Update app.py
Browse files
app.py
CHANGED
|
@@ -4,65 +4,107 @@ import fitz # PyMuPDF
|
|
| 4 |
from PIL import Image
|
| 5 |
import numpy as np
|
| 6 |
import os
|
|
|
|
| 7 |
|
| 8 |
-
#
|
| 9 |
-
|
|
|
|
| 10 |
|
| 11 |
-
#
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
print("
|
|
|
|
|
|
|
|
|
|
|
|
|
| 15 |
|
| 16 |
-
|
|
|
|
|
|
|
|
|
|
| 17 |
"""
|
| 18 |
-
|
| 19 |
"""
|
| 20 |
if pdf_file is None:
|
| 21 |
-
return "
|
| 22 |
|
| 23 |
try:
|
| 24 |
-
#
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
full_text = []
|
| 28 |
|
| 29 |
-
#
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
# --- 核心修正 ---
|
| 40 |
-
# 执行OCR识别,移除新版本中已不接受的 'cls' 参数
|
| 41 |
-
result = ocr.ocr(img_np)
|
| 42 |
-
|
| 43 |
-
# 提取识别出的文本行
|
| 44 |
-
page_texts = []
|
| 45 |
-
if result and result[0]: # 确保result不是None或空
|
| 46 |
-
for line in result[0]:
|
| 47 |
-
page_texts.append(line[1][0]) # line[1][0] 是文本内容
|
| 48 |
|
| 49 |
-
|
| 50 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 51 |
|
| 52 |
doc.close()
|
| 53 |
|
| 54 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 55 |
|
| 56 |
except Exception as e:
|
| 57 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 58 |
|
| 59 |
-
#
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
description="此应用基于PaddleOCR,为中文识别特别优化。它在CPU上运行,处理速度取决于文档的复杂度和页数。"
|
| 66 |
-
)
|
| 67 |
|
| 68 |
-
|
|
|
|
| 4 |
from PIL import Image
|
| 5 |
import numpy as np
|
| 6 |
import os
|
| 7 |
+
import time
|
| 8 |
|
| 9 |
+
# --- 配置 ---
|
| 10 |
+
OUTPUT_DIR = "output_results" # 保存结果的文件夹
|
| 11 |
+
os.makedirs(OUTPUT_DIR, exist_ok=True)
|
| 12 |
|
| 13 |
+
# --- 模型加载器 ---
|
| 14 |
+
# 将模型加载封装成函数,确保只在GPU会话中加载
|
| 15 |
+
def load_gpu_model():
|
| 16 |
+
print("正在加载PaddleOCR GPU模型...")
|
| 17 |
+
# 核心改动:use_gpu=True, 强制使用GPU
|
| 18 |
+
ocr_model = PaddleOCR(use_textline_orientation=True, lang='ch', use_gpu=True, show_log=False)
|
| 19 |
+
print("GPU模型加载完成。")
|
| 20 |
+
return ocr_model
|
| 21 |
|
| 22 |
+
# --- Gradio调用的核心处理函数 ---
|
| 23 |
+
# 核心改动:使用@spaces.GPU申请GPU资源
|
| 24 |
+
@spaces.GPU
|
| 25 |
+
def process_pdf_max_speed(pdf_file, progress=gr.Progress(track_tqdm=True)):
|
| 26 |
"""
|
| 27 |
+
使用GPU和批处理来极速处理PDF,并实时更新进度条。
|
| 28 |
"""
|
| 29 |
if pdf_file is None:
|
| 30 |
+
return "请先上传一个PDF文件。", None
|
| 31 |
|
| 32 |
try:
|
| 33 |
+
# 在GPU会话中加载模型
|
| 34 |
+
ocr = load_gpu_model()
|
|
|
|
|
|
|
| 35 |
|
| 36 |
+
# --- 准备工作 ---
|
| 37 |
+
doc = fitz.open(pdf_file.name)
|
| 38 |
+
total_pages = len(doc)
|
| 39 |
+
batch_size = 4 # 批处理大小,一次性处理4页,可以充分利用GPU
|
| 40 |
+
full_text_result = []
|
| 41 |
+
|
| 42 |
+
# --- 核心处理循环 ---
|
| 43 |
+
# gr.Progress(track_tqdm=True) 会自动创建一个漂亮的进度条
|
| 44 |
+
for i in progress.tqdm(range(0, total_pages, batch_size), desc="🚀 批处理中..."):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 45 |
|
| 46 |
+
batch_images = []
|
| 47 |
+
# 准备一个批次的图片
|
| 48 |
+
for page_num in range(i, min(i + batch_size, total_pages)):
|
| 49 |
+
page = doc.load_page(page_num)
|
| 50 |
+
pix = page.get_pixmap(dpi=200)
|
| 51 |
+
img = Image.frombytes("RGB", [pix.width, pix.height], pix.samples)
|
| 52 |
+
# PaddleOCR可以直接处理Numpy数组
|
| 53 |
+
batch_images.append(np.array(img))
|
| 54 |
+
|
| 55 |
+
# --- 速度核心:一次性识别一个批次的图片 ---
|
| 56 |
+
if batch_images:
|
| 57 |
+
results = ocr.ocr(batch_images)
|
| 58 |
+
|
| 59 |
+
# 整理这个批次的结果
|
| 60 |
+
for page_index, page_result in enumerate(results):
|
| 61 |
+
page_texts = []
|
| 62 |
+
current_page_num = i + page_index + 1
|
| 63 |
+
if page_result:
|
| 64 |
+
for line in page_result:
|
| 65 |
+
page_texts.append(line[1][0])
|
| 66 |
+
|
| 67 |
+
full_text_result.append(f"--- Page {current_page_num} ---\n" + "\n".join(page_texts))
|
| 68 |
|
| 69 |
doc.close()
|
| 70 |
|
| 71 |
+
# --- 保存最终结果 ---
|
| 72 |
+
final_text = "\n\n".join(full_text_result)
|
| 73 |
+
output_filename = os.path.join(OUTPUT_DIR, f"{os.path.splitext(os.path.basename(pdf_file.name))[0]}_result.txt")
|
| 74 |
+
with open(output_filename, 'w', encoding='utf-8') as f:
|
| 75 |
+
f.write(final_text)
|
| 76 |
+
|
| 77 |
+
print(f"处理完成!结果已保存到 {output_filename}")
|
| 78 |
+
# 返回文本内容和可供下载的文件路径
|
| 79 |
+
return final_text, output_filename
|
| 80 |
|
| 81 |
except Exception as e:
|
| 82 |
+
error_message = f"处理过程中发生错误: {str(e)}"
|
| 83 |
+
print(error_message)
|
| 84 |
+
return error_message, None
|
| 85 |
+
|
| 86 |
+
# --- 构建Gradio界面 ---
|
| 87 |
+
with gr.Blocks(title="��速PDF识别器", theme=gr.themes.Soft()) as demo:
|
| 88 |
+
gr.Markdown(
|
| 89 |
+
"""
|
| 90 |
+
# 🔥 极速PDF识别器 (GPU加速版) 🔥
|
| 91 |
+
**速度拉满!实时进度显示,但处理期间请勿关闭页面。**
|
| 92 |
+
"""
|
| 93 |
+
)
|
| 94 |
+
|
| 95 |
+
with gr.Row():
|
| 96 |
+
pdf_input = gr.File(label="📄 上传PDF文件", file_types=[".pdf"])
|
| 97 |
+
|
| 98 |
+
submit_btn = gr.Button("⚡️ 开始极速处理", variant="primary")
|
| 99 |
+
|
| 100 |
+
result_display = gr.Textbox(label="识别结果", lines=20, show_copy_button=True)
|
| 101 |
+
download_link = gr.File(label="📥 点击此处下载结果文件", interactive=False)
|
| 102 |
|
| 103 |
+
# 按钮和函数的连接
|
| 104 |
+
submit_btn.click(
|
| 105 |
+
fn=process_pdf_max_speed,
|
| 106 |
+
inputs=[pdf_input],
|
| 107 |
+
outputs=[result_display, download_link]
|
| 108 |
+
)
|
|
|
|
|
|
|
| 109 |
|
| 110 |
+
demo.queue().launch()
|