Spaces:
Sleeping
Sleeping
File size: 24,064 Bytes
64c08d9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 |
# SIMPLIFIED PRONUNCIATION ASSESSMENT API
# Input: Audio + Reference Text → Output: Word highlights + Phoneme diff + Wrong words
from fastapi import FastAPI, UploadFile, File, Form, HTTPException, APIRouter
from fastapi.middleware.cors import CORSMiddleware
from pydantic import BaseModel
from typing import List, Dict, Optional
import tempfile
import os
import numpy as np
import nltk
import eng_to_ipa as ipa
import whisper
import re
from collections import defaultdict
import warnings
warnings.filterwarnings("ignore")
# Download required NLTK data
try:
nltk.download("cmudict", quiet=True)
from nltk.corpus import cmudict
except:
print("Warning: NLTK data not available")
# =============================================================================
# MODELS
# =============================================================================
router = APIRouter(prefix="/pronunciation", tags=["Pronunciation"])
class PronunciationAssessmentResult(BaseModel):
transcript: str
overall_score: float
word_highlights: List[Dict]
phoneme_differences: List[Dict]
wrong_words: List[Dict]
feedback: List[str]
# =============================================================================
# CORE COMPONENTS
# =============================================================================
class SimpleG2P:
"""Simple Grapheme-to-Phoneme converter"""
def __init__(self):
try:
self.cmu_dict = cmudict.dict()
except:
self.cmu_dict = {}
print("Warning: CMU dictionary not available")
def text_to_phonemes(self, text: str) -> List[Dict]:
"""Convert text to phoneme sequence"""
words = self._clean_text(text).split()
phoneme_sequence = []
for word in words:
word_phonemes = self._get_word_phonemes(word)
phoneme_sequence.append(
{"word": word, "phonemes": word_phonemes, "ipa": self._get_ipa(word)}
)
return phoneme_sequence
def _clean_text(self, text: str) -> str:
"""Clean text for processing"""
text = re.sub(r"[^\w\s\']", " ", text)
text = re.sub(r"\s+", " ", text)
return text.lower().strip()
def _get_word_phonemes(self, word: str) -> List[str]:
"""Get phonemes for a word"""
word_lower = word.lower()
if word_lower in self.cmu_dict:
# Remove stress markers
phonemes = self.cmu_dict[word_lower][0]
return [re.sub(r"[0-9]", "", p) for p in phonemes]
else:
# Simple fallback
return self._estimate_phonemes(word)
def _get_ipa(self, word: str) -> str:
"""Get IPA transcription"""
try:
return ipa.convert(word)
except:
return f"/{word}/"
def _estimate_phonemes(self, word: str) -> List[str]:
"""Estimate phonemes for unknown words"""
phoneme_map = {
"ch": ["CH"],
"sh": ["SH"],
"th": ["TH"],
"ph": ["F"],
"ck": ["K"],
"ng": ["NG"],
"qu": ["K", "W"],
"a": ["AE"],
"e": ["EH"],
"i": ["IH"],
"o": ["AH"],
"u": ["AH"],
"b": ["B"],
"c": ["K"],
"d": ["D"],
"f": ["F"],
"g": ["G"],
"h": ["HH"],
"j": ["JH"],
"k": ["K"],
"l": ["L"],
"m": ["M"],
"n": ["N"],
"p": ["P"],
"r": ["R"],
"s": ["S"],
"t": ["T"],
"v": ["V"],
"w": ["W"],
"x": ["K", "S"],
"y": ["Y"],
"z": ["Z"],
}
word = word.lower()
phonemes = []
i = 0
while i < len(word):
# Check 2-letter combinations first
if i <= len(word) - 2:
two_char = word[i : i + 2]
if two_char in phoneme_map:
phonemes.extend(phoneme_map[two_char])
i += 2
continue
# Single character
char = word[i]
if char in phoneme_map:
phonemes.extend(phoneme_map[char])
i += 1
return phonemes
class SimplePhonemeComparator:
"""Simple phoneme comparison"""
def __init__(self):
# Vietnamese difficulty map
self.difficulty_map = {
"TH": 0.9,
"DH": 0.9,
"V": 0.8,
"Z": 0.8,
"ZH": 0.9,
"R": 0.7,
"L": 0.6,
"W": 0.5,
"F": 0.4,
"S": 0.3,
"SH": 0.5,
"CH": 0.4,
"JH": 0.5,
"NG": 0.3,
}
# Common substitution patterns for Vietnamese speakers
self.substitution_patterns = {
"TH": ["F", "S", "T"],
"DH": ["D", "Z", "V"],
"V": ["W", "F"],
"R": ["L"],
"L": ["R"],
"Z": ["S"],
}
def compare_phonemes(
self, reference_phonemes: List[Dict], learner_phonemes: List[Dict]
) -> List[Dict]:
"""Compare reference and learner phoneme sequences"""
# Flatten phoneme sequences
ref_sequence = []
learner_sequence = []
for word_data in reference_phonemes:
for phoneme in word_data["phonemes"]:
ref_sequence.append({"phoneme": phoneme, "word": word_data["word"]})
for word_data in learner_phonemes:
for phoneme in word_data["phonemes"]:
learner_sequence.append({"phoneme": phoneme, "word": word_data["word"]})
# Simple alignment and comparison
comparisons = []
max_len = max(len(ref_sequence), len(learner_sequence))
for i in range(max_len):
ref_item = ref_sequence[i] if i < len(ref_sequence) else None
learner_item = learner_sequence[i] if i < len(learner_sequence) else None
if ref_item and learner_item:
ref_phoneme = ref_item["phoneme"]
learner_phoneme = learner_item["phoneme"]
if ref_phoneme == learner_phoneme:
status = "correct"
score = 1.0
elif self._is_acceptable_substitution(ref_phoneme, learner_phoneme):
status = "acceptable"
score = 0.7
else:
status = "wrong"
score = 0.3
comparisons.append(
{
"position": i,
"reference_phoneme": ref_phoneme,
"learner_phoneme": learner_phoneme,
"status": status,
"score": score,
"word": ref_item["word"],
"difficulty": self.difficulty_map.get(ref_phoneme, 0.3),
}
)
elif ref_item and not learner_item:
# Missing phoneme
comparisons.append(
{
"position": i,
"reference_phoneme": ref_item["phoneme"],
"learner_phoneme": "",
"status": "missing",
"score": 0.0,
"word": ref_item["word"],
"difficulty": self.difficulty_map.get(ref_item["phoneme"], 0.3),
}
)
elif learner_item and not ref_item:
# Extra phoneme
comparisons.append(
{
"position": i,
"reference_phoneme": "",
"learner_phoneme": learner_item["phoneme"],
"status": "extra",
"score": 0.0,
"word": learner_item["word"],
"difficulty": 0.3,
}
)
return comparisons
def _is_acceptable_substitution(self, reference: str, learner: str) -> bool:
"""Check if substitution is acceptable for Vietnamese speakers"""
acceptable = self.substitution_patterns.get(reference, [])
return learner in acceptable
class SimplePronunciationAssessor:
"""Simplified pronunciation assessor focused on core functionality"""
def __init__(self):
print("Initializing Whisper model...")
self.whisper_model = whisper.load_model("base.en", in_memory=True)
print("Whisper model loaded successfully")
self.g2p = SimpleG2P()
self.comparator = SimplePhonemeComparator()
self.sample_rate = 16000
def assess_pronunciation(self, audio_path: str, reference_text: str) -> Dict:
"""Main assessment function"""
# Step 1: Whisper ASR
print("Running Whisper transcription...")
asr_result = self.whisper_model.transcribe(audio_path)
transcript = asr_result["text"].strip()
print(f"Transcript: '{transcript}'")
# Step 2: Get reference phonemes
print("Getting reference phonemes...")
reference_phonemes = self.g2p.text_to_phonemes(reference_text)
# Step 3: Get learner phonemes from transcript
print("Getting learner phonemes...")
learner_phonemes = self.g2p.text_to_phonemes(transcript)
# Step 4: Compare phonemes
print("Comparing phonemes...")
phoneme_comparisons = self.comparator.compare_phonemes(
reference_phonemes, learner_phonemes
)
# Step 5: Generate word highlights
print("Generating word highlights...")
word_highlights = self._generate_word_highlights(
reference_phonemes, learner_phonemes, phoneme_comparisons
)
# Step 6: Identify wrong words
print("Identifying wrong words...")
wrong_words = self._identify_wrong_words(word_highlights, phoneme_comparisons)
# Step 7: Calculate overall score
overall_score = self._calculate_overall_score(phoneme_comparisons)
# Step 8: Generate feedback
feedback = self._generate_simple_feedback(
overall_score, wrong_words, phoneme_comparisons
)
return {
"transcript": transcript,
"overall_score": overall_score,
"word_highlights": word_highlights,
"phoneme_differences": phoneme_comparisons,
"wrong_words": wrong_words,
"feedback": feedback,
}
def _generate_word_highlights(
self,
reference_phonemes: List[Dict],
learner_phonemes: List[Dict],
phoneme_comparisons: List[Dict],
) -> List[Dict]:
"""Generate word highlighting data"""
word_highlights = []
# Group comparisons by word
word_scores = defaultdict(list)
for comparison in phoneme_comparisons:
word = comparison.get("word", "unknown")
if comparison["status"] in ["correct", "acceptable", "wrong"]:
word_scores[word].append(comparison["score"])
# Create highlights for reference words
for word_data in reference_phonemes:
word = word_data["word"]
scores = word_scores.get(word, [0.0])
avg_score = float(np.mean(scores))
highlight = {
"word": word,
"score": avg_score,
"status": self._get_word_status(avg_score),
"color": self._get_word_color(avg_score),
"phonemes": word_data["phonemes"],
"ipa": word_data["ipa"],
"issues": self._get_word_issues(word, phoneme_comparisons),
}
word_highlights.append(highlight)
return word_highlights
def _identify_wrong_words(
self, word_highlights: List[Dict], phoneme_comparisons: List[Dict]
) -> List[Dict]:
"""Identify words that were pronounced incorrectly"""
wrong_words = []
for word_highlight in word_highlights:
if word_highlight["score"] < 0.6: # Threshold for "wrong"
word = word_highlight["word"]
# Find specific issues for this word
word_issues = []
wrong_phonemes = []
missing_phonemes = []
for comparison in phoneme_comparisons:
if comparison.get("word") == word:
if comparison["status"] == "wrong":
wrong_phonemes.append(
{
"expected": comparison["reference_phoneme"],
"actual": comparison["learner_phoneme"],
}
)
elif comparison["status"] == "missing":
missing_phonemes.append(comparison["reference_phoneme"])
if wrong_phonemes:
word_issues.append(
f"Wrong sounds: {', '.join([p['expected'] for p in wrong_phonemes])}"
)
if missing_phonemes:
word_issues.append(f"Missing sounds: {', '.join(missing_phonemes)}")
wrong_word = {
"word": word,
"score": word_highlight["score"],
"expected_phonemes": word_highlight["phonemes"],
"ipa": word_highlight["ipa"],
"issues": word_issues,
"wrong_phonemes": wrong_phonemes,
"missing_phonemes": missing_phonemes,
"tips": self._get_pronunciation_tips(
word, wrong_phonemes, missing_phonemes
),
}
wrong_words.append(wrong_word)
return wrong_words
def _calculate_overall_score(self, phoneme_comparisons: List[Dict]) -> float:
"""Calculate overall pronunciation score"""
if not phoneme_comparisons:
return 0.0
total_score = 0.0
for comparison in phoneme_comparisons:
total_score += comparison["score"]
return total_score / len(phoneme_comparisons)
def _generate_simple_feedback(
self,
overall_score: float,
wrong_words: List[Dict],
phoneme_comparisons: List[Dict],
) -> List[str]:
"""Generate simple, actionable feedback"""
feedback = []
# Overall feedback
if overall_score >= 0.8:
feedback.append("Phát âm tốt! Bạn đã làm rất tốt.")
elif overall_score >= 0.6:
feedback.append("Phát âm khá tốt, còn một vài điểm cần cải thiện.")
elif overall_score >= 0.4:
feedback.append(
"Cần luyện tập thêm. Tập trung vào những từ được đánh dấu đỏ."
)
else:
feedback.append("Hãy luyện tập chậm và rõ ràng hơn.")
# Wrong words feedback
if wrong_words:
word_names = [w["word"] for w in wrong_words[:3]]
feedback.append(f"Các từ cần luyện tập: {', '.join(word_names)}")
# Phoneme-specific feedback for Vietnamese speakers
problem_phonemes = defaultdict(int)
for comparison in phoneme_comparisons:
if comparison["status"] == "wrong":
phoneme = comparison["reference_phoneme"]
problem_phonemes[phoneme] += 1
# Vietnamese-specific tips for most problematic sounds
vietnamese_tips = {
"TH": "Đặt lưỡi giữa răng, thổi nhẹ",
"DH": "Giống TH nhưng rung dây thanh",
"V": "Chạm môi dưới vào răng trên",
"R": "Cuộn lưỡi, không chạm vòm miệng",
"L": "Đầu lưỡi chạm vòm miệng",
"Z": "Giống S nhưng có rung dây thanh",
}
if problem_phonemes:
most_difficult = sorted(
problem_phonemes.items(), key=lambda x: x[1], reverse=True
)
for phoneme, count in most_difficult[:2]:
if phoneme in vietnamese_tips:
feedback.append(f"Âm {phoneme}: {vietnamese_tips[phoneme]}")
return feedback
def _get_word_status(self, score: float) -> str:
"""Get word status from score"""
if score >= 0.8:
return "excellent"
elif score >= 0.6:
return "good"
elif score >= 0.4:
return "needs_practice"
else:
return "poor"
def _get_word_color(self, score: float) -> str:
"""Get color for word highlighting"""
if score >= 0.8:
return "#22c55e" # Green
elif score >= 0.6:
return "#84cc16" # Light green
elif score >= 0.4:
return "#eab308" # Yellow
else:
return "#ef4444" # Red
def _get_word_issues(self, word: str, phoneme_comparisons: List[Dict]) -> List[str]:
"""Get specific issues for a word"""
issues = []
word_comparisons = [c for c in phoneme_comparisons if c.get("word") == word]
wrong_count = len([c for c in word_comparisons if c["status"] == "wrong"])
missing_count = len([c for c in word_comparisons if c["status"] == "missing"])
if wrong_count > 0:
issues.append(f"{wrong_count} sai âm")
if missing_count > 0:
issues.append(f"{missing_count} thiếu âm")
return issues
def _get_pronunciation_tips(
self, word: str, wrong_phonemes: List[Dict], missing_phonemes: List[str]
) -> List[str]:
"""Get pronunciation tips for wrong words"""
tips = []
# Tips for specific problematic phonemes
phoneme_tips = {
"TH": "Đặt lưỡi giữa răng trên và dưới, thổi nhẹ",
"DH": "Giống TH nhưng rung dây thanh âm",
"V": "Chạm môi dưới vào răng trên, không dùng cả hai môi",
"R": "Cuộn lưỡi nhưng không chạm vào vòm miệng",
"L": "Đầu lưỡi chạm vào vòm miệng sau răng",
"Z": "Giống âm S nhưng có rung dây thanh âm",
}
# Add tips for wrong phonemes
for wrong in wrong_phonemes:
expected = wrong["expected"]
if expected in phoneme_tips:
tips.append(f"Âm {expected}: {phoneme_tips[expected]}")
# Add tips for missing phonemes
for missing in missing_phonemes:
if missing in phoneme_tips:
tips.append(f"Thiếu âm {missing}: {phoneme_tips[missing]}")
# General tip if no specific tips
if not tips:
tips.append(f"Luyện tập từ '{word}' chậm và rõ ràng")
return tips
# =============================================================================
# MAIN API ENDPOINT
# =============================================================================
# Initialize assessor
assessor = SimplePronunciationAssessor()
def convert_numpy_types(obj):
"""Convert numpy types to Python native types"""
if isinstance(obj, np.integer):
return int(obj)
elif isinstance(obj, np.floating):
return float(obj)
elif isinstance(obj, np.ndarray):
return obj.tolist()
elif isinstance(obj, dict):
return {key: convert_numpy_types(value) for key, value in obj.items()}
elif isinstance(obj, list):
return [convert_numpy_types(item) for item in obj]
else:
return obj
@router.post("/assess", response_model=PronunciationAssessmentResult)
async def assess_pronunciation(
audio: UploadFile = File(..., description="Audio file (.wav, .mp3, .m4a)"),
reference_text: str = Form(..., description="Reference text to compare against"),
):
"""
Main API: Pronunciation Assessment
Input: Audio file + Reference text
Output: Word highlights + Phoneme differences + Wrong words
Features:
- Whisper ASR for transcript
- CMU Dict phoneme mapping
- Vietnamese-optimized comparison
- Simple UI-ready output
"""
import time
start_time = time.time()
# Validate inputs
if not reference_text.strip():
raise HTTPException(status_code=400, detail="Reference text cannot be empty")
if len(reference_text) > 500:
raise HTTPException(
status_code=400, detail="Reference text too long (max 500 characters)"
)
# Check for valid English characters
if not re.match(r"^[a-zA-Z\s\'\-\.!?,;:]+$", reference_text):
raise HTTPException(
status_code=400,
detail="Text must contain only English letters, spaces, and basic punctuation",
)
try:
# Save uploaded file temporarily
file_extension = ".wav"
if audio.filename and "." in audio.filename:
file_extension = f".{audio.filename.split('.')[-1]}"
with tempfile.NamedTemporaryFile(
delete=False, suffix=file_extension
) as tmp_file:
content = await audio.read()
tmp_file.write(content)
tmp_file.flush()
print(f"Processing audio file: {tmp_file.name}")
# Run assessment
result = assessor.assess_pronunciation(tmp_file.name, reference_text)
# Clean up temporary file
os.unlink(tmp_file.name)
# Convert numpy types for JSON serialization
final_result = convert_numpy_types(result)
processing_time = time.time() - start_time
print(f"Assessment completed in {processing_time:.2f} seconds")
return PronunciationAssessmentResult(**final_result)
except Exception as e:
print(f"Assessment error: {str(e)}")
import traceback
traceback.print_exc()
raise HTTPException(status_code=500, detail=f"Assessment failed: {str(e)}")
# =============================================================================
# UTILITY ENDPOINTS
# =============================================================================
@router.get("/phonemes/{word}")
async def get_word_phonemes(word: str):
"""Get phoneme breakdown for a specific word"""
try:
phoneme_data = assessor.g2p.text_to_phonemes(word)[0]
# Add difficulty analysis
difficulty_scores = []
for phoneme in phoneme_data["phonemes"]:
difficulty = assessor.comparator.difficulty_map.get(phoneme, 0.3)
difficulty_scores.append(difficulty)
avg_difficulty = float(np.mean(difficulty_scores)) if difficulty_scores else 0.3
return {
"word": word,
"phonemes": phoneme_data["phonemes"],
"ipa": phoneme_data["ipa"],
"difficulty_score": avg_difficulty,
"difficulty_level": (
"hard"
if avg_difficulty > 0.6
else "medium" if avg_difficulty > 0.4 else "easy"
),
"challenging_phonemes": [
{
"phoneme": p,
"difficulty": assessor.comparator.difficulty_map.get(p, 0.3),
}
for p in phoneme_data["phonemes"]
if assessor.comparator.difficulty_map.get(p, 0.3) > 0.6
],
}
except Exception as e:
raise HTTPException(status_code=500, detail=f"Word analysis error: {str(e)}")
@router.get("/health")
async def health_check():
"""Simple health check endpoint"""
return {
"status": "healthy",
"whisper_model": "tiny",
"cmu_dict_size": len(assessor.g2p.cmu_dict),
"vietnamese_optimized": True,
}
|