File size: 15,063 Bytes
54a64d4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
# import torch
# import librosa
# from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor

# # Cấu hình
# # MODEL_ID = "jonatasgrosman/wav2vec2-large-xlsr-53-english"
# MODEL_ID = "facebook/wav2vec2-large-xlsr-53"
# AUDIO_FILE_PATH = "./hello_how_are_you_today.wav"  # Thay đổi đường dẫn này

# # Load model và processor
# processor = Wav2Vec2Processor.from_pretrained(MODEL_ID)
# model = Wav2Vec2ForCTC.from_pretrained(MODEL_ID)

# def transcribe_audio_file(audio_path):
#     """
#     Chuyển đổi file audio thành text sử dụng Wav2Vec2
#     """
#     # Đọc file audio
#     try:
#         speech_array, sampling_rate = librosa.load(audio_path, sr=16_000)
#         print(f"Đã load audio file: {audio_path}")
#         print(f"Độ dài audio: {len(speech_array)/16_000:.2f} giây")
#     except Exception as e:
#         print(f"Lỗi khi đọc file audio: {e}")
#         return None
    
#     # Tiền xử lý
#     inputs = processor(
#         speech_array, 
#         sampling_rate=16_000, 
#         return_tensors="pt", 
#         padding=True
#     )
    
#     # Dự đoán
#     with torch.no_grad():
#         logits = model(
#             inputs.input_values, 
#             attention_mask=inputs.attention_mask
#         ).logits
    
#     # Decode kết quả
#     predicted_ids = torch.argmax(logits, dim=-1)
    
#     predicted_sentence = processor.batch_decode(predicted_ids)[0]
    
#     return predicted_sentence

# # Test với file audio của bạn
# if __name__ == "__main__":
#     # Thay đổi đường dẫn đến file audio của bạn
#     audio_files = [
#         "./hello_world.wav",  # Thay đổi tên file này
#         # "another_file.mp3",   # Có thể thêm nhiều file
#     ]
    
#     for audio_file in audio_files:
#         print("=" * 80)
#         print(f"Đang xử lý: {audio_file}")
#         print("=" * 80)
        
#         prediction = transcribe_audio_file(audio_file)
        
#         if prediction:
#             print(f"Kết quả nhận dạng: {prediction}")
#         else:
#             print("Không thể xử lý file này")
#         print()

# # Phiên bản đơn giản hơn - chỉ cần thay đổi đường dẫn file
# def quick_transcribe(audio_path):
#     """Phiên bản nhanh để transcribe một file"""
#     speech_array, _ = librosa.load(audio_path, sr=16_000)
#     inputs = processor(speech_array, sampling_rate=16_000, return_tensors="pt", padding=True)
    
#     with torch.no_grad():
#         logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
    
#     predicted_ids = torch.argmax(logits, dim=-1)
#     return processor.batch_decode(predicted_ids)[0]

# # Sử dụng nhanh:
# result = quick_transcribe("./hello_how_are_you_today.wav")
# print(result)


import torch
from transformers import (
    AutoModelForCTC,
    AutoProcessor,
    Wav2Vec2Processor,
    Wav2Vec2ForCTC,
)
import onnxruntime as rt
import numpy as np
import librosa
import warnings
import os

warnings.filterwarnings("ignore")

# Available Wave2Vec2 models
WAVE2VEC2_MODELS = {
    "english_large": "jonatasgrosman/wav2vec2-large-xlsr-53-english",
    "multilingual": "facebook/wav2vec2-large-xlsr-53", 
    "english_960h": "facebook/wav2vec2-large-960h-lv60-self",
    "base_english": "facebook/wav2vec2-base-960h",
    "large_english": "facebook/wav2vec2-large-960h",
    "xlsr_english": "jonatasgrosman/wav2vec2-large-xlsr-53-english",
    "xlsr_multilingual": "facebook/wav2vec2-large-xlsr-53"
}

# Default model
DEFAULT_MODEL = "jonatasgrosman/wav2vec2-large-xlsr-53-english"


def get_available_models():
    """Return dictionary of available Wave2Vec2 models"""
    return WAVE2VEC2_MODELS.copy()


def get_model_name(model_key=None):
    """
    Get model name from key or return default
    
    Args:
        model_key: Key from WAVE2VEC2_MODELS or full model name
        
    Returns:
        str: Full model name
    """
    if model_key is None:
        return DEFAULT_MODEL
    
    if model_key in WAVE2VEC2_MODELS:
        return WAVE2VEC2_MODELS[model_key]
    
    # If it's already a full model name, return as is
    return model_key


class Wave2Vec2Inference:
    def __init__(self, model_name=None, use_gpu=True):
        # Get the actual model name using helper function
        self.model_name = get_model_name(model_name)
        
        # Auto-detect device
        if use_gpu:
            if torch.backends.mps.is_available():
                self.device = "mps"
            elif torch.cuda.is_available():
                self.device = "cuda"
            else:
                self.device = "cpu"
        else:
            self.device = "cpu"

        print(f"Using device: {self.device}")
        print(f"Loading model: {self.model_name}")

        # Check if model is XLSR and use appropriate processor/model
        is_xlsr = "xlsr" in self.model_name.lower()
        
        if is_xlsr:
            print("Using Wav2Vec2Processor and Wav2Vec2ForCTC for XLSR model")
            self.processor = Wav2Vec2Processor.from_pretrained(self.model_name)
            self.model = Wav2Vec2ForCTC.from_pretrained(self.model_name)
        else:
            print("Using AutoProcessor and AutoModelForCTC")
            self.processor = AutoProcessor.from_pretrained(self.model_name)
            self.model = AutoModelForCTC.from_pretrained(self.model_name)
            
        self.model.to(self.device)
        self.model.eval()

        # Disable gradients for inference
        torch.set_grad_enabled(False)

    def buffer_to_text(self, audio_buffer):
        if len(audio_buffer) == 0:
            return ""

        # Convert to tensor
        if isinstance(audio_buffer, np.ndarray):
            audio_tensor = torch.from_numpy(audio_buffer).float()
        else:
            audio_tensor = torch.tensor(audio_buffer, dtype=torch.float32)

        # Process audio
        inputs = self.processor(
            audio_tensor,
            sampling_rate=16_000,
            return_tensors="pt",
            padding=True,
        )

        # Move to device
        input_values = inputs.input_values.to(self.device)
        attention_mask = (
            inputs.attention_mask.to(self.device)
            if "attention_mask" in inputs
            else None
        )

        # Inference
        with torch.no_grad():
            if attention_mask is not None:
                logits = self.model(input_values, attention_mask=attention_mask).logits
            else:
                logits = self.model(input_values).logits

        # Decode
        predicted_ids = torch.argmax(logits, dim=-1)
        if self.device != "cpu":
            predicted_ids = predicted_ids.cpu()

        transcription = self.processor.batch_decode(predicted_ids)[0]
        return transcription.lower().strip()

    def file_to_text(self, filename):
        try:
            audio_input, _ = librosa.load(filename, sr=16000, dtype=np.float32)
            return self.buffer_to_text(audio_input)
        except Exception as e:
            print(f"Error loading audio file {filename}: {e}")
            return ""


class Wave2Vec2ONNXInference:
    def __init__(self, model_name=None, onnx_path=None, use_gpu=True):
        # Get the actual model name using helper function
        self.model_name = get_model_name(model_name)
        print(f"Loading ONNX model: {self.model_name}")
        
        # Always use Wav2Vec2Processor for ONNX (works for all models)
        self.processor = Wav2Vec2Processor.from_pretrained(self.model_name)

        # Setup ONNX Runtime
        options = rt.SessionOptions()
        options.graph_optimization_level = rt.GraphOptimizationLevel.ORT_ENABLE_ALL

        # Choose providers based on GPU availability
        providers = []
        if use_gpu and rt.get_available_providers():
            if "CUDAExecutionProvider" in rt.get_available_providers():
                providers.append("CUDAExecutionProvider")
        providers.append("CPUExecutionProvider")

        self.model = rt.InferenceSession(onnx_path, options, providers=providers)
        self.input_name = self.model.get_inputs()[0].name
        print(f"ONNX model loaded with providers: {self.model.get_providers()}")

    def buffer_to_text(self, audio_buffer):
        if len(audio_buffer) == 0:
            return ""

        # Convert to tensor
        if isinstance(audio_buffer, np.ndarray):
            audio_tensor = torch.from_numpy(audio_buffer).float()
        else:
            audio_tensor = torch.tensor(audio_buffer, dtype=torch.float32)

        # Process audio
        inputs = self.processor(
            audio_tensor,
            sampling_rate=16_000,
            return_tensors="np",
            padding=True,
        )

        # ONNX inference
        input_values = inputs.input_values.astype(np.float32)
        onnx_outputs = self.model.run(None, {self.input_name: input_values})[0]

        # Decode
        prediction = np.argmax(onnx_outputs, axis=-1)
        transcription = self.processor.decode(prediction.squeeze().tolist())
        return transcription.lower().strip()

    def file_to_text(self, filename):
        try:
            audio_input, _ = librosa.load(filename, sr=16000, dtype=np.float32)
            return self.buffer_to_text(audio_input)
        except Exception as e:
            print(f"Error loading audio file {filename}: {e}")
            return ""


def convert_to_onnx(model_id_or_path, onnx_model_name):
    """Convert PyTorch model to ONNX format"""
    print(f"Converting {model_id_or_path} to ONNX...")
    model = Wav2Vec2ForCTC.from_pretrained(model_id_or_path)
    model.eval()

    # Create dummy input
    audio_len = 250000
    dummy_input = torch.randn(1, audio_len, requires_grad=True)

    torch.onnx.export(
        model,
        dummy_input,
        onnx_model_name,
        export_params=True,
        opset_version=14,
        do_constant_folding=True,
        input_names=["input"],
        output_names=["output"],
        dynamic_axes={
            "input": {1: "audio_len"},
            "output": {1: "audio_len"},
        },
    )
    print(f"ONNX model saved to: {onnx_model_name}")


def quantize_onnx_model(onnx_model_path, quantized_model_path):
    """Quantize ONNX model for faster inference"""
    print("Starting quantization...")
    from onnxruntime.quantization import quantize_dynamic, QuantType

    quantize_dynamic(
        onnx_model_path, quantized_model_path, weight_type=QuantType.QUInt8
    )
    print(f"Quantized model saved to: {quantized_model_path}")


def export_to_onnx(model_name, quantize=False):
    """
    Export model to ONNX format with optional quantization

    Args:
        model_name: HuggingFace model name
        quantize: Whether to also create quantized version

    Returns:
        tuple: (onnx_path, quantized_path or None)
    """
    onnx_filename = f"{model_name.split('/')[-1]}.onnx"
    convert_to_onnx(model_name, onnx_filename)

    quantized_path = None
    if quantize:
        quantized_path = onnx_filename.replace(".onnx", ".quantized.onnx")
        quantize_onnx_model(onnx_filename, quantized_path)

    return onnx_filename, quantized_path


def create_inference(
    model_name=None, use_onnx=False, onnx_path=None, use_gpu=True, use_onnx_quantize=False
):
    """
    Create optimized inference instance

    Args:
        model_name: Model key from WAVE2VEC2_MODELS or full HuggingFace model name (default: uses DEFAULT_MODEL)
        use_onnx: Whether to use ONNX runtime
        onnx_path: Path to ONNX model file
        use_gpu: Whether to use GPU if available
        use_onnx_quantize: Whether to use quantized ONNX model

    Returns:
        Inference instance
    """
    # Get the actual model name
    actual_model_name = get_model_name(model_name)
    
    if use_onnx:
        if not onnx_path or not os.path.exists(onnx_path):
            # Convert to ONNX if path not provided or doesn't exist
            onnx_filename = f"{actual_model_name.split('/')[-1]}.onnx"
            convert_to_onnx(actual_model_name, onnx_filename)
            onnx_path = onnx_filename

        if use_onnx_quantize:
            quantized_path = onnx_path.replace(".onnx", ".quantized.onnx")
            if not os.path.exists(quantized_path):
                quantize_onnx_model(onnx_path, quantized_path)
            onnx_path = quantized_path

        print(f"Using ONNX model: {onnx_path}")
        return Wave2Vec2ONNXInference(model_name, onnx_path, use_gpu)
    else:
        print("Using PyTorch model")
        return Wave2Vec2Inference(model_name, use_gpu)


if __name__ == "__main__":
    import time

    # Display available models
    print("Available Wave2Vec2 models:")
    for key, model_name in get_available_models().items():
        print(f"  {key}: {model_name}")
    print(f"\nDefault model: {DEFAULT_MODEL}")
    print()

    # Test with different models
    test_models = ["english_large", "multilingual", "english_960h"]
    test_file = "./hello_how_are_you_today.wav"

    if not os.path.exists(test_file):
        print(f"Test file {test_file} not found. Please provide a valid audio file.")
        print("Creating example usage without actual file...")
        
        # Example usage without file
        print("\n=== Example Usage ===")
        
        # Using default model
        print("1. Using default model:")
        asr_default = create_inference()
        print(f"   Model loaded: {asr_default.model_name}")
        
        # Using model key
        print("\n2. Using model key 'english_large':")
        asr_key = create_inference("english_large")
        print(f"   Model loaded: {asr_key.model_name}")
        
        # Using full model name
        print("\n3. Using full model name:")
        asr_full = create_inference("facebook/wav2vec2-base-960h")
        print(f"   Model loaded: {asr_full.model_name}")
        
        exit(0)

    # Test different model configurations
    for model_key in test_models:
        print(f"\n=== Testing model: {model_key} ===")
        
        # Test different configurations
        configs = [
            {"use_onnx": False, "use_gpu": True},
            {"use_onnx": True, "use_gpu": True, "use_onnx_quantize": False},
        ]

        for config in configs:
            print(f"\nConfig: {config}")

            # Create inference instance with model selection
            asr = create_inference(model_key, **config)

            # Warm up
            asr.file_to_text(test_file)

            # Test performance
            times = []
            for i in range(3):
                start_time = time.time()
                text = asr.file_to_text(test_file)
                end_time = time.time()
                execution_time = end_time - start_time
                times.append(execution_time)
                print(f"Run {i+1}: {execution_time:.3f}s - {text[:50]}...")

            avg_time = sum(times) / len(times)
            print(f"Average time: {avg_time:.3f}s")