File size: 8,034 Bytes
c139bcf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5fb66a1
c139bcf
5fb66a1
c139bcf
5fb66a1
c139bcf
 
 
 
 
 
 
 
 
 
5fb66a1
 
c139bcf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5fb66a1
c139bcf
5fb66a1
 
 
 
 
 
 
 
 
 
 
c139bcf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5fb66a1
 
c139bcf
 
 
 
 
 
 
 
5fb66a1
c139bcf
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
import gradio as gr
import os
from huggingface_hub import InferenceClient
from pathlib import Path
import tempfile

# Initialize the inference client
client = InferenceClient(
    provider="fal-ai",
    api_key=os.environ.get("HF_TOKEN"),
    bill_to="huggingface",
)

def generate_video(image, prompt, progress=gr.Progress()):
    """
    Generate a video from an image using the Ovi model.
    
    Args:
        image: Input image (PIL Image or file path)
        prompt: Text prompt describing the desired motion/animation
        progress: Gradio progress tracker
    
    Returns:
        Path to the generated video file
    """
    if image is None:
        raise gr.Error("Please upload an image first!")
    
    if not prompt or prompt.strip() == "":
        raise gr.Error("Please enter a prompt describing the desired motion!")
    
    try:
        progress(0.2, desc="Processing image...")
        
        # Read the image file
        if isinstance(image, str):
            with open(image, "rb") as image_file:
                input_image = image_file.read()
        else:
            # If image is a PIL Image, save it temporarily
            temp_image = tempfile.NamedTemporaryFile(delete=False, suffix=".png")
            image.save(temp_image.name)
            with open(temp_image.name, "rb") as image_file:
                input_image = image_file.read()
        
        progress(0.4, desc="Generating video with AI...")
        
        # Generate video using the inference client
        video = client.image_to_video(
            input_image,
            prompt=prompt,
            model="chetwinlow1/Ovi",
        )
        
        progress(0.9, desc="Finalizing video...")
        
        # Save the video to a temporary file
        output_path = tempfile.NamedTemporaryFile(delete=False, suffix=".mp4")
        
        # Check if video is bytes or a file path
        if isinstance(video, bytes):
            with open(output_path.name, "wb") as f:
                f.write(video)
        elif isinstance(video, str) and os.path.exists(video):
            # If it's a path, copy it
            import shutil
            shutil.copy(video, output_path.name)
        else:
            # Try to write it directly
            with open(output_path.name, "wb") as f:
                f.write(video)
        
        progress(1.0, desc="Complete!")
        
        return output_path.name
    
    except Exception as e:
        raise gr.Error(f"Error generating video: {str(e)}")

# Create the Gradio interface
with gr.Blocks(
    theme=gr.themes.Soft(
        primary_hue="blue",
        secondary_hue="indigo",
    ),
    css="""
        .header-link {
            font-size: 0.9em;
            color: #666;
            text-decoration: none;
            margin-bottom: 1em;
            display: inline-block;
        }
        .header-link:hover {
            color: #333;
            text-decoration: underline;
        }
        .main-header {
            text-align: center;
            margin-bottom: 2em;
        }
        .info-box {
            background-color: #f0f7ff;
            border-left: 4px solid #4285f4;
            padding: 1em;
            margin: 1em 0;
            border-radius: 4px;
        }
    """,
    title="Image to Video Generator",
) as demo:
    
    gr.HTML(
        """
        <div class="main-header">
            <a href="https://huggingface.co/spaces/akhaliq/anycoder" target="_blank" class="header-link">
                Built with anycoder ✨
            </a>
        </div>
        """
    )
    
    gr.Markdown(
        """
        # 🎬 Image to Video Generator with Ovi
        
        Transform your static images into dynamic videos with synchronized audio using AI! Upload an image and describe the motion you want to see.
        
        Powered by **Ovi: Twin Backbone Cross-Modal Fusion for Audio-Video Generation** via HuggingFace Inference API.
        """
    )
    
    gr.HTML(
        """
        <div class="info-box">
            <strong>πŸ’‘ Tips for best results:</strong>
            <ul>
                <li>Use clear, well-lit images with a single main subject</li>
                <li>Write specific prompts describing the desired motion or action</li>
                <li>Keep prompts concise and focused on movement and audio elements</li>
                <li>Processing generates 5-second videos at 24 FPS with synchronized audio</li>
                <li>Processing may take 30-60 seconds depending on server load</li>
            </ul>
        </div>
        """
    )
    
    with gr.Row():
        with gr.Column(scale=1):
            image_input = gr.Image(
                label="πŸ“Έ Upload Image",
                type="filepath",
                sources=["upload", "clipboard"],
                height=400,
            )
            
            prompt_input = gr.Textbox(
                label="✍️ Motion Prompt",
                placeholder="Describe the motion or animation you want to see...",
                lines=3,
                value="The subject starts to move naturally",
            )
            
            
            
            generate_btn = gr.Button(
                "🎬 Generate Video",
                variant="primary",
                size="lg",
            )
            
            clear_btn = gr.Button(
                "πŸ—‘οΈ Clear",
                variant="secondary",
            )
        
        with gr.Column(scale=1):
            video_output = gr.Video(
                label="πŸŽ₯ Generated Video",
                height=400,
                autoplay=True,
            )
            
            gr.Markdown(
                """
                ### About Ovi Model
                
                **Ovi: Twin Backbone Cross-Modal Fusion for Audio-Video Generation**
                
                Developed by Chetwin Low, Weimin Wang (Character AI) & Calder Katyal (Yale University)
                
                🌟 **Key Features:**
                - 🎬 **Video+Audio Generation**: Generates synchronized video and audio content simultaneously
                - πŸ“ **Flexible Input**: Supports text-only or text+image conditioning  
                - ⏱️ **5-second Videos**: Generates 5-second videos at 24 FPS
                - πŸ“ **Multiple Aspect Ratios**: Supports 720Γ—720 area at various ratios (9:16, 16:9, 1:1, etc)
                
                Ovi is a veo-3 like model that uses twin backbone cross-modal fusion for high-quality audio-video generation.
                """
            )
    
    # Event handlers
    generate_btn.click(
        fn=generate_video,
        inputs=[image_input, prompt_input],
        outputs=[video_output],
        api_name="generate_video",
    )
    
    clear_btn.click(
        fn=lambda: (None, "The subject starts to move naturally", None),
        inputs=None,
        outputs=[image_input, prompt_input, video_output],
    )
    
    gr.Markdown(
        """
        ---
        
        ### πŸš€ How it works
        
        1. **Upload** your image - any photo or illustration
        2. **Describe** the motion you want to see in the prompt
        3. **Generate** and watch your image come to life!
        
        ### ⚠️ Notes
        
        - Video generation may take 30-60 seconds
        - Generates 5-second videos at 24 FPS with synchronized audio
        - Supports multiple aspect ratios (9:16, 16:9, 1:1, etc) at 720Γ—720 area
        - Requires a valid HuggingFace token with Inference API access
        - Best results with clear, high-quality images
        - The model works best with realistic subjects and natural motions
        
        ### πŸ”— Resources
        
        - [Ovi Model Card](https://huggingface.co/chetwinlow1/Ovi)
        - [HuggingFace Inference API](https://huggingface.co/docs/huggingface_hub/guides/inference)
        - [Character AI](https://character.ai)
        """
    )

# Launch the app
if __name__ == "__main__":
    demo.launch()