File size: 3,471 Bytes
e924b9a
 
bbf852a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b4300b7
bbf852a
 
 
 
 
 
 
 
b4300b7
bbf852a
 
 
 
 
 
 
 
b4300b7
bbf852a
 
 
 
 
 
 
 
b4300b7
bbf852a
 
 
 
 
 
 
 
b4300b7
bbf852a
 
 
 
 
 
 
 
b4300b7
bbf852a
 
 
 
 
 
 
 
b4300b7
bbf852a
 
 
 
 
 
 
 
b4300b7
bbf852a
 
 
 
 
 
 
 
b4300b7
bbf852a
 
 
 
 
 
 
 
b4300b7
bbf852a
 
 
 
 
 
 
 
b4300b7
e924b9a
 
bbf852a
ee746e1
b035a5a
 
 
 
 
bbf852a
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
---
license: mit
datasets:
- shorecode/summary-collection-200k-rows
language:
- en
base_model:
- google/t5-efficient-tiny-nh8
library_name: transformers
tags:
- summary
- summarizer
widget:
- text: Model training
  output:
    url: Screenshot_20251104_204645.png
metrics:
- f1
- rouge
- extractiveness
model-index:
- name: t5-efficient-tiny-summarizer-general-purpose-v2
  results:
  - task:
      type: Summarization
    dataset:
      name: shorecode/summary-collection-60k-rows
      type: shorecode/summary-collection-60k-rows
    metrics:
    - name: f1 Score
      type: f1 Score
      value: 0.29
  - task:
      type: Summarization
    dataset:
      name: shorecode/summary-collection-60k-rows
      type: shorecode/summary-collection-60k-rows
    metrics:
    - name: Faithfullness (facebook/bart-large-cnn)
      type: facebook/bart-large-cnn
      value: 1.71
  - task:
      type: Summarization
    dataset:
      name: shorecode/summary-collection-60k-rows
      type: shorecode/summary-collection-60k-rows
    metrics:
    - name: Summarization Compression
      type: Lighteval extractiveness
      value: 7.52
  - task:
      type: Summarization
    dataset:
      name: shorecode/summary-collection-60k-rows
      type: shorecode/summary-collection-60k-rows
    metrics:
    - name: Summarization Coverage
      type: Lighteval extractiveness
      value: 0.96
  - task:
      type: Summarization
    dataset:
      name: shorecode/summary-collection-60k-rows
      type: shorecode/summary-collection-60k-rows
    metrics:
    - name: Summarization Density
      type: Lighteval extractiveness
      value: 8.68
  - task:
      type: Summarization
    dataset:
      name: shorecode/summary-collection-60k-rows
      type: shorecode/summary-collection-60k-rows
    metrics:
    - name: rougeL precision
      type: Lighteval
      value: 0.59
  - task:
      type: Summarization
    dataset:
      name: shorecode/summary-collection-60k-rows
      type: shorecode/summary-collection-60k-rows
    metrics:
    - name: rougeL recall
      type: Lighteval
      value: 0.31
  - task:
      type: Summarization
    dataset:
      name: shorecode/summary-collection-60k-rows
      type: shorecode/summary-collection-60k-rows
    metrics:
    - name: rougeL fmeasure
      type: Lighteval
      value: 0.41
  - task:
      type: Summarization
    dataset:
      name: shorecode/summary-collection-60k-rows
      type: shorecode/summary-collection-60k-rows
    metrics:
    - name: rouge1 precision
      type: Lighteval
      value: 0.63
  - task:
      type: Summarization
    dataset:
      name: shorecode/summary-collection-60k-rows
      type: shorecode/summary-collection-60k-rows
    metrics:
    - name: rouge1 recall
      type: Lighteval
      value: 0.33
  - task:
      type: Summarization
    dataset:
      name: shorecode/summary-collection-60k-rows
      type: shorecode/summary-collection-60k-rows
    metrics:
    - name: rouge1 fmeasure
      type: Lighteval
      value: 0.44
---

# This model was built to shorten text that is injected into LLM prompts to reduce API calling costs
Very high compression (7x+) meaning the text is 7 times smaller when sent to your LLM provider!
Recommended kwargs:
- num_beams=2 || 3
- no_repeat_ngram_size=2
- min_length=20
- max_new_tokens=500 || as high as you can tolerate, 4x500 = 2000 characters. anything after 2000 is clipped
<Gallery />

https://api.wandb.ai/links/shorecode-shorecode-llc/6udfudmr