Spaces:
Sleeping
Sleeping
File size: 15,063 Bytes
54a64d4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 |
# import torch
# import librosa
# from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
# # Cấu hình
# # MODEL_ID = "jonatasgrosman/wav2vec2-large-xlsr-53-english"
# MODEL_ID = "facebook/wav2vec2-large-xlsr-53"
# AUDIO_FILE_PATH = "./hello_how_are_you_today.wav" # Thay đổi đường dẫn này
# # Load model và processor
# processor = Wav2Vec2Processor.from_pretrained(MODEL_ID)
# model = Wav2Vec2ForCTC.from_pretrained(MODEL_ID)
# def transcribe_audio_file(audio_path):
# """
# Chuyển đổi file audio thành text sử dụng Wav2Vec2
# """
# # Đọc file audio
# try:
# speech_array, sampling_rate = librosa.load(audio_path, sr=16_000)
# print(f"Đã load audio file: {audio_path}")
# print(f"Độ dài audio: {len(speech_array)/16_000:.2f} giây")
# except Exception as e:
# print(f"Lỗi khi đọc file audio: {e}")
# return None
# # Tiền xử lý
# inputs = processor(
# speech_array,
# sampling_rate=16_000,
# return_tensors="pt",
# padding=True
# )
# # Dự đoán
# with torch.no_grad():
# logits = model(
# inputs.input_values,
# attention_mask=inputs.attention_mask
# ).logits
# # Decode kết quả
# predicted_ids = torch.argmax(logits, dim=-1)
# predicted_sentence = processor.batch_decode(predicted_ids)[0]
# return predicted_sentence
# # Test với file audio của bạn
# if __name__ == "__main__":
# # Thay đổi đường dẫn đến file audio của bạn
# audio_files = [
# "./hello_world.wav", # Thay đổi tên file này
# # "another_file.mp3", # Có thể thêm nhiều file
# ]
# for audio_file in audio_files:
# print("=" * 80)
# print(f"Đang xử lý: {audio_file}")
# print("=" * 80)
# prediction = transcribe_audio_file(audio_file)
# if prediction:
# print(f"Kết quả nhận dạng: {prediction}")
# else:
# print("Không thể xử lý file này")
# print()
# # Phiên bản đơn giản hơn - chỉ cần thay đổi đường dẫn file
# def quick_transcribe(audio_path):
# """Phiên bản nhanh để transcribe một file"""
# speech_array, _ = librosa.load(audio_path, sr=16_000)
# inputs = processor(speech_array, sampling_rate=16_000, return_tensors="pt", padding=True)
# with torch.no_grad():
# logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
# predicted_ids = torch.argmax(logits, dim=-1)
# return processor.batch_decode(predicted_ids)[0]
# # Sử dụng nhanh:
# result = quick_transcribe("./hello_how_are_you_today.wav")
# print(result)
import torch
from transformers import (
AutoModelForCTC,
AutoProcessor,
Wav2Vec2Processor,
Wav2Vec2ForCTC,
)
import onnxruntime as rt
import numpy as np
import librosa
import warnings
import os
warnings.filterwarnings("ignore")
# Available Wave2Vec2 models
WAVE2VEC2_MODELS = {
"english_large": "jonatasgrosman/wav2vec2-large-xlsr-53-english",
"multilingual": "facebook/wav2vec2-large-xlsr-53",
"english_960h": "facebook/wav2vec2-large-960h-lv60-self",
"base_english": "facebook/wav2vec2-base-960h",
"large_english": "facebook/wav2vec2-large-960h",
"xlsr_english": "jonatasgrosman/wav2vec2-large-xlsr-53-english",
"xlsr_multilingual": "facebook/wav2vec2-large-xlsr-53"
}
# Default model
DEFAULT_MODEL = "jonatasgrosman/wav2vec2-large-xlsr-53-english"
def get_available_models():
"""Return dictionary of available Wave2Vec2 models"""
return WAVE2VEC2_MODELS.copy()
def get_model_name(model_key=None):
"""
Get model name from key or return default
Args:
model_key: Key from WAVE2VEC2_MODELS or full model name
Returns:
str: Full model name
"""
if model_key is None:
return DEFAULT_MODEL
if model_key in WAVE2VEC2_MODELS:
return WAVE2VEC2_MODELS[model_key]
# If it's already a full model name, return as is
return model_key
class Wave2Vec2Inference:
def __init__(self, model_name=None, use_gpu=True):
# Get the actual model name using helper function
self.model_name = get_model_name(model_name)
# Auto-detect device
if use_gpu:
if torch.backends.mps.is_available():
self.device = "mps"
elif torch.cuda.is_available():
self.device = "cuda"
else:
self.device = "cpu"
else:
self.device = "cpu"
print(f"Using device: {self.device}")
print(f"Loading model: {self.model_name}")
# Check if model is XLSR and use appropriate processor/model
is_xlsr = "xlsr" in self.model_name.lower()
if is_xlsr:
print("Using Wav2Vec2Processor and Wav2Vec2ForCTC for XLSR model")
self.processor = Wav2Vec2Processor.from_pretrained(self.model_name)
self.model = Wav2Vec2ForCTC.from_pretrained(self.model_name)
else:
print("Using AutoProcessor and AutoModelForCTC")
self.processor = AutoProcessor.from_pretrained(self.model_name)
self.model = AutoModelForCTC.from_pretrained(self.model_name)
self.model.to(self.device)
self.model.eval()
# Disable gradients for inference
torch.set_grad_enabled(False)
def buffer_to_text(self, audio_buffer):
if len(audio_buffer) == 0:
return ""
# Convert to tensor
if isinstance(audio_buffer, np.ndarray):
audio_tensor = torch.from_numpy(audio_buffer).float()
else:
audio_tensor = torch.tensor(audio_buffer, dtype=torch.float32)
# Process audio
inputs = self.processor(
audio_tensor,
sampling_rate=16_000,
return_tensors="pt",
padding=True,
)
# Move to device
input_values = inputs.input_values.to(self.device)
attention_mask = (
inputs.attention_mask.to(self.device)
if "attention_mask" in inputs
else None
)
# Inference
with torch.no_grad():
if attention_mask is not None:
logits = self.model(input_values, attention_mask=attention_mask).logits
else:
logits = self.model(input_values).logits
# Decode
predicted_ids = torch.argmax(logits, dim=-1)
if self.device != "cpu":
predicted_ids = predicted_ids.cpu()
transcription = self.processor.batch_decode(predicted_ids)[0]
return transcription.lower().strip()
def file_to_text(self, filename):
try:
audio_input, _ = librosa.load(filename, sr=16000, dtype=np.float32)
return self.buffer_to_text(audio_input)
except Exception as e:
print(f"Error loading audio file {filename}: {e}")
return ""
class Wave2Vec2ONNXInference:
def __init__(self, model_name=None, onnx_path=None, use_gpu=True):
# Get the actual model name using helper function
self.model_name = get_model_name(model_name)
print(f"Loading ONNX model: {self.model_name}")
# Always use Wav2Vec2Processor for ONNX (works for all models)
self.processor = Wav2Vec2Processor.from_pretrained(self.model_name)
# Setup ONNX Runtime
options = rt.SessionOptions()
options.graph_optimization_level = rt.GraphOptimizationLevel.ORT_ENABLE_ALL
# Choose providers based on GPU availability
providers = []
if use_gpu and rt.get_available_providers():
if "CUDAExecutionProvider" in rt.get_available_providers():
providers.append("CUDAExecutionProvider")
providers.append("CPUExecutionProvider")
self.model = rt.InferenceSession(onnx_path, options, providers=providers)
self.input_name = self.model.get_inputs()[0].name
print(f"ONNX model loaded with providers: {self.model.get_providers()}")
def buffer_to_text(self, audio_buffer):
if len(audio_buffer) == 0:
return ""
# Convert to tensor
if isinstance(audio_buffer, np.ndarray):
audio_tensor = torch.from_numpy(audio_buffer).float()
else:
audio_tensor = torch.tensor(audio_buffer, dtype=torch.float32)
# Process audio
inputs = self.processor(
audio_tensor,
sampling_rate=16_000,
return_tensors="np",
padding=True,
)
# ONNX inference
input_values = inputs.input_values.astype(np.float32)
onnx_outputs = self.model.run(None, {self.input_name: input_values})[0]
# Decode
prediction = np.argmax(onnx_outputs, axis=-1)
transcription = self.processor.decode(prediction.squeeze().tolist())
return transcription.lower().strip()
def file_to_text(self, filename):
try:
audio_input, _ = librosa.load(filename, sr=16000, dtype=np.float32)
return self.buffer_to_text(audio_input)
except Exception as e:
print(f"Error loading audio file {filename}: {e}")
return ""
def convert_to_onnx(model_id_or_path, onnx_model_name):
"""Convert PyTorch model to ONNX format"""
print(f"Converting {model_id_or_path} to ONNX...")
model = Wav2Vec2ForCTC.from_pretrained(model_id_or_path)
model.eval()
# Create dummy input
audio_len = 250000
dummy_input = torch.randn(1, audio_len, requires_grad=True)
torch.onnx.export(
model,
dummy_input,
onnx_model_name,
export_params=True,
opset_version=14,
do_constant_folding=True,
input_names=["input"],
output_names=["output"],
dynamic_axes={
"input": {1: "audio_len"},
"output": {1: "audio_len"},
},
)
print(f"ONNX model saved to: {onnx_model_name}")
def quantize_onnx_model(onnx_model_path, quantized_model_path):
"""Quantize ONNX model for faster inference"""
print("Starting quantization...")
from onnxruntime.quantization import quantize_dynamic, QuantType
quantize_dynamic(
onnx_model_path, quantized_model_path, weight_type=QuantType.QUInt8
)
print(f"Quantized model saved to: {quantized_model_path}")
def export_to_onnx(model_name, quantize=False):
"""
Export model to ONNX format with optional quantization
Args:
model_name: HuggingFace model name
quantize: Whether to also create quantized version
Returns:
tuple: (onnx_path, quantized_path or None)
"""
onnx_filename = f"{model_name.split('/')[-1]}.onnx"
convert_to_onnx(model_name, onnx_filename)
quantized_path = None
if quantize:
quantized_path = onnx_filename.replace(".onnx", ".quantized.onnx")
quantize_onnx_model(onnx_filename, quantized_path)
return onnx_filename, quantized_path
def create_inference(
model_name=None, use_onnx=False, onnx_path=None, use_gpu=True, use_onnx_quantize=False
):
"""
Create optimized inference instance
Args:
model_name: Model key from WAVE2VEC2_MODELS or full HuggingFace model name (default: uses DEFAULT_MODEL)
use_onnx: Whether to use ONNX runtime
onnx_path: Path to ONNX model file
use_gpu: Whether to use GPU if available
use_onnx_quantize: Whether to use quantized ONNX model
Returns:
Inference instance
"""
# Get the actual model name
actual_model_name = get_model_name(model_name)
if use_onnx:
if not onnx_path or not os.path.exists(onnx_path):
# Convert to ONNX if path not provided or doesn't exist
onnx_filename = f"{actual_model_name.split('/')[-1]}.onnx"
convert_to_onnx(actual_model_name, onnx_filename)
onnx_path = onnx_filename
if use_onnx_quantize:
quantized_path = onnx_path.replace(".onnx", ".quantized.onnx")
if not os.path.exists(quantized_path):
quantize_onnx_model(onnx_path, quantized_path)
onnx_path = quantized_path
print(f"Using ONNX model: {onnx_path}")
return Wave2Vec2ONNXInference(model_name, onnx_path, use_gpu)
else:
print("Using PyTorch model")
return Wave2Vec2Inference(model_name, use_gpu)
if __name__ == "__main__":
import time
# Display available models
print("Available Wave2Vec2 models:")
for key, model_name in get_available_models().items():
print(f" {key}: {model_name}")
print(f"\nDefault model: {DEFAULT_MODEL}")
print()
# Test with different models
test_models = ["english_large", "multilingual", "english_960h"]
test_file = "./hello_how_are_you_today.wav"
if not os.path.exists(test_file):
print(f"Test file {test_file} not found. Please provide a valid audio file.")
print("Creating example usage without actual file...")
# Example usage without file
print("\n=== Example Usage ===")
# Using default model
print("1. Using default model:")
asr_default = create_inference()
print(f" Model loaded: {asr_default.model_name}")
# Using model key
print("\n2. Using model key 'english_large':")
asr_key = create_inference("english_large")
print(f" Model loaded: {asr_key.model_name}")
# Using full model name
print("\n3. Using full model name:")
asr_full = create_inference("facebook/wav2vec2-base-960h")
print(f" Model loaded: {asr_full.model_name}")
exit(0)
# Test different model configurations
for model_key in test_models:
print(f"\n=== Testing model: {model_key} ===")
# Test different configurations
configs = [
{"use_onnx": False, "use_gpu": True},
{"use_onnx": True, "use_gpu": True, "use_onnx_quantize": False},
]
for config in configs:
print(f"\nConfig: {config}")
# Create inference instance with model selection
asr = create_inference(model_key, **config)
# Warm up
asr.file_to_text(test_file)
# Test performance
times = []
for i in range(3):
start_time = time.time()
text = asr.file_to_text(test_file)
end_time = time.time()
execution_time = end_time - start_time
times.append(execution_time)
print(f"Run {i+1}: {execution_time:.3f}s - {text[:50]}...")
avg_time = sum(times) / len(times)
print(f"Average time: {avg_time:.3f}s")
|