---
license: mit
library_name: sklearn
tags:
- sklearn
- skops
- tabular-classification
model_format: pickle
model_file: isolation_forest.pkl
widget:
  structuredData:
    x0:
    - 1.9137876638235471
    - -1.8264435506813366
    - -2.1884262678924737
    x1:
    - 2.021017965584703
    - -1.895103662902048
    - -2.1443081355382363
---
# Model description
[More Information Needed]
## Intended uses & limitations
This model is not ready to be used in production.
## Training Procedure
[More Information Needed]
### Hyperparameters
 Click to expand 
| Hyperparameter       | Value                                                                                       |
|----------------------|---------------------------------------------------------------------------------------------|
| memory               |                                                                                             |
| steps                | [('scaler', StandardScaler()), ('model', IsolationForest(max_samples=100, random_state=0))] |
| verbose              | False                                                                                       |
| scaler               | StandardScaler()                                                                            |
| model                | IsolationForest(max_samples=100, random_state=0)                                            |
| scaler__copy         | True                                                                                        |
| scaler__with_mean    | True                                                                                        |
| scaler__with_std     | True                                                                                        |
| model__bootstrap     | False                                                                                       |
| model__contamination | auto                                                                                        |
| model__max_features  | 1.0                                                                                         |
| model__max_samples   | 100                                                                                         |
| model__n_estimators  | 100                                                                                         |
| model__n_jobs        |                                                                                             |
| model__random_state  | 0                                                                                           |
| model__verbose       | 0                                                                                           |
| model__warm_start    | False                                                                                       |
Pipeline(steps=[('scaler', StandardScaler()),('model', IsolationForest(max_samples=100, random_state=0))])In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. Pipeline(steps=[('scaler', StandardScaler()),('model', IsolationForest(max_samples=100, random_state=0))])StandardScaler()
IsolationForest(max_samples=100, random_state=0)