nreimers
		
	commited on
		
		
					Commit 
							
							·
						
						3d21d6b
	
1
								Parent(s):
							
							a9eebee
								
Add new SentenceTransformer model.
Browse files- .gitattributes +3 -0
- 1_Pooling/config.json +7 -0
- README.md +68 -45
- config.json +4 -0
- config_sentence_transformers.json +7 -0
- modules.json +14 -0
- pytorch_model.bin +2 -2
- sentence_bert_config.json +2 -1
- tokenizer.json +3 -0
- tokenizer_config.json +1 -1
    	
        .gitattributes
    CHANGED
    
    | @@ -6,3 +6,6 @@ | |
| 6 | 
             
            *.tar.gz filter=lfs diff=lfs merge=lfs -text
         | 
| 7 | 
             
            *.ot filter=lfs diff=lfs merge=lfs -text
         | 
| 8 | 
             
            *.onnx filter=lfs diff=lfs merge=lfs -text
         | 
|  | |
|  | |
|  | 
|  | |
| 6 | 
             
            *.tar.gz filter=lfs diff=lfs merge=lfs -text
         | 
| 7 | 
             
            *.ot filter=lfs diff=lfs merge=lfs -text
         | 
| 8 | 
             
            *.onnx filter=lfs diff=lfs merge=lfs -text
         | 
| 9 | 
            +
            pytorch_model.bin filter=lfs diff=lfs merge=lfs -text
         | 
| 10 | 
            +
            tokenizer.json filter=lfs diff=lfs merge=lfs -text
         | 
| 11 | 
            +
            .git/lfs/objects/48/31/48315809d75adfbf8e9922ee0cdaaae26b4f6680ba8595d7ae50d67de848c830 filter=lfs diff=lfs merge=lfs -text
         | 
    	
        1_Pooling/config.json
    ADDED
    
    | @@ -0,0 +1,7 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            {
         | 
| 2 | 
            +
              "word_embedding_dimension": 768,
         | 
| 3 | 
            +
              "pooling_mode_cls_token": false,
         | 
| 4 | 
            +
              "pooling_mode_mean_tokens": true,
         | 
| 5 | 
            +
              "pooling_mode_max_tokens": false,
         | 
| 6 | 
            +
              "pooling_mode_mean_sqrt_len_tokens": false
         | 
| 7 | 
            +
            }
         | 
    	
        README.md
    CHANGED
    
    | @@ -1,18 +1,42 @@ | |
| 1 | 
             
            ---
         | 
|  | |
| 2 | 
             
            tags:
         | 
| 3 | 
            -
            -  | 
| 4 | 
             
            - feature-extraction
         | 
|  | |
|  | |
| 5 | 
             
            ---
         | 
| 6 | 
            -
            # Sentence Embeddings Models trained on Paraphrases
         | 
| 7 | 
            -
            This model is from the [sentence-transformers](https://github.com/UKPLab/sentence-transformers)-repository.  It was trained on SNLI + MultiNLI and on STS benchmark dataset. Further details on SBERT can be found in the paper:  [Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks](https://arxiv.org/abs/1908.10084)
         | 
| 8 |  | 
| 9 | 
            -
             | 
| 10 |  | 
| 11 | 
            -
             | 
| 12 |  | 
| 13 | 
            -
            ## Usage (HuggingFace Models Repository)
         | 
| 14 |  | 
| 15 | 
            -
             | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 16 | 
             
            ```python
         | 
| 17 | 
             
            from transformers import AutoTokenizer, AutoModel
         | 
| 18 | 
             
            import torch
         | 
| @@ -22,62 +46,61 @@ import torch | |
| 22 | 
             
            def mean_pooling(model_output, attention_mask):
         | 
| 23 | 
             
                token_embeddings = model_output[0] #First element of model_output contains all token embeddings
         | 
| 24 | 
             
                input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
         | 
| 25 | 
            -
                 | 
| 26 | 
            -
                sum_mask = torch.clamp(input_mask_expanded.sum(1), min=1e-9)
         | 
| 27 | 
            -
                return sum_embeddings / sum_mask
         | 
| 28 |  | 
| 29 |  | 
|  | |
|  | |
| 30 |  | 
| 31 | 
            -
            # | 
| 32 | 
            -
             | 
| 33 | 
            -
             | 
| 34 | 
            -
                         'The quick brown fox jumps over the lazy dog.']
         | 
| 35 |  | 
| 36 | 
            -
            # | 
| 37 | 
            -
            tokenizer =  | 
| 38 | 
            -
            model = AutoModel.from_pretrained("model_name")
         | 
| 39 |  | 
| 40 | 
            -
            # | 
| 41 | 
            -
            encoded_input = tokenizer(sentences, padding=True, truncation=True, max_length=128, return_tensors='pt')
         | 
| 42 | 
            -
             | 
| 43 | 
            -
            #Compute token embeddings
         | 
| 44 | 
             
            with torch.no_grad():
         | 
| 45 | 
             
                model_output = model(**encoded_input)
         | 
| 46 |  | 
| 47 | 
            -
            #Perform pooling. In this case,  | 
| 48 | 
             
            sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
         | 
| 49 | 
            -
            ```
         | 
| 50 | 
            -
             | 
| 51 | 
            -
            ## Usage (Sentence-Transformers)
         | 
| 52 | 
            -
            Using this model becomes more convenient when you have [sentence-transformers](https://github.com/UKPLab/sentence-transformers) installed:
         | 
| 53 | 
            -
            ```
         | 
| 54 | 
            -
            pip install -U sentence-transformers
         | 
| 55 | 
            -
            ```
         | 
| 56 | 
            -
             | 
| 57 | 
            -
            Then you can use the model like this:
         | 
| 58 | 
            -
            ```python
         | 
| 59 | 
            -
            from sentence_transformers import SentenceTransformer
         | 
| 60 | 
            -
            model = SentenceTransformer('model_name')
         | 
| 61 | 
            -
            sentences = ['This framework generates embeddings for each input sentence',
         | 
| 62 | 
            -
                'Sentences are passed as a list of string.', 
         | 
| 63 | 
            -
                'The quick brown fox jumps over the lazy dog.']
         | 
| 64 | 
            -
            sentence_embeddings = model.encode(sentences)
         | 
| 65 |  | 
| 66 | 
             
            print("Sentence embeddings:")
         | 
| 67 | 
             
            print(sentence_embeddings)
         | 
| 68 | 
             
            ```
         | 
| 69 |  | 
| 70 |  | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 71 | 
             
            ## Citing & Authors
         | 
| 72 | 
            -
             | 
| 73 | 
            -
             | 
| 74 | 
            -
             | 
| 75 | 
            -
             | 
|  | |
|  | |
|  | |
| 76 | 
             
                author = "Reimers, Nils and Gurevych, Iryna",
         | 
| 77 | 
            -
                booktitle = "Proceedings of the  | 
| 78 | 
             
                month = "11",
         | 
| 79 | 
            -
                year = " | 
| 80 | 
             
                publisher = "Association for Computational Linguistics",
         | 
| 81 | 
            -
                url = " | 
| 82 | 
             
            }
         | 
| 83 | 
             
            ```
         | 
|  | |
| 1 | 
             
            ---
         | 
| 2 | 
            +
            pipeline_tag: sentence-similarity
         | 
| 3 | 
             
            tags:
         | 
| 4 | 
            +
            - sentence-transformers
         | 
| 5 | 
             
            - feature-extraction
         | 
| 6 | 
            +
            - sentence-similarity
         | 
| 7 | 
            +
            - transformers
         | 
| 8 | 
             
            ---
         | 
|  | |
|  | |
| 9 |  | 
| 10 | 
            +
            # sentence-transformers/stsb-xlm-r-multilingual
         | 
| 11 |  | 
| 12 | 
            +
            This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
         | 
| 13 |  | 
|  | |
| 14 |  | 
| 15 | 
            +
             | 
| 16 | 
            +
            ## Usage (Sentence-Transformers)
         | 
| 17 | 
            +
             | 
| 18 | 
            +
            Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
         | 
| 19 | 
            +
             | 
| 20 | 
            +
            ```
         | 
| 21 | 
            +
            pip install -U sentence-transformers
         | 
| 22 | 
            +
            ```
         | 
| 23 | 
            +
             | 
| 24 | 
            +
            Then you can use the model like this:
         | 
| 25 | 
            +
             | 
| 26 | 
            +
            ```python
         | 
| 27 | 
            +
            from sentence_transformers import SentenceTransformer
         | 
| 28 | 
            +
            sentences = ["This is an example sentence", "Each sentence is converted"]
         | 
| 29 | 
            +
             | 
| 30 | 
            +
            model = SentenceTransformer('sentence-transformers/stsb-xlm-r-multilingual')
         | 
| 31 | 
            +
            embeddings = model.encode(sentences)
         | 
| 32 | 
            +
            print(embeddings)
         | 
| 33 | 
            +
            ```
         | 
| 34 | 
            +
             | 
| 35 | 
            +
             | 
| 36 | 
            +
             | 
| 37 | 
            +
            ## Usage (HuggingFace Transformers)
         | 
| 38 | 
            +
            Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
         | 
| 39 | 
            +
             | 
| 40 | 
             
            ```python
         | 
| 41 | 
             
            from transformers import AutoTokenizer, AutoModel
         | 
| 42 | 
             
            import torch
         | 
|  | |
| 46 | 
             
            def mean_pooling(model_output, attention_mask):
         | 
| 47 | 
             
                token_embeddings = model_output[0] #First element of model_output contains all token embeddings
         | 
| 48 | 
             
                input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
         | 
| 49 | 
            +
                return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
         | 
|  | |
|  | |
| 50 |  | 
| 51 |  | 
| 52 | 
            +
            # Sentences we want sentence embeddings for
         | 
| 53 | 
            +
            sentences = ['This is an example sentence', 'Each sentence is converted']
         | 
| 54 |  | 
| 55 | 
            +
            # Load model from HuggingFace Hub
         | 
| 56 | 
            +
            tokenizer = AutoTokenizer.from_pretrained('sentence-transformers/stsb-xlm-r-multilingual')
         | 
| 57 | 
            +
            model = AutoModel.from_pretrained('sentence-transformers/stsb-xlm-r-multilingual')
         | 
|  | |
| 58 |  | 
| 59 | 
            +
            # Tokenize sentences
         | 
| 60 | 
            +
            encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
         | 
|  | |
| 61 |  | 
| 62 | 
            +
            # Compute token embeddings
         | 
|  | |
|  | |
|  | |
| 63 | 
             
            with torch.no_grad():
         | 
| 64 | 
             
                model_output = model(**encoded_input)
         | 
| 65 |  | 
| 66 | 
            +
            # Perform pooling. In this case, max pooling.
         | 
| 67 | 
             
            sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 68 |  | 
| 69 | 
             
            print("Sentence embeddings:")
         | 
| 70 | 
             
            print(sentence_embeddings)
         | 
| 71 | 
             
            ```
         | 
| 72 |  | 
| 73 |  | 
| 74 | 
            +
             | 
| 75 | 
            +
            ## Evaluation Results
         | 
| 76 | 
            +
             | 
| 77 | 
            +
             | 
| 78 | 
            +
             | 
| 79 | 
            +
            For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=sentence-transformers/stsb-xlm-r-multilingual)
         | 
| 80 | 
            +
             | 
| 81 | 
            +
             | 
| 82 | 
            +
             | 
| 83 | 
            +
            ## Full Model Architecture
         | 
| 84 | 
            +
            ```
         | 
| 85 | 
            +
            SentenceTransformer(
         | 
| 86 | 
            +
              (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: XLMRobertaModel 
         | 
| 87 | 
            +
              (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
         | 
| 88 | 
            +
            )
         | 
| 89 | 
            +
            ```
         | 
| 90 | 
            +
             | 
| 91 | 
             
            ## Citing & Authors
         | 
| 92 | 
            +
             | 
| 93 | 
            +
            This model was trained by [sentence-transformers](https://www.sbert.net/). 
         | 
| 94 | 
            +
                    
         | 
| 95 | 
            +
            If you find this model helpful, feel free to cite our publication [Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks](https://arxiv.org/abs/1908.10084):
         | 
| 96 | 
            +
            ```bibtex 
         | 
| 97 | 
            +
            @inproceedings{reimers-2019-sentence-bert,
         | 
| 98 | 
            +
                title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
         | 
| 99 | 
             
                author = "Reimers, Nils and Gurevych, Iryna",
         | 
| 100 | 
            +
                booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
         | 
| 101 | 
             
                month = "11",
         | 
| 102 | 
            +
                year = "2019",
         | 
| 103 | 
             
                publisher = "Association for Computational Linguistics",
         | 
| 104 | 
            +
                url = "http://arxiv.org/abs/1908.10084",
         | 
| 105 | 
             
            }
         | 
| 106 | 
             
            ```
         | 
    	
        config.json
    CHANGED
    
    | @@ -1,4 +1,5 @@ | |
| 1 | 
             
            {
         | 
|  | |
| 2 | 
             
              "architectures": [
         | 
| 3 | 
             
                "XLMRobertaModel"
         | 
| 4 | 
             
              ],
         | 
| @@ -18,6 +19,9 @@ | |
| 18 | 
             
              "num_hidden_layers": 12,
         | 
| 19 | 
             
              "output_past": true,
         | 
| 20 | 
             
              "pad_token_id": 1,
         | 
|  | |
|  | |
| 21 | 
             
              "type_vocab_size": 1,
         | 
|  | |
| 22 | 
             
              "vocab_size": 250002
         | 
| 23 | 
             
            }
         | 
|  | |
| 1 | 
             
            {
         | 
| 2 | 
            +
              "_name_or_path": "old_models/stsb-xlm-r-multilingual/0_Transformer",
         | 
| 3 | 
             
              "architectures": [
         | 
| 4 | 
             
                "XLMRobertaModel"
         | 
| 5 | 
             
              ],
         | 
|  | |
| 19 | 
             
              "num_hidden_layers": 12,
         | 
| 20 | 
             
              "output_past": true,
         | 
| 21 | 
             
              "pad_token_id": 1,
         | 
| 22 | 
            +
              "position_embedding_type": "absolute",
         | 
| 23 | 
            +
              "transformers_version": "4.7.0",
         | 
| 24 | 
             
              "type_vocab_size": 1,
         | 
| 25 | 
            +
              "use_cache": true,
         | 
| 26 | 
             
              "vocab_size": 250002
         | 
| 27 | 
             
            }
         | 
    	
        config_sentence_transformers.json
    ADDED
    
    | @@ -0,0 +1,7 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            {
         | 
| 2 | 
            +
              "__version__": {
         | 
| 3 | 
            +
                "sentence_transformers": "2.0.0",
         | 
| 4 | 
            +
                "transformers": "4.7.0",
         | 
| 5 | 
            +
                "pytorch": "1.9.0+cu102"
         | 
| 6 | 
            +
              }
         | 
| 7 | 
            +
            }
         | 
    	
        modules.json
    ADDED
    
    | @@ -0,0 +1,14 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            [
         | 
| 2 | 
            +
              {
         | 
| 3 | 
            +
                "idx": 0,
         | 
| 4 | 
            +
                "name": "0",
         | 
| 5 | 
            +
                "path": "",
         | 
| 6 | 
            +
                "type": "sentence_transformers.models.Transformer"
         | 
| 7 | 
            +
              },
         | 
| 8 | 
            +
              {
         | 
| 9 | 
            +
                "idx": 1,
         | 
| 10 | 
            +
                "name": "1",
         | 
| 11 | 
            +
                "path": "1_Pooling",
         | 
| 12 | 
            +
                "type": "sentence_transformers.models.Pooling"
         | 
| 13 | 
            +
              }
         | 
| 14 | 
            +
            ]
         | 
    	
        pytorch_model.bin
    CHANGED
    
    | @@ -1,3 +1,3 @@ | |
| 1 | 
             
            version https://git-lfs.github.com/spec/v1
         | 
| 2 | 
            -
            oid sha256: | 
| 3 | 
            -
            size  | 
|  | |
| 1 | 
             
            version https://git-lfs.github.com/spec/v1
         | 
| 2 | 
            +
            oid sha256:7e6e54271c84414d1031eec8424e9698d19ff3dab29cdd652ecf4b360968b1de
         | 
| 3 | 
            +
            size 1112253233
         | 
    	
        sentence_bert_config.json
    CHANGED
    
    | @@ -1,3 +1,4 @@ | |
| 1 | 
             
            {
         | 
| 2 | 
            -
              "max_seq_length": 128
         | 
|  | |
| 3 | 
             
            }
         | 
|  | |
| 1 | 
             
            {
         | 
| 2 | 
            +
              "max_seq_length": 128,
         | 
| 3 | 
            +
              "do_lower_case": false
         | 
| 4 | 
             
            }
         | 
    	
        tokenizer.json
    ADDED
    
    | @@ -0,0 +1,3 @@ | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            version https://git-lfs.github.com/spec/v1
         | 
| 2 | 
            +
            oid sha256:96ef91dd5d1c3b157a0437e85ff1f29d0eb3cf32fd40f863dab45baa5e839fad
         | 
| 3 | 
            +
            size 9096735
         | 
    	
        tokenizer_config.json
    CHANGED
    
    | @@ -1 +1 @@ | |
| 1 | 
            -
            {"model_max_length": 512, "special_tokens_map_file": "output/xlm-r-nli-stsb-40langs/0_Transformer/special_tokens_map.json", "full_tokenizer_file": null}
         | 
|  | |
| 1 | 
            +
            {"bos_token": "<s>", "eos_token": "</s>", "sep_token": "</s>", "cls_token": "<s>", "unk_token": "<unk>", "pad_token": "<pad>", "mask_token": {"content": "<mask>", "single_word": false, "lstrip": true, "rstrip": false, "normalized": true, "__type": "AddedToken"}, "model_max_length": 512, "special_tokens_map_file": "output/xlm-r-nli-stsb-40langs/0_Transformer/special_tokens_map.json", "full_tokenizer_file": null, "name_or_path": "old_models/stsb-xlm-r-multilingual/0_Transformer", "sp_model_kwargs": {}}
         | 
