Spaces:
Running
on
Zero
Running
on
Zero
Revert "added audio processing"
Browse filesThis reverts commit 80d03f778e1e2fd2b3d0126abf41a75857409f18.
- app.py +6 -47
- requirements.txt +1 -2
- utils.py +6 -62
app.py
CHANGED
|
@@ -68,16 +68,6 @@ def run(
|
|
| 68 |
f"system_prompt: {system_prompt} \n model_choice: {model_choice} \n max_new_tokens: {max_new_tokens} \n max_images: {max_images}"
|
| 69 |
)
|
| 70 |
|
| 71 |
-
# Validate audio files are only used with 3n model
|
| 72 |
-
if message.get("files"):
|
| 73 |
-
audio_extensions = [".wav", ".mp3", ".m4a", ".flac", ".ogg"]
|
| 74 |
-
has_audio = any(any(file.lower().endswith(ext) for ext in audio_extensions) for file in message["files"])
|
| 75 |
-
|
| 76 |
-
if has_audio and model_choice != "Gemma 3n E4B":
|
| 77 |
-
error_msg = "❌ **Audio files are only supported with the Gemma 3n E4B model.**\n\nPlease switch to the Gemma 3n E4B model to process audio files, or remove audio files to continue with the current model."
|
| 78 |
-
yield error_msg
|
| 79 |
-
return
|
| 80 |
-
|
| 81 |
def try_fallback_model(original_model_choice: str):
|
| 82 |
fallback_model = model_3n if original_model_choice == "Gemma 3 12B" else model_12
|
| 83 |
fallback_name = "Gemma 3n E4B" if original_model_choice == "Gemma 3 12B" else "Gemma 3 12B"
|
|
@@ -245,26 +235,13 @@ def run(
|
|
| 245 |
yield error_message
|
| 246 |
|
| 247 |
|
| 248 |
-
def update_file_types(model_choice):
|
| 249 |
-
"""Update allowed file types based on model selection."""
|
| 250 |
-
base_types = [".mp4", ".jpg", ".png", ".pdf"]
|
| 251 |
-
if model_choice == "Gemma 3n E4B":
|
| 252 |
-
# Add audio file types for 3n model
|
| 253 |
-
return base_types + [".wav", ".mp3", ".m4a", ".flac", ".ogg"]
|
| 254 |
-
return base_types
|
| 255 |
-
|
| 256 |
-
# Create a custom textbox that we can update
|
| 257 |
-
custom_textbox = gr.MultimodalTextbox(
|
| 258 |
-
file_types=[".mp4", ".jpg", ".png", ".pdf"],
|
| 259 |
-
file_count="multiple",
|
| 260 |
-
autofocus=True
|
| 261 |
-
)
|
| 262 |
-
|
| 263 |
demo = gr.ChatInterface(
|
| 264 |
fn=run,
|
| 265 |
type="messages",
|
| 266 |
chatbot=gr.Chatbot(type="messages", scale=1, allow_tags=["image"]),
|
| 267 |
-
textbox=
|
|
|
|
|
|
|
| 268 |
multimodal=True,
|
| 269 |
additional_inputs=[
|
| 270 |
gr.Dropdown(
|
|
@@ -291,7 +268,7 @@ demo = gr.ChatInterface(
|
|
| 291 |
label="Model",
|
| 292 |
choices=["Gemma 3 12B", "Gemma 3n E4B"],
|
| 293 |
value="Gemma 3 12B",
|
| 294 |
-
info="Gemma 3 12B: More powerful and detailed responses,
|
| 295 |
),
|
| 296 |
gr.Slider(
|
| 297 |
label="Max New Tokens", minimum=100, maximum=2000, step=10, value=700
|
|
@@ -316,29 +293,11 @@ demo = gr.ChatInterface(
|
|
| 316 |
# Connect the dropdown to update the textbox
|
| 317 |
with demo:
|
| 318 |
preset_dropdown = demo.additional_inputs[0]
|
| 319 |
-
|
| 320 |
-
model_dropdown = demo.additional_inputs[2]
|
| 321 |
-
|
| 322 |
-
# Update custom prompt when preset changes
|
| 323 |
preset_dropdown.change(
|
| 324 |
fn=update_custom_prompt,
|
| 325 |
inputs=[preset_dropdown],
|
| 326 |
-
outputs=[
|
| 327 |
-
)
|
| 328 |
-
|
| 329 |
-
# Update file types when model changes
|
| 330 |
-
def update_textbox_file_types(model_choice):
|
| 331 |
-
allowed_types = update_file_types(model_choice)
|
| 332 |
-
return gr.MultimodalTextbox(
|
| 333 |
-
file_types=allowed_types,
|
| 334 |
-
file_count="multiple",
|
| 335 |
-
autofocus=True
|
| 336 |
-
)
|
| 337 |
-
|
| 338 |
-
model_dropdown.change(
|
| 339 |
-
fn=update_textbox_file_types,
|
| 340 |
-
inputs=[model_dropdown],
|
| 341 |
-
outputs=[demo.textbox]
|
| 342 |
)
|
| 343 |
|
| 344 |
if __name__ == "__main__":
|
|
|
|
| 68 |
f"system_prompt: {system_prompt} \n model_choice: {model_choice} \n max_new_tokens: {max_new_tokens} \n max_images: {max_images}"
|
| 69 |
)
|
| 70 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 71 |
def try_fallback_model(original_model_choice: str):
|
| 72 |
fallback_model = model_3n if original_model_choice == "Gemma 3 12B" else model_12
|
| 73 |
fallback_name = "Gemma 3n E4B" if original_model_choice == "Gemma 3 12B" else "Gemma 3 12B"
|
|
|
|
| 235 |
yield error_message
|
| 236 |
|
| 237 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 238 |
demo = gr.ChatInterface(
|
| 239 |
fn=run,
|
| 240 |
type="messages",
|
| 241 |
chatbot=gr.Chatbot(type="messages", scale=1, allow_tags=["image"]),
|
| 242 |
+
textbox=gr.MultimodalTextbox(
|
| 243 |
+
file_types=[".mp4", ".jpg", ".png", ".pdf"], file_count="multiple", autofocus=True
|
| 244 |
+
),
|
| 245 |
multimodal=True,
|
| 246 |
additional_inputs=[
|
| 247 |
gr.Dropdown(
|
|
|
|
| 268 |
label="Model",
|
| 269 |
choices=["Gemma 3 12B", "Gemma 3n E4B"],
|
| 270 |
value="Gemma 3 12B",
|
| 271 |
+
info="Gemma 3 12B: More powerful and detailed responses, but slower processing. Gemma 3n E4B: Faster processing with efficient performance for most tasks."
|
| 272 |
),
|
| 273 |
gr.Slider(
|
| 274 |
label="Max New Tokens", minimum=100, maximum=2000, step=10, value=700
|
|
|
|
| 293 |
# Connect the dropdown to update the textbox
|
| 294 |
with demo:
|
| 295 |
preset_dropdown = demo.additional_inputs[0]
|
| 296 |
+
custom_textbox = demo.additional_inputs[1]
|
|
|
|
|
|
|
|
|
|
| 297 |
preset_dropdown.change(
|
| 298 |
fn=update_custom_prompt,
|
| 299 |
inputs=[preset_dropdown],
|
| 300 |
+
outputs=[custom_textbox]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 301 |
)
|
| 302 |
|
| 303 |
if __name__ == "__main__":
|
requirements.txt
CHANGED
|
@@ -9,5 +9,4 @@ loguru
|
|
| 9 |
python-dotenv
|
| 10 |
opencv-python
|
| 11 |
timm
|
| 12 |
-
pymupdf
|
| 13 |
-
librosa
|
|
|
|
| 9 |
python-dotenv
|
| 10 |
opencv-python
|
| 11 |
timm
|
| 12 |
+
pymupdf
|
|
|
utils.py
CHANGED
|
@@ -2,15 +2,12 @@ import os
|
|
| 2 |
import cv2
|
| 3 |
import fitz
|
| 4 |
import tempfile
|
| 5 |
-
import librosa
|
| 6 |
-
import numpy as np
|
| 7 |
from PIL import Image
|
| 8 |
from loguru import logger
|
| 9 |
|
| 10 |
# Constants
|
| 11 |
MAX_VIDEO_SIZE = 100 * 1024 * 1024 # 100 MB
|
| 12 |
MAX_IMAGE_SIZE = 10 * 1024 * 1024 # 10 MB
|
| 13 |
-
MAX_AUDIO_SIZE = 50 * 1024 * 1024 # 50 MB
|
| 14 |
|
| 15 |
PRESET_PROMPTS = {
|
| 16 |
"General Assistant": "You are a helpful AI assistant capable of analyzing images, videos, and PDF documents. Provide clear, accurate, and helpful responses to user queries.",
|
|
@@ -32,17 +29,13 @@ def check_file_size(file_path: str) -> bool:
|
|
| 32 |
raise ValueError(f"File not found: {file_path}")
|
| 33 |
|
| 34 |
file_size = os.path.getsize(file_path)
|
| 35 |
-
file_lower = file_path.lower()
|
| 36 |
|
| 37 |
-
if
|
| 38 |
if file_size > MAX_VIDEO_SIZE:
|
| 39 |
raise ValueError(f"Video file too large: {file_size / (1024*1024):.1f}MB. Maximum allowed: {MAX_VIDEO_SIZE / (1024*1024):.0f}MB")
|
| 40 |
-
elif file_lower.endswith((".wav", ".mp3", ".m4a", ".flac", ".ogg")):
|
| 41 |
-
if file_size > MAX_AUDIO_SIZE:
|
| 42 |
-
raise ValueError(f"Audio file too large: {file_size / (1024*1024):.1f}MB. Maximum allowed: {MAX_AUDIO_SIZE / (1024*1024):.0f}MB")
|
| 43 |
else:
|
| 44 |
if file_size > MAX_IMAGE_SIZE:
|
| 45 |
-
raise ValueError(f"Image
|
| 46 |
|
| 47 |
return True
|
| 48 |
|
|
@@ -94,44 +87,6 @@ def process_video(video_path: str, max_images: int) -> list[dict]:
|
|
| 94 |
return result_content
|
| 95 |
|
| 96 |
|
| 97 |
-
def process_audio(audio_path: str) -> list[dict]:
|
| 98 |
-
"""Process an audio file and return formatted content for the model."""
|
| 99 |
-
check_file_size(audio_path)
|
| 100 |
-
|
| 101 |
-
try:
|
| 102 |
-
# Load audio file
|
| 103 |
-
audio_data, sample_rate = librosa.load(audio_path, sr=None)
|
| 104 |
-
duration = len(audio_data) / sample_rate
|
| 105 |
-
|
| 106 |
-
# Get basic audio features
|
| 107 |
-
rms = librosa.feature.rms(y=audio_data)[0]
|
| 108 |
-
spectral_centroids = librosa.feature.spectral_centroid(y=audio_data, sr=sample_rate)[0]
|
| 109 |
-
zero_crossings = librosa.zero_crossings(audio_data, pad=False)
|
| 110 |
-
|
| 111 |
-
# Calculate statistics
|
| 112 |
-
avg_rms = np.mean(rms)
|
| 113 |
-
avg_spectral_centroid = np.mean(spectral_centroids)
|
| 114 |
-
zcr_rate = np.sum(zero_crossings) / len(audio_data)
|
| 115 |
-
|
| 116 |
-
# Create audio analysis text
|
| 117 |
-
audio_analysis = f"""Audio Analysis:
|
| 118 |
-
- Duration: {duration:.2f} seconds
|
| 119 |
-
- Sample Rate: {sample_rate} Hz
|
| 120 |
-
- Average RMS Energy: {avg_rms:.4f}
|
| 121 |
-
- Average Spectral Centroid: {avg_spectral_centroid:.2f} Hz
|
| 122 |
-
- Zero Crossing Rate: {zcr_rate:.4f}
|
| 123 |
-
- File: {os.path.basename(audio_path)}"""
|
| 124 |
-
|
| 125 |
-
result_content = [{"type": "text", "text": audio_analysis}]
|
| 126 |
-
|
| 127 |
-
logger.debug(f"Processed audio file {audio_path} - Duration: {duration:.2f}s")
|
| 128 |
-
return result_content
|
| 129 |
-
|
| 130 |
-
except Exception as e:
|
| 131 |
-
logger.error(f"Error processing audio {audio_path}: {e}")
|
| 132 |
-
raise ValueError(f"Failed to process audio file: {str(e)}")
|
| 133 |
-
|
| 134 |
-
|
| 135 |
def extract_pdf_text(pdf_path: str) -> str:
|
| 136 |
"""Extract text content from a PDF file."""
|
| 137 |
check_file_size(pdf_path)
|
|
@@ -172,22 +127,14 @@ def process_user_input(message: dict, max_images: int) -> list[dict]:
|
|
| 172 |
logger.error(f"File size check failed: {e}")
|
| 173 |
result_content.append({"type": "text", "text": f"Error: {str(e)}"})
|
| 174 |
continue
|
| 175 |
-
|
| 176 |
-
file_lower = file_path.lower()
|
| 177 |
|
| 178 |
-
if
|
| 179 |
try:
|
| 180 |
result_content = [*result_content, *process_video(file_path, max_images)]
|
| 181 |
except Exception as e:
|
| 182 |
logger.error(f"Video processing failed: {e}")
|
| 183 |
result_content.append({"type": "text", "text": f"Error processing video: {str(e)}"})
|
| 184 |
-
elif
|
| 185 |
-
try:
|
| 186 |
-
result_content = [*result_content, *process_audio(file_path)]
|
| 187 |
-
except Exception as e:
|
| 188 |
-
logger.error(f"Audio processing failed: {e}")
|
| 189 |
-
result_content.append({"type": "text", "text": f"Error processing audio: {str(e)}"})
|
| 190 |
-
elif file_lower.endswith(".pdf"):
|
| 191 |
try:
|
| 192 |
logger.info(f"Processing PDF file: {file_path}")
|
| 193 |
pdf_text = extract_pdf_text(file_path)
|
|
@@ -228,12 +175,9 @@ def process_history(history: list[dict]) -> list[dict]:
|
|
| 228 |
content_buffer.append({"type": "text", "text": content})
|
| 229 |
elif isinstance(content, tuple) and len(content) > 0:
|
| 230 |
file_path = content[0]
|
| 231 |
-
|
| 232 |
-
if file_lower.endswith((".mp4", ".mov")):
|
| 233 |
content_buffer.append({"type": "text", "text": "[Video uploaded previously]"})
|
| 234 |
-
elif
|
| 235 |
-
content_buffer.append({"type": "text", "text": "[Audio uploaded previously]"})
|
| 236 |
-
elif file_lower.endswith(".pdf"):
|
| 237 |
content_buffer.append({"type": "text", "text": "[PDF uploaded previously]"})
|
| 238 |
else:
|
| 239 |
content_buffer.append({"type": "image", "url": file_path})
|
|
|
|
| 2 |
import cv2
|
| 3 |
import fitz
|
| 4 |
import tempfile
|
|
|
|
|
|
|
| 5 |
from PIL import Image
|
| 6 |
from loguru import logger
|
| 7 |
|
| 8 |
# Constants
|
| 9 |
MAX_VIDEO_SIZE = 100 * 1024 * 1024 # 100 MB
|
| 10 |
MAX_IMAGE_SIZE = 10 * 1024 * 1024 # 10 MB
|
|
|
|
| 11 |
|
| 12 |
PRESET_PROMPTS = {
|
| 13 |
"General Assistant": "You are a helpful AI assistant capable of analyzing images, videos, and PDF documents. Provide clear, accurate, and helpful responses to user queries.",
|
|
|
|
| 29 |
raise ValueError(f"File not found: {file_path}")
|
| 30 |
|
| 31 |
file_size = os.path.getsize(file_path)
|
|
|
|
| 32 |
|
| 33 |
+
if file_path.lower().endswith((".mp4", ".mov")):
|
| 34 |
if file_size > MAX_VIDEO_SIZE:
|
| 35 |
raise ValueError(f"Video file too large: {file_size / (1024*1024):.1f}MB. Maximum allowed: {MAX_VIDEO_SIZE / (1024*1024):.0f}MB")
|
|
|
|
|
|
|
|
|
|
| 36 |
else:
|
| 37 |
if file_size > MAX_IMAGE_SIZE:
|
| 38 |
+
raise ValueError(f"Image file too large: {file_size / (1024*1024):.1f}MB. Maximum allowed: {MAX_IMAGE_SIZE / (1024*1024):.0f}MB")
|
| 39 |
|
| 40 |
return True
|
| 41 |
|
|
|
|
| 87 |
return result_content
|
| 88 |
|
| 89 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 90 |
def extract_pdf_text(pdf_path: str) -> str:
|
| 91 |
"""Extract text content from a PDF file."""
|
| 92 |
check_file_size(pdf_path)
|
|
|
|
| 127 |
logger.error(f"File size check failed: {e}")
|
| 128 |
result_content.append({"type": "text", "text": f"Error: {str(e)}"})
|
| 129 |
continue
|
|
|
|
|
|
|
| 130 |
|
| 131 |
+
if file_path.endswith((".mp4", ".mov")):
|
| 132 |
try:
|
| 133 |
result_content = [*result_content, *process_video(file_path, max_images)]
|
| 134 |
except Exception as e:
|
| 135 |
logger.error(f"Video processing failed: {e}")
|
| 136 |
result_content.append({"type": "text", "text": f"Error processing video: {str(e)}"})
|
| 137 |
+
elif file_path.lower().endswith(".pdf"):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 138 |
try:
|
| 139 |
logger.info(f"Processing PDF file: {file_path}")
|
| 140 |
pdf_text = extract_pdf_text(file_path)
|
|
|
|
| 175 |
content_buffer.append({"type": "text", "text": content})
|
| 176 |
elif isinstance(content, tuple) and len(content) > 0:
|
| 177 |
file_path = content[0]
|
| 178 |
+
if file_path.endswith((".mp4", ".mov")):
|
|
|
|
| 179 |
content_buffer.append({"type": "text", "text": "[Video uploaded previously]"})
|
| 180 |
+
elif file_path.lower().endswith(".pdf"):
|
|
|
|
|
|
|
| 181 |
content_buffer.append({"type": "text", "text": "[PDF uploaded previously]"})
|
| 182 |
else:
|
| 183 |
content_buffer.append({"type": "image", "url": file_path})
|