beta2`: 0.98
|
| 295 |
+
- `adam_epsilon`: 1e-06
|
| 296 |
+
- `max_steps`: 75000
|
| 297 |
+
- `warmup_ratio`: 0.1
|
| 298 |
+
- `load_best_model_at_end`: True
|
| 299 |
+
- `optim`: stable_adamw
|
| 300 |
+
- `ddp_find_unused_parameters`: False
|
| 301 |
+
- `push_to_hub`: True
|
| 302 |
+
- `hub_model_id`: redis/langcache-embed-experimental
|
| 303 |
+
- `batch_sampler`: no_duplicates
|
| 304 |
+
|
| 305 |
+
#### All Hyperparameters
|
| 306 |
+
<details><summary>Click to expand</summary>
|
| 307 |
+
|
| 308 |
+
- `overwrite_output_dir`: False
|
| 309 |
+
- `do_predict`: False
|
| 310 |
+
- `eval_strategy`: steps
|
| 311 |
+
- `prediction_loss_only`: True
|
| 312 |
+
- `per_device_train_batch_size`: 100
|
| 313 |
+
- `per_device_eval_batch_size`: 100
|
| 314 |
+
- `per_gpu_train_batch_size`: None
|
| 315 |
+
- `per_gpu_eval_batch_size`: None
|
| 316 |
+
- `gradient_accumulation_steps`: 1
|
| 317 |
+
- `eval_accumulation_steps`: None
|
| 318 |
+
- `torch_empty_cache_steps`: None
|
| 319 |
+
- `learning_rate`: 5e-05
|
| 320 |
+
- `weight_decay`: 0.001
|
| 321 |
+
- `adam_beta1`: 0.9
|
| 322 |
+
- `adam_beta2`: 0.98
|
| 323 |
+
- `adam_epsilon`: 1e-06
|
| 324 |
+
- `max_grad_norm`: 1.0
|
| 325 |
+
- `num_train_epochs`: 3.0
|
| 326 |
+
- `max_steps`: 75000
|
| 327 |
+
- `lr_scheduler_type`: linear
|
| 328 |
+
- `lr_scheduler_kwargs`: {}
|
| 329 |
+
- `warmup_ratio`: 0.1
|
| 330 |
+
- `warmup_steps`: 0
|
| 331 |
+
- `log_level`: passive
|
| 332 |
+
- `log_level_replica`: warning
|
| 333 |
+
- `log_on_each_node`: True
|
| 334 |
+
- `logging_nan_inf_filter`: True
|
| 335 |
+
- `save_safetensors`: True
|
| 336 |
+
- `save_on_each_node`: False
|
| 337 |
+
- `save_only_model`: False
|
| 338 |
+
- `restore_callback_states_from_checkpoint`: False
|
| 339 |
+
- `no_cuda`: False
|
| 340 |
+
- `use_cpu`: False
|
| 341 |
+
- `use_mps_device`: False
|
| 342 |
+
- `seed`: 42
|
| 343 |
+
- `data_seed`: None
|
| 344 |
+
- `jit_mode_eval`: False
|
| 345 |
+
- `use_ipex`: False
|
| 346 |
+
- `bf16`: False
|
| 347 |
+
- `fp16`: False
|
| 348 |
+
- `fp16_opt_level`: O1
|
| 349 |
+
- `half_precision_backend`: auto
|
| 350 |
+
- `bf16_full_eval`: False
|
| 351 |
+
- `fp16_full_eval`: False
|
| 352 |
+
- `tf32`: None
|
| 353 |
+
- `local_rank`: 0
|
| 354 |
+
- `ddp_backend`: None
|
| 355 |
+
- `tpu_num_cores`: None
|
| 356 |
+
- `tpu_metrics_debug`: False
|
| 357 |
+
- `debug`: []
|
| 358 |
+
- `dataloader_drop_last`: False
|
| 359 |
+
- `dataloader_num_workers`: 0
|
| 360 |
+
- `dataloader_prefetch_factor`: None
|
| 361 |
+
- `past_index`: -1
|
| 362 |
+
- `disable_tqdm`: False
|
| 363 |
+
- `remove_unused_columns`: True
|
| 364 |
+
- `label_names`: None
|
| 365 |
+
- `load_best_model_at_end`: True
|
| 366 |
+
- `ignore_data_skip`: False
|
| 367 |
+
- `fsdp`: []
|
| 368 |
+
- `fsdp_min_num_params`: 0
|
| 369 |
+
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
|
| 370 |
+
- `fsdp_transformer_layer_cls_to_wrap`: None
|
| 371 |
+
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
|
| 372 |
+
- `parallelism_config`: None
|
| 373 |
+
- `deepspeed`: None
|
| 374 |
+
- `label_smoothing_factor`: 0.0
|
| 375 |
+
- `optim`: stable_adamw
|
| 376 |
+
- `optim_args`: None
|
| 377 |
+
- `adafactor`: False
|
| 378 |
+
- `group_by_length`: False
|
| 379 |
+
- `length_column_name`: length
|
| 380 |
+
- `ddp_find_unused_parameters`: False
|
| 381 |
+
- `ddp_bucket_cap_mb`: None
|
| 382 |
+
- `ddp_broadcast_buffers`: False
|
| 383 |
+
- `dataloader_pin_memory`: True
|
| 384 |
+
- `dataloader_persistent_workers`: False
|
| 385 |
+
- `skip_memory_metrics`: True
|
| 386 |
+
- `use_legacy_prediction_loop`: False
|
| 387 |
+
- `push_to_hub`: True
|
| 388 |
+
- `resume_from_checkpoint`: None
|
| 389 |
+
- `hub_model_id`: redis/langcache-embed-experimental
|
| 390 |
+
- `hub_strategy`: every_save
|
| 391 |
+
- `hub_private_repo`: None
|
| 392 |
+
- `hub_always_push`: False
|
| 393 |
+
- `hub_revision`: None
|
| 394 |
+
- `gradient_checkpointing`: False
|
| 395 |
+
- `gradient_checkpointing_kwargs`: None
|
| 396 |
+
- `include_inputs_for_metrics`: False
|
| 397 |
+
- `include_for_metrics`: []
|
| 398 |
+
- `eval_do_concat_batches`: True
|
| 399 |
+
- `fp16_backend`: auto
|
| 400 |
+
- `push_to_hub_model_id`: None
|
| 401 |
+
- `push_to_hub_organization`: None
|
| 402 |
+
- `mp_parameters`:
|
| 403 |
+
- `auto_find_batch_size`: False
|
| 404 |
+
- `full_determinism`: False
|
| 405 |
+
- `torchdynamo`: None
|
| 406 |
+
- `ray_scope`: last
|
| 407 |
+
- `ddp_timeout`: 1800
|
| 408 |
+
- `torch_compile`: False
|
| 409 |
+
- `torch_compile_backend`: None
|
| 410 |
+
- `torch_compile_mode`: None
|
| 411 |
+
- `include_tokens_per_second`: False
|
| 412 |
+
- `include_num_input_tokens_seen`: False
|
| 413 |
+
- `neftune_noise_alpha`: None
|
| 414 |
+
- `optim_target_modules`: None
|
| 415 |
+
- `batch_eval_metrics`: False
|
| 416 |
+
- `eval_on_start`: False
|
| 417 |
+
- `use_liger_kernel`: False
|
| 418 |
+
- `liger_kernel_config`: None
|
| 419 |
+
- `eval_use_gather_object`: False
|
| 420 |
+
- `average_tokens_across_devices`: False
|
| 421 |
+
- `prompts`: None
|
| 422 |
+
- `batch_sampler`: no_duplicates
|
| 423 |
+
- `multi_dataset_batch_sampler`: proportional
|
| 424 |
+
- `router_mapping`: {}
|
| 425 |
+
- `learning_rate_mapping`: {}
|
| 426 |
+
|
| 427 |
+
</details>
|
| 428 |
+
|
| 429 |
### Training Logs
|
| 430 |
+
<details><summary>Click to expand</summary>
|
|
|
|
|
|
|
| 431 |
|
| 432 |
+
| Epoch | Step | Training Loss | Validation Loss | test_cosine_ndcg@10 |
|
| 433 |
+
|:----------:|:---------:|:-------------:|:---------------:|:-------------------:|
|
| 434 |
+
| -1 | -1 | - | - | 0.6274 |
|
| 435 |
+
| 0.0054 | 500 | 2.0433 | 0.5003 | 0.7156 |
|
| 436 |
+
| 0.0108 | 1000 | 0.2913 | 0.3804 | 0.7423 |
|
| 437 |
+
| 0.0162 | 1500 | 0.1876 | 0.3343 | 0.7526 |
|
| 438 |
+
| 0.0217 | 2000 | 0.1484 | 0.3172 | 0.7528 |
|
| 439 |
+
| 0.0271 | 2500 | 0.132 | 0.2945 | 0.7569 |
|
| 440 |
+
| 0.0325 | 3000 | 0.1161 | 0.2822 | 0.7636 |
|
| 441 |
+
| 0.0379 | 3500 | 0.1105 | 0.2918 | 0.7580 |
|
| 442 |
+
| 0.0433 | 4000 | 0.1072 | 0.2820 | 0.7597 |
|
| 443 |
+
| 0.0487 | 4500 | 0.1061 | 0.2483 | 0.7661 |
|
| 444 |
+
| 0.0542 | 5000 | 0.0991 | 0.2671 | 0.7600 |
|
| 445 |
+
| 0.0596 | 5500 | 0.0971 | 0.2843 | 0.7595 |
|
| 446 |
+
| 0.0650 | 6000 | 0.0953 | 0.2448 | 0.7640 |
|
| 447 |
+
| 0.0704 | 6500 | 0.1015 | 0.3021 | 0.7632 |
|
| 448 |
+
| 0.0758 | 7000 | 0.0985 | 0.2744 | 0.7616 |
|
| 449 |
+
| 0.0812 | 7500 | 0.1009 | 0.2764 | 0.7615 |
|
| 450 |
+
| 0.0866 | 8000 | 0.0984 | 0.2865 | 0.7608 |
|
| 451 |
+
| 0.0921 | 8500 | 0.0947 | 0.3062 | 0.7600 |
|
| 452 |
+
| 0.0975 | 9000 | 0.0914 | 0.2997 | 0.7584 |
|
| 453 |
+
| 0.1029 | 9500 | 0.0896 | 0.2484 | 0.7617 |
|
| 454 |
+
| 0.1083 | 10000 | 0.0846 | 0.2850 | 0.7594 |
|
| 455 |
+
| 0.1137 | 10500 | 0.0907 | 0.2896 | 0.7571 |
|
| 456 |
+
| 0.1191 | 11000 | 0.0859 | 0.2657 | 0.7599 |
|
| 457 |
+
| 0.1245 | 11500 | 0.0875 | 0.2509 | 0.7620 |
|
| 458 |
+
| 0.1300 | 12000 | 0.0849 | 0.2728 | 0.7620 |
|
| 459 |
+
| 0.1354 | 12500 | 0.0788 | 0.2707 | 0.7587 |
|
| 460 |
+
| 0.1408 | 13000 | 0.0804 | 0.2985 | 0.7567 |
|
| 461 |
+
| 0.1462 | 13500 | 0.0815 | 0.2526 | 0.7620 |
|
| 462 |
+
| 0.1516 | 14000 | 0.0783 | 0.2441 | 0.7655 |
|
| 463 |
+
| 0.1570 | 14500 | 0.0791 | 0.2707 | 0.7645 |
|
| 464 |
+
| 0.1625 | 15000 | 0.0797 | 0.2781 | 0.7576 |
|
| 465 |
+
| 0.1679 | 15500 | 0.077 | 0.2624 | 0.7595 |
|
| 466 |
+
| 0.1733 | 16000 | 0.0742 | 0.2882 | 0.7620 |
|
| 467 |
+
| 0.1787 | 16500 | 0.0739 | 0.2654 | 0.7630 |
|
| 468 |
+
| 0.1841 | 17000 | 0.0695 | 0.2832 | 0.7607 |
|
| 469 |
+
| 0.1895 | 17500 | 0.0726 | 0.2595 | 0.7627 |
|
| 470 |
+
| 0.1949 | 18000 | 0.0739 | 0.2376 | 0.7653 |
|
| 471 |
+
| 0.2004 | 18500 | 0.0751 | 0.2671 | 0.7652 |
|
| 472 |
+
| 0.2058 | 19000 | 0.0717 | 0.3013 | 0.7595 |
|
| 473 |
+
| 0.2112 | 19500 | 0.0696 | 0.2538 | 0.7671 |
|
| 474 |
+
| 0.2166 | 20000 | 0.0659 | 0.2569 | 0.7612 |
|
| 475 |
+
| 0.2220 | 20500 | 0.0669 | 0.2595 | 0.7648 |
|
| 476 |
+
| 0.2274 | 21000 | 0.0679 | 0.2231 | 0.7664 |
|
| 477 |
+
| 0.2328 | 21500 | 0.0657 | 0.2732 | 0.7636 |
|
| 478 |
+
| 0.2383 | 22000 | 0.0703 | 0.2658 | 0.7674 |
|
| 479 |
+
| 0.2437 | 22500 | 0.0636 | 0.2582 | 0.7676 |
|
| 480 |
+
| 0.2491 | 23000 | 0.0688 | 0.2586 | 0.7682 |
|
| 481 |
+
| 0.2545 | 23500 | 0.0598 | 0.2612 | 0.7675 |
|
| 482 |
+
| 0.2599 | 24000 | 0.0664 | 0.2581 | 0.7655 |
|
| 483 |
+
| 0.2653 | 24500 | 0.0621 | 0.2393 | 0.7642 |
|
| 484 |
+
| 0.2708 | 25000 | 0.0641 | 0.2309 | 0.7673 |
|
| 485 |
+
| 0.2762 | 25500 | 0.0624 | 0.2346 | 0.7700 |
|
| 486 |
+
| 0.2816 | 26000 | 0.0595 | 0.2179 | 0.7671 |
|
| 487 |
+
| 0.2870 | 26500 | 0.0605 | 0.2332 | 0.7664 |
|
| 488 |
+
| 0.2924 | 27000 | 0.0609 | 0.2227 | 0.7678 |
|
| 489 |
+
| 0.2978 | 27500 | 0.0621 | 0.2312 | 0.7688 |
|
| 490 |
+
| 0.3032 | 28000 | 0.0626 | 0.2404 | 0.7680 |
|
| 491 |
+
| 0.3087 | 28500 | 0.063 | 0.2429 | 0.7672 |
|
| 492 |
+
| 0.3141 | 29000 | 0.0601 | 0.2275 | 0.7671 |
|
| 493 |
+
| 0.3195 | 29500 | 0.0617 | 0.2235 | 0.7663 |
|
| 494 |
+
| 0.3249 | 30000 | 0.0581 | 0.2370 | 0.7698 |
|
| 495 |
+
| 0.3303 | 30500 | 0.06 | 0.2450 | 0.7652 |
|
| 496 |
+
| 0.3357 | 31000 | 0.0591 | 0.2851 | 0.7638 |
|
| 497 |
+
| 0.3411 | 31500 | 0.0585 | 0.2718 | 0.7664 |
|
| 498 |
+
| 0.3466 | 32000 | 0.0563 | 0.2532 | 0.7664 |
|
| 499 |
+
| 0.3520 | 32500 | 0.059 | 0.2330 | 0.7689 |
|
| 500 |
+
| 0.3574 | 33000 | 0.0545 | 0.2158 | 0.7695 |
|
| 501 |
+
| 0.3628 | 33500 | 0.0567 | 0.2263 | 0.7672 |
|
| 502 |
+
| 0.3682 | 34000 | 0.0566 | 0.2338 | 0.7682 |
|
| 503 |
+
| 0.3736 | 34500 | 0.0586 | 0.2244 | 0.7696 |
|
| 504 |
+
| 0.3791 | 35000 | 0.0559 | 0.2474 | 0.7671 |
|
| 505 |
+
| 0.3845 | 35500 | 0.053 | 0.2332 | 0.7687 |
|
| 506 |
+
| 0.3899 | 36000 | 0.0507 | 0.2258 | 0.7679 |
|
| 507 |
+
| 0.3953 | 36500 | 0.0527 | 0.2240 | 0.7712 |
|
| 508 |
+
| 0.4007 | 37000 | 0.0545 | 0.2229 | 0.7700 |
|
| 509 |
+
| 0.4061 | 37500 | 0.0558 | 0.2119 | 0.7704 |
|
| 510 |
+
| 0.4115 | 38000 | 0.0538 | 0.2611 | 0.7693 |
|
| 511 |
+
| 0.4170 | 38500 | 0.0549 | 0.2336 | 0.7686 |
|
| 512 |
+
| 0.4224 | 39000 | 0.0501 | 0.2316 | 0.7687 |
|
| 513 |
+
| 0.4278 | 39500 | 0.0497 | 0.2289 | 0.7697 |
|
| 514 |
+
| 0.4332 | 40000 | 0.0512 | 0.2299 | 0.7683 |
|
| 515 |
+
| 0.4386 | 40500 | 0.0511 | 0.2654 | 0.7704 |
|
| 516 |
+
| 0.4440 | 41000 | 0.0498 | 0.2272 | 0.7731 |
|
| 517 |
+
| 0.4495 | 41500 | 0.053 | 0.2327 | 0.7696 |
|
| 518 |
+
| 0.4549 | 42000 | 0.0487 | 0.2380 | 0.7715 |
|
| 519 |
+
| 0.4603 | 42500 | 0.0518 | 0.2230 | 0.7724 |
|
| 520 |
+
| 0.4657 | 43000 | 0.0488 | 0.2249 | 0.7703 |
|
| 521 |
+
| 0.4711 | 43500 | 0.0529 | 0.2452 | 0.7716 |
|
| 522 |
+
| 0.4765 | 44000 | 0.0497 | 0.2341 | 0.7720 |
|
| 523 |
+
| 0.4819 | 44500 | 0.0486 | 0.2480 | 0.7696 |
|
| 524 |
+
| 0.4874 | 45000 | 0.0518 | 0.2349 | 0.7715 |
|
| 525 |
+
| 0.4928 | 45500 | 0.0471 | 0.2237 | 0.7720 |
|
| 526 |
+
| 0.4982 | 46000 | 0.0483 | 0.2299 | 0.7712 |
|
| 527 |
+
| 0.5036 | 46500 | 0.0462 | 0.2184 | 0.7705 |
|
| 528 |
+
| 0.5090 | 47000 | 0.0497 | 0.2335 | 0.7718 |
|
| 529 |
+
| 0.5144 | 47500 | 0.05 | 0.2302 | 0.7697 |
|
| 530 |
+
| 0.5198 | 48000 | 0.0488 | 0.2252 | 0.7701 |
|
| 531 |
+
| 0.5253 | 48500 | 0.045 | 0.2291 | 0.7687 |
|
| 532 |
+
| 0.5307 | 49000 | 0.048 | 0.2135 | 0.7698 |
|
| 533 |
+
| 0.5361 | 49500 | 0.0442 | 0.2215 | 0.7704 |
|
| 534 |
+
| 0.5415 | 50000 | 0.0479 | 0.2233 | 0.7707 |
|
| 535 |
+
| 0.5469 | 50500 | 0.0464 | 0.2275 | 0.7713 |
|
| 536 |
+
| 0.5523 | 51000 | 0.0454 | 0.2175 | 0.7717 |
|
| 537 |
+
| 0.5578 | 51500 | 0.0477 | 0.2152 | 0.7719 |
|
| 538 |
+
| 0.5632 | 52000 | 0.0463 | 0.2364 | 0.7701 |
|
| 539 |
+
| 0.5686 | 52500 | 0.0433 | 0.2430 | 0.7736 |
|
| 540 |
+
| 0.5740 | 53000 | 0.0454 | 0.2328 | 0.7708 |
|
| 541 |
+
| 0.5794 | 53500 | 0.0472 | 0.2283 | 0.7722 |
|
| 542 |
+
| 0.5848 | 54000 | 0.0447 | 0.2320 | 0.7720 |
|
| 543 |
+
| 0.5902 | 54500 | 0.0445 | 0.2404 | 0.7689 |
|
| 544 |
+
| 0.5957 | 55000 | 0.0429 | 0.2353 | 0.7693 |
|
| 545 |
+
| 0.6011 | 55500 | 0.0422 | 0.2366 | 0.7722 |
|
| 546 |
+
| 0.6065 | 56000 | 0.0436 | 0.2321 | 0.7720 |
|
| 547 |
+
| 0.6119 | 56500 | 0.0453 | 0.2250 | 0.7723 |
|
| 548 |
+
| 0.6173 | 57000 | 0.0431 | 0.2219 | 0.7733 |
|
| 549 |
+
| 0.6227 | 57500 | 0.0421 | 0.2244 | 0.7723 |
|
| 550 |
+
| 0.6281 | 58000 | 0.0434 | 0.2137 | 0.7728 |
|
| 551 |
+
| 0.6336 | 58500 | 0.0416 | 0.2181 | 0.7743 |
|
| 552 |
+
| 0.6390 | 59000 | 0.0412 | 0.2230 | 0.7717 |
|
| 553 |
+
| 0.6444 | 59500 | 0.0436 | 0.2116 | 0.7737 |
|
| 554 |
+
| 0.6498 | 60000 | 0.0404 | 0.2114 | 0.7736 |
|
| 555 |
+
| 0.6552 | 60500 | 0.041 | 0.2095 | 0.7736 |
|
| 556 |
+
| 0.6606 | 61000 | 0.0408 | 0.2079 | 0.7741 |
|
| 557 |
+
| 0.6661 | 61500 | 0.0408 | 0.2040 | 0.7756 |
|
| 558 |
+
| 0.6715 | 62000 | 0.0404 | 0.2098 | 0.7733 |
|
| 559 |
+
| 0.6769 | 62500 | 0.0418 | 0.2105 | 0.7741 |
|
| 560 |
+
| 0.6823 | 63000 | 0.0402 | 0.2081 | 0.7741 |
|
| 561 |
+
| 0.6877 | 63500 | 0.0394 | 0.2120 | 0.7742 |
|
| 562 |
+
| 0.6931 | 64000 | 0.0418 | 0.2129 | 0.7742 |
|
| 563 |
+
| 0.6985 | 64500 | 0.0406 | 0.2145 | 0.7753 |
|
| 564 |
+
| 0.7040 | 65000 | 0.0382 | 0.2257 | 0.7741 |
|
| 565 |
+
| 0.7094 | 65500 | 0.0373 | 0.2250 | 0.7756 |
|
| 566 |
+
| 0.7148 | 66000 | 0.0382 | 0.2269 | 0.7732 |
|
| 567 |
+
| **0.7202** | **66500** | **0.0405** | **0.2087** | **0.7764** |
|
| 568 |
+
| 0.7256 | 67000 | 0.042 | 0.2114 | 0.7753 |
|
| 569 |
+
| 0.7310 | 67500 | 0.0389 | 0.2138 | 0.7748 |
|
| 570 |
+
| 0.7364 | 68000 | 0.0339 | 0.2084 | 0.7761 |
|
| 571 |
+
| 0.7419 | 68500 | 0.0379 | 0.2090 | 0.7760 |
|
| 572 |
+
| 0.7473 | 69000 | 0.0369 | 0.2161 | 0.7742 |
|
| 573 |
+
| 0.7527 | 69500 | 0.0354 | 0.2226 | 0.7748 |
|
| 574 |
+
| 0.7581 | 70000 | 0.0396 | 0.2191 | 0.7753 |
|
| 575 |
+
| 0.7635 | 70500 | 0.0356 | 0.2195 | 0.7759 |
|
| 576 |
+
| 0.7689 | 71000 | 0.0359 | 0.2182 | 0.7760 |
|
| 577 |
+
| 0.7744 | 71500 | 0.0389 | 0.2187 | 0.7753 |
|
| 578 |
+
| 0.7798 | 72000 | 0.0366 | 0.2194 | 0.7753 |
|
| 579 |
+
| 0.7852 | 72500 | 0.0351 | 0.2198 | 0.7749 |
|
| 580 |
+
| 0.7906 | 73000 | 0.038 | 0.2175 | 0.7754 |
|
| 581 |
+
| 0.7960 | 73500 | 0.0378 | 0.2172 | 0.7756 |
|
| 582 |
+
| 0.8014 | 74000 | 0.0376 | 0.2174 | 0.7754 |
|
| 583 |
+
| 0.8068 | 74500 | 0.038 | 0.2176 | 0.7753 |
|
| 584 |
+
| 0.8123 | 75000 | 0.0379 | 0.2174 | 0.7755 |
|
| 585 |
+
|
| 586 |
+
* The bold row denotes the saved checkpoint.
|
| 587 |
+
</details>
|
| 588 |
|
| 589 |
### Framework Versions
|
| 590 |
- Python: 3.12.3
|
model.safetensors
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
size 789580328
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:2304eb08c679af236a8a9179f0e08d478a4d1958873dd0990efbc0ca883decab
|
| 3 |
size 789580328
|