File size: 2,719 Bytes
			
			| 743363a | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 | ---
license: apache-2.0
base_model: google/vit-base-patch16-224
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: Human-Action-Recognition-VIT-Base-patch16-224
  results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Human-Action-Recognition-VIT-Base-patch16-224
This model is a fine-tuned version of [google/vit-base-patch16-224](https://huggingface.co/google/vit-base-patch16-224) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4005
- Accuracy: 0.8786
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 256
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 20
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 2.6396        | 0.99  | 39   | 2.0436          | 0.4425   |
| 1.4579        | 2.0   | 79   | 0.7553          | 0.7917   |
| 0.8342        | 2.99  | 118  | 0.5296          | 0.8417   |
| 0.6649        | 4.0   | 158  | 0.4978          | 0.8496   |
| 0.6137        | 4.99  | 197  | 0.4460          | 0.8595   |
| 0.5374        | 6.0   | 237  | 0.4356          | 0.8627   |
| 0.514         | 6.99  | 276  | 0.4349          | 0.8615   |
| 0.475         | 8.0   | 316  | 0.4005          | 0.8786   |
| 0.4663        | 8.99  | 355  | 0.4164          | 0.8659   |
| 0.4178        | 10.0  | 395  | 0.4128          | 0.8738   |
| 0.4226        | 10.99 | 434  | 0.4115          | 0.8690   |
| 0.3896        | 12.0  | 474  | 0.4112          | 0.875    |
| 0.3866        | 12.99 | 513  | 0.4072          | 0.8714   |
| 0.3632        | 14.0  | 553  | 0.4106          | 0.8718   |
| 0.3596        | 14.99 | 592  | 0.4043          | 0.8714   |
| 0.3421        | 16.0  | 632  | 0.4128          | 0.8675   |
| 0.344         | 16.99 | 671  | 0.4181          | 0.8643   |
| 0.3447        | 18.0  | 711  | 0.4128          | 0.8687   |
| 0.3407        | 18.99 | 750  | 0.4097          | 0.8714   |
| 0.3267        | 19.75 | 780  | 0.4097          | 0.8683   |
### Framework versions
- Transformers 4.35.2
- Pytorch 2.1.0+cu118
- Datasets 2.15.0
- Tokenizers 0.15.0
 | 
