Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -32,23 +32,11 @@ available_models = ["0Tick/e621TagAutocomplete","0Tick/danbooruTagAutocomplete"]
|
|
| 32 |
current = Model()
|
| 33 |
job_count = 1
|
| 34 |
|
| 35 |
-
base_dir = scripts.basedir()
|
| 36 |
-
models_dir = os.path.join(base_dir, "models")
|
| 37 |
-
|
| 38 |
|
| 39 |
def device():
|
| 40 |
return devices.cpu
|
| 41 |
|
| 42 |
|
| 43 |
-
|
| 44 |
-
def get_model_path(name):
|
| 45 |
-
dirname = os.path.join(models_dir, name)
|
| 46 |
-
if not os.path.isdir(dirname):
|
| 47 |
-
return name
|
| 48 |
-
|
| 49 |
-
return dirname
|
| 50 |
-
|
| 51 |
-
|
| 52 |
def generate_batch(input_ids, min_length, max_length, num_beams, temperature, repetition_penalty, length_penalty, sampling_mode, top_k, top_p):
|
| 53 |
top_p = float(top_p) if sampling_mode == 'Top P' else None
|
| 54 |
top_k = int(top_k) if sampling_mode == 'Top K' else None
|
|
@@ -87,7 +75,7 @@ def generate(id_task, model_name, batch_count, batch_size, text, *args):
|
|
| 87 |
current.name = None
|
| 88 |
|
| 89 |
if model_name != 'None':
|
| 90 |
-
path =
|
| 91 |
current.tokenizer = transformers.AutoTokenizer.from_pretrained(path)
|
| 92 |
current.model = transformers.AutoModelForCausalLM.from_pretrained(path)
|
| 93 |
current.name = model_name
|
|
@@ -126,9 +114,6 @@ def generate(id_task, model_name, batch_count, batch_size, text, *args):
|
|
| 126 |
return markup, ''
|
| 127 |
|
| 128 |
|
| 129 |
-
|
| 130 |
-
list_available_models()
|
| 131 |
-
|
| 132 |
with gr.Blocks(analytics_enabled=False) as space:
|
| 133 |
with gr.Row():
|
| 134 |
with gr.Column(scale=80):
|
|
|
|
| 32 |
current = Model()
|
| 33 |
job_count = 1
|
| 34 |
|
|
|
|
|
|
|
|
|
|
| 35 |
|
| 36 |
def device():
|
| 37 |
return devices.cpu
|
| 38 |
|
| 39 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 40 |
def generate_batch(input_ids, min_length, max_length, num_beams, temperature, repetition_penalty, length_penalty, sampling_mode, top_k, top_p):
|
| 41 |
top_p = float(top_p) if sampling_mode == 'Top P' else None
|
| 42 |
top_k = int(top_k) if sampling_mode == 'Top K' else None
|
|
|
|
| 75 |
current.name = None
|
| 76 |
|
| 77 |
if model_name != 'None':
|
| 78 |
+
path = model_name
|
| 79 |
current.tokenizer = transformers.AutoTokenizer.from_pretrained(path)
|
| 80 |
current.model = transformers.AutoModelForCausalLM.from_pretrained(path)
|
| 81 |
current.name = model_name
|
|
|
|
| 114 |
return markup, ''
|
| 115 |
|
| 116 |
|
|
|
|
|
|
|
|
|
|
| 117 |
with gr.Blocks(analytics_enabled=False) as space:
|
| 118 |
with gr.Row():
|
| 119 |
with gr.Column(scale=80):
|