--- license: mit datasets: - shorecode/summary-collection-200k-rows language: - en base_model: - google/t5-efficient-tiny-nh8 library_name: transformers tags: - summary - summarizer widget: - text: Model training output: url: Screenshot_20251104_204645.png metrics: - f1 - rouge - extractiveness model-index: - name: t5-efficient-tiny-summarizer-general-purpose-v2 results: - task: type: Summarization dataset: name: shorecode/summary-collection-60k-rows type: shorecode/summary-collection-60k-rows metrics: - name: f1 Score type: f1 Score value: 0.29 - task: type: Summarization dataset: name: shorecode/summary-collection-60k-rows type: shorecode/summary-collection-60k-rows metrics: - name: Faithfullness (facebook/bart-large-cnn) type: facebook/bart-large-cnn value: 1.71 - task: type: Summarization dataset: name: shorecode/summary-collection-60k-rows type: shorecode/summary-collection-60k-rows metrics: - name: Summarization Compression type: Lighteval extractiveness value: 7.52 - task: type: Summarization dataset: name: shorecode/summary-collection-60k-rows type: shorecode/summary-collection-60k-rows metrics: - name: Summarization Coverage type: Lighteval extractiveness value: 0.96 - task: type: Summarization dataset: name: shorecode/summary-collection-60k-rows type: shorecode/summary-collection-60k-rows metrics: - name: Summarization Density type: Lighteval extractiveness value: 8.68 - task: type: Summarization dataset: name: shorecode/summary-collection-60k-rows type: shorecode/summary-collection-60k-rows metrics: - name: rougeL precision type: Lighteval value: 0.59 - task: type: Summarization dataset: name: shorecode/summary-collection-60k-rows type: shorecode/summary-collection-60k-rows metrics: - name: rougeL recall type: Lighteval value: 0.31 - task: type: Summarization dataset: name: shorecode/summary-collection-60k-rows type: shorecode/summary-collection-60k-rows metrics: - name: rougeL fmeasure type: Lighteval value: 0.41 - task: type: Summarization dataset: name: shorecode/summary-collection-60k-rows type: shorecode/summary-collection-60k-rows metrics: - name: rouge1 precision type: Lighteval value: 0.63 - task: type: Summarization dataset: name: shorecode/summary-collection-60k-rows type: shorecode/summary-collection-60k-rows metrics: - name: rouge1 recall type: Lighteval value: 0.33 - task: type: Summarization dataset: name: shorecode/summary-collection-60k-rows type: shorecode/summary-collection-60k-rows metrics: - name: rouge1 fmeasure type: Lighteval value: 0.44 --- # This model was built to shorten text that is injected into LLM prompts to reduce API calling costs Very high compression (7x+) meaning the text is 7 times smaller when sent to your LLM provider! Recommended kwargs: - num_beams=2 || 3 - no_repeat_ngram_size=2 - min_length=20 - max_new_tokens=500 || as high as you can tolerate, 4x500 = 2000 characters. anything after 2000 is clipped https://api.wandb.ai/links/shorecode-shorecode-llc/6udfudmr