Spaces:
Build error
Build error
| ############################################################################################################# | |
| # Title: Gradio Interface to LLM-chatbot (for recommending AI) with RAG-funcionality and ChromaDB on HF-Hub | |
| # Author: Andreas Fischer | |
| # Date: December 30th, 2023 | |
| # Last update: May 27th, 2024 | |
| ############################################################################################################## | |
| # Chroma-DB | |
| #----------- | |
| import os | |
| import chromadb | |
| dbPath="/home/af/Schreibtisch/gradio/Chroma/db" | |
| if(os.path.exists(dbPath)==False): | |
| dbPath="/home/user/app/db" | |
| print(dbPath) | |
| #client = chromadb.Client() | |
| path=dbPath | |
| client = chromadb.PersistentClient(path=path) | |
| print(client.heartbeat()) | |
| print(client.get_version()) | |
| print(client.list_collections()) | |
| from chromadb.utils import embedding_functions | |
| default_ef = embedding_functions.DefaultEmbeddingFunction() | |
| sentence_transformer_ef = embedding_functions.SentenceTransformerEmbeddingFunction(model_name="T-Systems-onsite/cross-en-de-roberta-sentence-transformer") | |
| #instructor_ef = embedding_functions.InstructorEmbeddingFunction(model_name="hkunlp/instructor-large", device="cuda") | |
| print(str(client.list_collections())) | |
| global collection | |
| if("name=ChromaDB1" in str(client.list_collections())): | |
| print("ChromaDB1 found!") | |
| collection = client.get_collection(name="ChromaDB1", embedding_function=sentence_transformer_ef) | |
| else: | |
| print("ChromaDB1 created!") | |
| collection = client.create_collection( | |
| "ChromaDB1", | |
| embedding_function=sentence_transformer_ef, | |
| metadata={"hnsw:space": "cosine"}) | |
| collection.add( | |
| documents=[ | |
| "Text generating AI model mistralai/Mixtral-8x7B-Instruct-v0.1: Suitable for text generation, e.g., social media content, marketing copy, blog posts, short stories, etc.", | |
| "Image generating AI model stabilityai/sdxl-turbo: Suitable for image generation, e.g., illustrations, graphics, AI art, etc.", | |
| "Audio transcribing AI model openai/whisper-large-v3: Suitable for audio-transcription in different languages", | |
| "Speech synthesizing AI model coqui/XTTS-v2: Suitable for generating audio from text and for voice-cloning", | |
| "Code generating AI model deepseek-ai/deepseek-coder-6.7b-instruct: Suitable for programming in Python, JavaScript, PHP, Bash and many other programming languages.", | |
| "Translation AI model Helsinki-NLP/opus-mt: Suitable for translating text, e.g., from English to German or vice versa", | |
| "Search result-integrating AI model phind/phind-v9-model: Suitable for researching current topics and for obtaining precise and up-to-date answers to questions based on web search results" | |
| ], | |
| metadatas=[{"source": "AF"}, {"source": "AF"}, {"source": "AF"}, {"source": "AF"}, {"source": "AF"}, {"source": "AF"}, {"source": "AF"}], | |
| ids=["ai1", "ai2", "ai3", "ai4", "ai5", "ai6", "ai7"], | |
| ) | |
| print("Database ready!") | |
| print(collection.count()) | |
| # Model | |
| #------- | |
| onPrem=False | |
| myModel="mistralai/Mixtral-8x7B-Instruct-v0.1" | |
| if(onPrem==False): | |
| modelPath=myModel | |
| from huggingface_hub import InferenceClient | |
| import gradio as gr | |
| client = InferenceClient( | |
| model=modelPath, | |
| #token="hf_..." | |
| ) | |
| else: | |
| import os | |
| import requests | |
| import subprocess | |
| #modelPath="/home/af/gguf/models/c4ai-command-r-v01-Q4_0.gguf" | |
| #modelPath="/home/af/gguf/models/Discolm_german_7b_v1.Q4_0.gguf" | |
| modelPath="/home/af/gguf/models/Mixtral-8x7b-instruct-v0.1.Q4_0.gguf" | |
| if(os.path.exists(modelPath)==False): | |
| #url="https://huggingface.co/TheBloke/DiscoLM_German_7b_v1-GGUF/resolve/main/discolm_german_7b_v1.Q4_0.gguf?download=true" | |
| url="https://huggingface.co/TheBloke/Mixtral-8x7B-Instruct-v0.1-GGUF/resolve/main/mixtral-8x7b-instruct-v0.1.Q4_0.gguf?download=true" | |
| response = requests.get(url) | |
| with open("./Mixtral-8x7b-instruct.gguf", mode="wb") as file: | |
| file.write(response.content) | |
| print("Model downloaded") | |
| modelPath="./Mixtral-8x7b-instruct.gguf" | |
| print(modelPath) | |
| n="20" | |
| if("Mixtral-8x7b-instruct" in modelPath): n="0" # mixtral seems to cause problems here... | |
| command = ["python3", "-m", "llama_cpp.server", "--model", modelPath, "--host", "0.0.0.0", "--port", "2600", "--n_threads", "8", "--n_gpu_layers", n] | |
| subprocess.Popen(command) | |
| print("Server ready!") | |
| # Check template | |
| #---------------- | |
| if(False): | |
| from transformers import AutoTokenizer | |
| #mod="mistralai/Mixtral-8x22B-Instruct-v0.1" | |
| #mod="mistralai/Mixtral-8x7b-instruct-v0.1" | |
| mod="VAGOsolutions/Llama-3-SauerkrautLM-8b-Instruct" | |
| tok=AutoTokenizer.from_pretrained(mod) #,token="hf_...") | |
| cha=[{"role":"system","content":"A"},{"role":"user","content":"B"},{"role":"assistant","content":"C"}] | |
| res=tok.apply_chat_template(cha) | |
| print(tok.decode(res)) | |
| cha=[{"role":"user","content":"U1"},{"role":"assistant","content":"A1"},{"role":"user","content":"U2"},{"role":"assistant","content":"A2"}] | |
| res=tok.apply_chat_template(cha) | |
| print(tok.decode(res)) | |
| # Gradio-GUI | |
| #------------ | |
| import gradio as gr | |
| import json | |
| import re | |
| def extend_prompt(message="", history=None, system=None, RAGAddon=None, system2=None, zeichenlimit=None,historylimit=4, removeHTML=True): | |
| startOfString="" | |
| if zeichenlimit is None: zeichenlimit=1000000000 # :-) | |
| template0=" [INST]{system}\n [/INST] </s>" | |
| template1=" [INST] {message} [/INST]" | |
| template2=" {response}</s>" | |
| if("command-r" in modelPath): #https://huggingface.co/CohereForAI/c4ai-command-r-v01 | |
| ## <BOS_TOKEN><|START_OF_TURN_TOKEN|><|USER_TOKEN|>Hello, how are you?<|END_OF_TURN_TOKEN|><|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|> | |
| template0="<BOS_TOKEN><|START_OF_TURN_TOKEN|><|SYSTEM_TOKEN|> {system}<|END_OF_TURN_TOKEN|>" | |
| template1="<|START_OF_TURN_TOKEN|><|USER_TOKEN|>{message}<|END_OF_TURN_TOKEN|><|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|>" | |
| template2="{response}<|END_OF_TURN_TOKEN|>" | |
| if("Gemma-" in modelPath): # https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1 | |
| template0="<start_of_turn>user{system}</end_of_turn>" | |
| template1="<start_of_turn>user{message}</end_of_turn><start_of_turn>model" | |
| template2="{response}</end_of_turn>" | |
| if("Mixtral-8x22B-Instruct" in modelPath): # AutoTokenizer: <s>[INST] U1[/INST] A1</s>[INST] U2[/INST] A2</s> | |
| startOfString="<s>" | |
| template0="[INST]{system}\n [/INST] </s>" | |
| template1="[INST] {message}[/INST]" | |
| template2=" {response}</s>" | |
| if("Mixtral-8x7b-instruct" in modelPath): # https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1 | |
| startOfString="<s>" # AutoTokenzizer: <s> [INST] U1 [/INST]A1</s> [INST] U2 [/INST]A2</s> | |
| template0=" [INST]{system}\n [/INST] </s>" | |
| template1=" [INST] {message} [/INST]" | |
| template2=" {response}</s>" | |
| if("Mistral-7B-Instruct" in modelPath): #https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2 | |
| startOfString="<s>" | |
| template0="[INST]{system}\n [/INST]</s>" | |
| template1="[INST] {message} [/INST]" | |
| template2=" {response}</s>" | |
| if("Openchat-3.5" in modelPath): #https://huggingface.co/TheBloke/openchat-3.5-0106-GGUF | |
| template0="GPT4 Correct User: {system}<|end_of_turn|>GPT4 Correct Assistant: Okay.<|end_of_turn|>" | |
| template1="GPT4 Correct User: {message}<|end_of_turn|>GPT4 Correct Assistant: " | |
| template2="{response}<|end_of_turn|>" | |
| if(("Discolm_german_7b" in modelPath) or ("SauerkrautLM-7b-HerO" in modelPath)): #https://huggingface.co/VAGOsolutions/SauerkrautLM-7b-HerO | |
| template0="<|im_start|>system\n{system}<|im_end|>\n" | |
| template1="<|im_start|>user\n{message}<|im_end|>\n<|im_start|>assistant\n" | |
| template2="{response}<|im_end|>\n" | |
| if("Llama-3-SauerkrautLM-8b-Instruct" in modelPath): #https://huggingface.co/VAGOsolutions/SauerkrautLM-7b-HerO | |
| template0="<|begin_of_text|><|start_header_id|>system<|end_header_id|>\n\n{system}<|eot_id|>" | |
| template1="<|start_header_id|>user<|end_header_id|>\n\n{message}<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\n" | |
| template2="{response}<|eot_id|>\n" | |
| if("WizardLM-13B-V1.2" in modelPath): #https://huggingface.co/WizardLM/WizardLM-13B-V1.2 | |
| template0="{system} " #<s> | |
| template1="USER: {message} ASSISTANT: " | |
| template2="{response}</s>" | |
| if("Phi-2" in modelPath): #https://huggingface.co/TheBloke/phi-2-GGUF | |
| template0="Instruct: {system}\nOutput: Okay.\n" | |
| template1="Instruct: {message}\nOutput:" | |
| template2="{response}\n" | |
| prompt = "" | |
| if RAGAddon is not None: | |
| system += RAGAddon | |
| if system is not None: | |
| prompt += template0.format(system=system) #"<s>" | |
| if history is not None: | |
| for user_message, bot_response in history[-historylimit:]: | |
| if user_message is None: user_message = "" | |
| if bot_response is None: bot_response = "" | |
| bot_response = re.sub("\n\n<details>((.|\n)*?)</details>","", bot_response) # remove RAG-compontents | |
| if removeHTML==True: bot_response = re.sub("<(.*?)>","\n", bot_response) # remove HTML-components in general (may cause bugs with markdown-rendering) | |
| if user_message is not None: prompt += template1.format(message=user_message[:zeichenlimit]) | |
| if bot_response is not None: prompt += template2.format(response=bot_response[:zeichenlimit]) | |
| if message is not None: prompt += template1.format(message=message[:zeichenlimit]) | |
| if system2 is not None: | |
| prompt += system2 | |
| return startOfString+prompt | |
| def response( | |
| message, history, temperature=0.9, max_new_tokens=500, top_p=0.95, repetition_penalty=1.0, | |
| ): | |
| temperature = float(temperature) | |
| if temperature < 1e-2: temperature = 1e-2 | |
| top_p = float(top_p) | |
| generate_kwargs = dict( | |
| temperature=temperature, | |
| max_new_tokens=max_new_tokens, | |
| top_p=top_p, | |
| repetition_penalty=repetition_penalty, | |
| do_sample=True, | |
| seed=42, | |
| ) | |
| addon="" | |
| results=collection.query( | |
| query_texts=[message], | |
| n_results=2, | |
| #where={"source": "google-docs"} | |
| #where_document={"$contains":"search_string"} | |
| ) | |
| dists=["<br><small>(relevance: "+str(round((1-d)*100)/100)+";" for d in results['distances'][0]] | |
| sources=["source: "+s["source"]+")</small>" for s in results['metadatas'][0]] | |
| results=results['documents'][0] | |
| combination = zip(results,dists,sources) | |
| combination = [' '.join(triplets) for triplets in combination] | |
| print(combination) | |
| if(len(results)>1): | |
| addon=" Bitte berücksichtige bei deiner Antwort ggf. folgende Auszüge aus unserer Datenbank, sofern sie für die Antwort erforderlich sind. Beantworte die Frage knapp und präzise. Ignoriere unpassende Datenbank-Auszüge OHNE sie zu kommentieren, zu erwähnen oder aufzulisten:\n"+"\n".join(results) | |
| system="Du bist ein deutschsprachiges KI-basiertes Assistenzsystem, das zu jedem Anliegen möglichst geeignete KI-Tools empfiehlt." #+addon #+"\n\nUser-Anliegen:" | |
| #body={"prompt":system+"### Instruktion:\n"+message+"\n\n### Antwort:","max_tokens":500, "echo":"False","stream":"True"} #e.g. SauerkrautLM | |
| #formatted_prompt = extend_prompt(system+"\n"+prompt, None) #history) | |
| prompt=extend_prompt( | |
| message, # current message of the user | |
| history, # complete history | |
| system, # system prompt | |
| addon, # RAG-component added to the system prompt | |
| None, # fictive first words of the AI (neither displayed nor stored) | |
| historylimit=4, # number of past messages to consider for response to current message | |
| removeHTML=True # remove HTML-components from History (to prevent bugs with Markdown) | |
| ) | |
| stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False) | |
| output = "" | |
| for response in stream: | |
| output += response.token.text | |
| yield output | |
| output=output+"\n\n<br><details open><summary><strong>Sources</strong></summary><br><ul>"+ "".join(["<li>" + s + "</li>" for s in combination])+"</ul></details>" | |
| yield output | |
| gr.ChatInterface(response, chatbot=gr.Chatbot(value=[[None,"Herzlich willkommen! Ich bin ein KI-basiertes Assistenzsystem, das für jede Anfrage die am besten geeigneten KI-Tools empfiehlt.<br>Aktuell bin ich wenig mehr als eine Tech-Demo und kenne nur 7 KI-Modelle - also sei bitte nicht zu streng mit mir.<br>Was ist dein Anliegen?"]],render_markdown=True),title="German AI-RAG-Interface to the Hugging Face Hub").queue().launch(share=True) #False, server_name="0.0.0.0", server_port=7864) | |
| print("Interface up and running!") |