Update app.py
Browse files
app.py
CHANGED
|
@@ -4,14 +4,18 @@ from PIL import Image
|
|
| 4 |
import fitz # PyMuPDF
|
| 5 |
import torch
|
| 6 |
|
| 7 |
-
# 指定设备
|
| 8 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
|
|
|
| 9 |
|
| 10 |
# 加载模型和分词器
|
|
|
|
|
|
|
| 11 |
model_path = 'deepseek-ai/DeepSeek-OCR'
|
| 12 |
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
| 13 |
model = AutoModelForCausalLM.from_pretrained(model_path, trust_remote_code=True).to(device)
|
| 14 |
model.eval()
|
|
|
|
| 15 |
|
| 16 |
def pdf_to_images(pdf_path):
|
| 17 |
"""将PDF文件转换为PIL图像列表"""
|
|
@@ -19,7 +23,7 @@ def pdf_to_images(pdf_path):
|
|
| 19 |
images = []
|
| 20 |
for page_num in range(len(doc)):
|
| 21 |
page = doc.load_page(page_num)
|
| 22 |
-
pix = page.get_pixmap()
|
| 23 |
img = Image.frombytes("RGB", [pix.width, pix.height], pix.samples)
|
| 24 |
images.append(img)
|
| 25 |
doc.close()
|
|
@@ -35,44 +39,38 @@ def ocr_process(pdf_file):
|
|
| 35 |
images = pdf_to_images(pdf_path)
|
| 36 |
|
| 37 |
full_text = ""
|
|
|
|
|
|
|
|
|
|
| 38 |
for i, pil_img in enumerate(images):
|
| 39 |
-
|
|
|
|
| 40 |
messages = [
|
| 41 |
-
{
|
| 42 |
-
"role": "user",
|
| 43 |
-
"content": [
|
| 44 |
-
{"type": "image", "image": pil_img},
|
| 45 |
-
{"type": "text", "text": "Please perform OCR on this image."}
|
| 46 |
-
]
|
| 47 |
-
}
|
| 48 |
]
|
| 49 |
|
| 50 |
-
text_input = tokenizer.apply_chat_template(
|
| 51 |
-
messages, add_generation_prompt=True, return_tensors="pt"
|
| 52 |
-
).to(device)
|
| 53 |
|
| 54 |
-
# 生成OCR结果
|
| 55 |
outputs = model.generate(text_input, max_new_tokens=2048, do_sample=False)
|
| 56 |
result_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 57 |
|
| 58 |
-
# 清理和提取识别出的文本
|
| 59 |
# 简单的后处理,移除提示词部分
|
| 60 |
-
cleaned_text = result_text.split("
|
| 61 |
|
| 62 |
full_text += f"--- Page {i+1} ---\n{cleaned_text}\n\n"
|
| 63 |
|
| 64 |
-
|
| 65 |
|
| 66 |
except Exception as e:
|
| 67 |
-
|
| 68 |
|
| 69 |
# 创建Gradio界面
|
| 70 |
iface = gr.Interface(
|
| 71 |
fn=ocr_process,
|
| 72 |
inputs=gr.File(label="上传PDF文件", file_types=[".pdf"]),
|
| 73 |
-
outputs=gr.Textbox(label="识别结果", lines=20),
|
| 74 |
-
title="DeepSeek OCR PDF识别",
|
| 75 |
-
description="
|
| 76 |
)
|
| 77 |
|
| 78 |
# 启动应用
|
|
|
|
| 4 |
import fitz # PyMuPDF
|
| 5 |
import torch
|
| 6 |
|
| 7 |
+
# 指定设备 (在免费Space上,这里会自动选择 'cpu')
|
| 8 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 9 |
+
print(f"Using device: {device}")
|
| 10 |
|
| 11 |
# 加载模型和分词器
|
| 12 |
+
# 首次加载会下载模型,可能需要很长时间
|
| 13 |
+
print("Loading DeepSeek-OCR model...")
|
| 14 |
model_path = 'deepseek-ai/DeepSeek-OCR'
|
| 15 |
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
| 16 |
model = AutoModelForCausalLM.from_pretrained(model_path, trust_remote_code=True).to(device)
|
| 17 |
model.eval()
|
| 18 |
+
print("Model loaded successfully.")
|
| 19 |
|
| 20 |
def pdf_to_images(pdf_path):
|
| 21 |
"""将PDF文件转换为PIL图像列表"""
|
|
|
|
| 23 |
images = []
|
| 24 |
for page_num in range(len(doc)):
|
| 25 |
page = doc.load_page(page_num)
|
| 26 |
+
pix = page.get_pixmap(dpi=200) # 适当降低dpi以减少内存消耗
|
| 27 |
img = Image.frombytes("RGB", [pix.width, pix.height], pix.samples)
|
| 28 |
images.append(img)
|
| 29 |
doc.close()
|
|
|
|
| 39 |
images = pdf_to_images(pdf_path)
|
| 40 |
|
| 41 |
full_text = ""
|
| 42 |
+
# 提示用户进程开始
|
| 43 |
+
yield "PDF处理完成,共 {} 页。开始逐页识别,请耐心等待...".format(len(images))
|
| 44 |
+
|
| 45 |
for i, pil_img in enumerate(images):
|
| 46 |
+
yield f"正在识别第 {i+1}/{len(images)} 页..."
|
| 47 |
+
|
| 48 |
messages = [
|
| 49 |
+
{"role": "user", "content": [{"type": "image", "image": pil_img}, {"type": "text", "text": "recognize characters in this image"}]}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 50 |
]
|
| 51 |
|
| 52 |
+
text_input = tokenizer.apply_chat_template(messages, add_generation_prompt=True, return_tensors="pt").to(device)
|
|
|
|
|
|
|
| 53 |
|
|
|
|
| 54 |
outputs = model.generate(text_input, max_new_tokens=2048, do_sample=False)
|
| 55 |
result_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 56 |
|
|
|
|
| 57 |
# 简单的后处理,移除提示词部分
|
| 58 |
+
cleaned_text = result_text.split("recognize characters in this image")[-1].strip()
|
| 59 |
|
| 60 |
full_text += f"--- Page {i+1} ---\n{cleaned_text}\n\n"
|
| 61 |
|
| 62 |
+
yield full_text
|
| 63 |
|
| 64 |
except Exception as e:
|
| 65 |
+
yield f"处理时发生错误: {str(e)}"
|
| 66 |
|
| 67 |
# 创建Gradio界面
|
| 68 |
iface = gr.Interface(
|
| 69 |
fn=ocr_process,
|
| 70 |
inputs=gr.File(label="上传PDF文件", file_types=[".pdf"]),
|
| 71 |
+
outputs=gr.Textbox(label="识别结果 (DeepSeek-OCR)", lines=20, show_copy_button=True),
|
| 72 |
+
title="DeepSeek OCR PDF识别 (CPU运行)",
|
| 73 |
+
description="上传PDF文件进行识别。警告:此模型在免费CPU服务器上运行会【极其缓慢】,处理多页或复杂PDF极有可能因超时而失败。"
|
| 74 |
)
|
| 75 |
|
| 76 |
# 启动应用
|