Spaces:
Sleeping
Sleeping
| import torch | |
| from torch.utils.data import Dataset, DataLoader | |
| from transformers import BertTokenizer, BertForSequenceClassification, AdamW, get_linear_schedule_with_warmup | |
| from sklearn.model_selection import train_test_split | |
| from sklearn.metrics import mean_squared_error, r2_score | |
| import numpy as np | |
| # Load the dataset | |
| chat_transcripts = ["chat transcript 1", "chat transcript 2", ...] | |
| survey_responses = [3.5, 4.2, ...] # Numerical survey responses | |
| # Split the data into training, validation, and testing sets | |
| train_texts, temp_texts, train_labels, temp_labels = train_test_split(chat_transcripts, survey_responses, test_size=0.3, random_state=42) | |
| val_texts, test_texts, val_labels, test_labels = train_test_split(temp_texts, temp_labels, test_size=0.5, random_state=42) | |
| # Pre-process the data using BERT tokenizer | |
| tokenizer = BertTokenizer.from_pretrained("bert-base-uncased") | |
| train_encodings = tokenizer(train_texts, truncation=True, padding=True) | |
| val_encodings = tokenizer(val_texts, truncation=True, padding=True) | |
| test_encodings = tokenizer(test_texts, truncation=True, padding=True) | |
| class SurveyDataset(Dataset): | |
| def __init__(self, encodings, labels): | |
| self.encodings = encodings | |
| self.labels = labels | |
| def __getitem__(self, idx): | |
| item = {key: torch.tensor(val[idx]) for key, val in self.encodings.items()} | |
| item['labels'] = torch.tensor(self.labels[idx], dtype=torch.float) | |
| return item | |
| def __len__(self): | |
| return len(self.labels) | |
| train_dataset = SurveyDataset(train_encodings, train_labels) | |
| val_dataset = SurveyDataset(val_encodings, val_labels) | |
| test_dataset = SurveyDataset(test_encodings, test_labels) | |
| # Fine-tune the BERT model | |
| device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
| model = BertForSequenceClassification.from_pretrained("bert-base-uncased", num_labels=1).to(device) | |
| train_loader = DataLoader(train_dataset, batch_size=8, shuffle=True) | |
| val_loader = DataLoader(val_dataset, batch_size=8, shuffle=False) | |
| test_loader = DataLoader(test_dataset, batch_size=8, shuffle=False) | |
| optim = AdamW(model.parameters(), lr=2e-5) | |
| num_epochs = 3 | |
| num_training_steps = num_epochs * len(train_loader) | |
| lr_scheduler = get_linear_schedule_with_warmup(optim, num_warmup_steps=0, num_training_steps=num_training_steps) | |
| for epoch in range(num_epochs): | |
| model.train() | |
| for batch in train_loader: | |
| optim.zero_grad() | |
| input_ids = batch["input_ids"].to(device) | |
| attention_mask = batch["attention_mask"].to(device) | |
| labels = batch["labels"].unsqueeze(1).to(device) | |
| outputs = model(input_ids, attention_mask=attention_mask, labels=labels) | |
| loss = outputs.loss | |
| loss.backward() | |
| optim.step() | |
| lr_scheduler.step() | |
| # Evaluate the model | |
| model.eval() | |
| preds = [] | |
| with torch.no_grad(): | |
| for batch in test_loader: | |
| input_ids = batch["input_ids"].to(device) | |
| attention_mask = batch["attention_mask"].to(device) | |
| outputs = model(input_ids, attention_mask=attention_mask) | |
| logits = outputs.logits | |
| preds.extend(logits.squeeze().tolist()) | |
| mse = mean_squared_error(test_labels, preds) | |
| r2 = r2_score(test_labels, preds) | |
| print("Mean Squared Error:", mse) | |
| print("R-squared Score:", r2) | |
| def predict_survey_response(chat_transcript, model, tokenizer, device): | |
| # Preprocess the chat transcript | |
| encoding = tokenizer(chat_transcript, truncation=True, padding=True, return_tensors="pt") | |
| # Move tensors to the device | |
| input_ids = encoding["input_ids"].to(device) | |
| attention_mask = encoding["attention_mask"].to(device) | |
| # Predict the survey response using the fine-tuned model | |
| model.eval() | |
| with torch.no_grad(): | |
| outputs = model(input_ids, attention_mask=attention_mask) | |
| logits = outputs.logits | |
| predicted_response = logits.squeeze().item() | |
| return predicted_response | |
| # Example usage | |
| new_chat_transcript = "A new chat transcript" | |
| predicted_response = predict_survey_response(new_chat_transcript, model, tokenizer, device) | |
| print("Predicted survey response:", predicted_response) | |