import gradio as gr from transformers import AutoModelForCausalLM, AutoTokenizer from PIL import Image import fitz # PyMuPDF import torch # 指定设备 (在免费Space上,这里会自动选择 'cpu') device = torch.device("cuda" if torch.cuda.is_available() else "cpu") print(f"Using device: {device}") # 加载模型和分词器 # 首次加载会下载模型,可能需要很长时间 print("Loading DeepSeek-OCR model...") model_path = 'deepseek-ai/DeepSeek-OCR' tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True) model = AutoModelForCausalLM.from_pretrained(model_path, trust_remote_code=True).to(device) model.eval() print("Model loaded successfully.") def pdf_to_images(pdf_path): """将PDF文件转换为PIL图像列表""" doc = fitz.open(pdf_path) images = [] for page_num in range(len(doc)): page = doc.load_page(page_num) pix = page.get_pixmap(dpi=200) # 适当降低dpi以减少内存消耗 img = Image.frombytes("RGB", [pix.width, pix.height], pix.samples) images.append(img) doc.close() return images def ocr_process(pdf_file): """处理上传的PDF文件并执行OCR""" if pdf_file is None: return "请先上传一个PDF文件" pdf_path = pdf_file.name try: images = pdf_to_images(pdf_path) full_text = "" # 提示用户进程开始 yield "PDF处理完成,共 {} 页。开始逐页识别,请耐心等待...".format(len(images)) for i, pil_img in enumerate(images): yield f"正在识别第 {i+1}/{len(images)} 页..." messages = [ {"role": "user", "content": [{"type": "image", "image": pil_img}, {"type": "text", "text": "recognize characters in this image"}]} ] text_input = tokenizer.apply_chat_template(messages, add_generation_prompt=True, return_tensors="pt").to(device) outputs = model.generate(text_input, max_new_tokens=2048, do_sample=False) result_text = tokenizer.decode(outputs[0], skip_special_tokens=True) # 简单的后处理,移除提示词部分 cleaned_text = result_text.split("recognize characters in this image")[-1].strip() full_text += f"--- Page {i+1} ---\n{cleaned_text}\n\n" yield full_text except Exception as e: yield f"处理时发生错误: {str(e)}" # 创建Gradio界面 iface = gr.Interface( fn=ocr_process, inputs=gr.File(label="上传PDF文件", file_types=[".pdf"]), outputs=gr.Textbox(label="识别结果 (DeepSeek-OCR)", lines=20, show_copy_button=True), title="DeepSeek OCR PDF识别 (CPU运行)", description="上传PDF文件进行识别。警告:此模型在免费CPU服务器上运行会【极其缓慢】,处理多页或复杂PDF极有可能因超时而失败。" ) # 启动应用 iface.launch()