File size: 8,034 Bytes
c139bcf 5fb66a1 c139bcf 5fb66a1 c139bcf 5fb66a1 c139bcf 5fb66a1 c139bcf 5fb66a1 c139bcf 5fb66a1 c139bcf 5fb66a1 c139bcf 5fb66a1 c139bcf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 |
import gradio as gr
import os
from huggingface_hub import InferenceClient
from pathlib import Path
import tempfile
# Initialize the inference client
client = InferenceClient(
provider="fal-ai",
api_key=os.environ.get("HF_TOKEN"),
bill_to="huggingface",
)
def generate_video(image, prompt, progress=gr.Progress()):
"""
Generate a video from an image using the Ovi model.
Args:
image: Input image (PIL Image or file path)
prompt: Text prompt describing the desired motion/animation
progress: Gradio progress tracker
Returns:
Path to the generated video file
"""
if image is None:
raise gr.Error("Please upload an image first!")
if not prompt or prompt.strip() == "":
raise gr.Error("Please enter a prompt describing the desired motion!")
try:
progress(0.2, desc="Processing image...")
# Read the image file
if isinstance(image, str):
with open(image, "rb") as image_file:
input_image = image_file.read()
else:
# If image is a PIL Image, save it temporarily
temp_image = tempfile.NamedTemporaryFile(delete=False, suffix=".png")
image.save(temp_image.name)
with open(temp_image.name, "rb") as image_file:
input_image = image_file.read()
progress(0.4, desc="Generating video with AI...")
# Generate video using the inference client
video = client.image_to_video(
input_image,
prompt=prompt,
model="chetwinlow1/Ovi",
)
progress(0.9, desc="Finalizing video...")
# Save the video to a temporary file
output_path = tempfile.NamedTemporaryFile(delete=False, suffix=".mp4")
# Check if video is bytes or a file path
if isinstance(video, bytes):
with open(output_path.name, "wb") as f:
f.write(video)
elif isinstance(video, str) and os.path.exists(video):
# If it's a path, copy it
import shutil
shutil.copy(video, output_path.name)
else:
# Try to write it directly
with open(output_path.name, "wb") as f:
f.write(video)
progress(1.0, desc="Complete!")
return output_path.name
except Exception as e:
raise gr.Error(f"Error generating video: {str(e)}")
# Create the Gradio interface
with gr.Blocks(
theme=gr.themes.Soft(
primary_hue="blue",
secondary_hue="indigo",
),
css="""
.header-link {
font-size: 0.9em;
color: #666;
text-decoration: none;
margin-bottom: 1em;
display: inline-block;
}
.header-link:hover {
color: #333;
text-decoration: underline;
}
.main-header {
text-align: center;
margin-bottom: 2em;
}
.info-box {
background-color: #f0f7ff;
border-left: 4px solid #4285f4;
padding: 1em;
margin: 1em 0;
border-radius: 4px;
}
""",
title="Image to Video Generator",
) as demo:
gr.HTML(
"""
<div class="main-header">
<a href="https://huggingface.co/spaces/akhaliq/anycoder" target="_blank" class="header-link">
Built with anycoder β¨
</a>
</div>
"""
)
gr.Markdown(
"""
# π¬ Image to Video Generator with Ovi
Transform your static images into dynamic videos with synchronized audio using AI! Upload an image and describe the motion you want to see.
Powered by **Ovi: Twin Backbone Cross-Modal Fusion for Audio-Video Generation** via HuggingFace Inference API.
"""
)
gr.HTML(
"""
<div class="info-box">
<strong>π‘ Tips for best results:</strong>
<ul>
<li>Use clear, well-lit images with a single main subject</li>
<li>Write specific prompts describing the desired motion or action</li>
<li>Keep prompts concise and focused on movement and audio elements</li>
<li>Processing generates 5-second videos at 24 FPS with synchronized audio</li>
<li>Processing may take 30-60 seconds depending on server load</li>
</ul>
</div>
"""
)
with gr.Row():
with gr.Column(scale=1):
image_input = gr.Image(
label="πΈ Upload Image",
type="filepath",
sources=["upload", "clipboard"],
height=400,
)
prompt_input = gr.Textbox(
label="βοΈ Motion Prompt",
placeholder="Describe the motion or animation you want to see...",
lines=3,
value="The subject starts to move naturally",
)
generate_btn = gr.Button(
"π¬ Generate Video",
variant="primary",
size="lg",
)
clear_btn = gr.Button(
"ποΈ Clear",
variant="secondary",
)
with gr.Column(scale=1):
video_output = gr.Video(
label="π₯ Generated Video",
height=400,
autoplay=True,
)
gr.Markdown(
"""
### About Ovi Model
**Ovi: Twin Backbone Cross-Modal Fusion for Audio-Video Generation**
Developed by Chetwin Low, Weimin Wang (Character AI) & Calder Katyal (Yale University)
π **Key Features:**
- π¬ **Video+Audio Generation**: Generates synchronized video and audio content simultaneously
- π **Flexible Input**: Supports text-only or text+image conditioning
- β±οΈ **5-second Videos**: Generates 5-second videos at 24 FPS
- π **Multiple Aspect Ratios**: Supports 720Γ720 area at various ratios (9:16, 16:9, 1:1, etc)
Ovi is a veo-3 like model that uses twin backbone cross-modal fusion for high-quality audio-video generation.
"""
)
# Event handlers
generate_btn.click(
fn=generate_video,
inputs=[image_input, prompt_input],
outputs=[video_output],
api_name="generate_video",
)
clear_btn.click(
fn=lambda: (None, "The subject starts to move naturally", None),
inputs=None,
outputs=[image_input, prompt_input, video_output],
)
gr.Markdown(
"""
---
### π How it works
1. **Upload** your image - any photo or illustration
2. **Describe** the motion you want to see in the prompt
3. **Generate** and watch your image come to life!
### β οΈ Notes
- Video generation may take 30-60 seconds
- Generates 5-second videos at 24 FPS with synchronized audio
- Supports multiple aspect ratios (9:16, 16:9, 1:1, etc) at 720Γ720 area
- Requires a valid HuggingFace token with Inference API access
- Best results with clear, high-quality images
- The model works best with realistic subjects and natural motions
### π Resources
- [Ovi Model Card](https://huggingface.co/chetwinlow1/Ovi)
- [HuggingFace Inference API](https://huggingface.co/docs/huggingface_hub/guides/inference)
- [Character AI](https://character.ai)
"""
)
# Launch the app
if __name__ == "__main__":
demo.launch() |