Spaces:
Runtime error
Runtime error
Commit
Β·
4984c7e
1
Parent(s):
4783dcc
high quality (#17)
Browse files- High quality (0f59bfafcd98b4b4a93790a81be7de43d068135f)
- Update app.py (09d2a3966a11c5d694bde9833a8a514a0e291a14)
Co-authored-by: ApolinΓ‘rio from multimodal AI art <multimodalart@users.noreply.huggingface.co>
- app.py +75 -23
- checkers_mid.jpg +0 -0
- funky.jpeg +0 -0
- ultra_checkers.png +0 -0
app.py
CHANGED
|
@@ -8,6 +8,8 @@ from diffusers import (
|
|
| 8 |
StableDiffusionControlNetPipeline,
|
| 9 |
ControlNetModel,
|
| 10 |
StableDiffusionLatentUpscalePipeline,
|
|
|
|
|
|
|
| 11 |
DPMSolverMultistepScheduler, # <-- Added import
|
| 12 |
EulerDiscreteScheduler # <-- Added import
|
| 13 |
)
|
|
@@ -18,17 +20,22 @@ from illusion_style import css
|
|
| 18 |
BASE_MODEL = "SG161222/Realistic_Vision_V5.1_noVAE"
|
| 19 |
|
| 20 |
# Initialize both pipelines
|
| 21 |
-
vae = AutoencoderKL.from_pretrained("stabilityai/sd-vae-ft-mse")
|
| 22 |
#init_pipe = DiffusionPipeline.from_pretrained("SG161222/Realistic_Vision_V5.1_noVAE", torch_dtype=torch.float16)
|
| 23 |
-
controlnet = ControlNetModel.from_pretrained("monster-labs/control_v1p_sd15_qrcode_monster")#, torch_dtype=torch.float16)
|
| 24 |
main_pipe = StableDiffusionControlNetPipeline.from_pretrained(
|
| 25 |
BASE_MODEL,
|
| 26 |
controlnet=controlnet,
|
| 27 |
vae=vae,
|
| 28 |
safety_checker=None,
|
| 29 |
-
|
| 30 |
).to("cuda")
|
|
|
|
|
|
|
|
|
|
| 31 |
#model_id = "stabilityai/sd-x2-latent-upscaler"
|
|
|
|
|
|
|
| 32 |
#upscaler = StableDiffusionLatentUpscalePipeline.from_pretrained(model_id, torch_dtype=torch.float16)
|
| 33 |
#upscaler.to("cuda")
|
| 34 |
|
|
@@ -55,6 +62,31 @@ def center_crop_resize(img, output_size=(512, 512)):
|
|
| 55 |
|
| 56 |
return img
|
| 57 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 58 |
# Inference function
|
| 59 |
def inference(
|
| 60 |
control_image: Image.Image,
|
|
@@ -62,6 +94,9 @@ def inference(
|
|
| 62 |
negative_prompt: str,
|
| 63 |
guidance_scale: float = 8.0,
|
| 64 |
controlnet_conditioning_scale: float = 1,
|
|
|
|
|
|
|
|
|
|
| 65 |
seed: int = -1,
|
| 66 |
sampler = "DPM++ Karras SDE",
|
| 67 |
progress = gr.Progress(track_tqdm=True)
|
|
@@ -73,65 +108,82 @@ def inference(
|
|
| 73 |
#init_image = init_pipe(prompt).images[0]
|
| 74 |
|
| 75 |
# Rest of your existing code
|
| 76 |
-
|
| 77 |
main_pipe.scheduler = SAMPLER_MAP[sampler](main_pipe.scheduler.config)
|
| 78 |
generator = torch.manual_seed(seed) if seed != -1 else torch.Generator()
|
| 79 |
|
| 80 |
out = main_pipe(
|
| 81 |
prompt=prompt,
|
| 82 |
negative_prompt=negative_prompt,
|
| 83 |
-
image=
|
| 84 |
-
#control_image=control_image,
|
| 85 |
guidance_scale=float(guidance_scale),
|
| 86 |
controlnet_conditioning_scale=float(controlnet_conditioning_scale),
|
| 87 |
generator=generator,
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 94 |
|
| 95 |
with gr.Blocks(css=css) as app:
|
| 96 |
gr.Markdown(
|
| 97 |
'''
|
| 98 |
-
<center><h1>Illusion Diffusion π</h1></span>
|
| 99 |
-
<span font-size:16px;">Generate stunning illusion artwork with Stable Diffusion</span>
|
| 100 |
</center>
|
| 101 |
|
| 102 |
A space by AP [Follow me on Twitter](https://twitter.com/angrypenguinPNG)
|
| 103 |
|
| 104 |
This project works by using [Monster Labs QR Control Net](https://huggingface.co/monster-labs/control_v1p_sd15_qrcode_monster).
|
| 105 |
-
Given a prompt and your pattern, we use a QR code conditioned controlnet to create a stunning illusion! Credit to: MrUgleh
|
| 106 |
-
|
| 107 |
'''
|
| 108 |
)
|
| 109 |
|
| 110 |
with gr.Row():
|
| 111 |
with gr.Column():
|
| 112 |
control_image = gr.Image(label="Input Illusion", type="pil", elem_id="control_image")
|
| 113 |
-
controlnet_conditioning_scale = gr.Slider(minimum=0.0, maximum=5.0, step=0.01, value=0.8, label="Illusion strength", info="ControlNet conditioning scale"
|
| 114 |
-
gr.Examples(examples=["checkers.png", "pattern.png", "spiral.jpeg"], inputs=control_image)
|
| 115 |
prompt = gr.Textbox(label="Prompt", elem_id="prompt")
|
| 116 |
negative_prompt = gr.Textbox(label="Negative Prompt", value="low quality", elem_id="negative_prompt")
|
| 117 |
with gr.Accordion(label="Advanced Options", open=False):
|
| 118 |
-
#strength = gr.Slider(minimum=0.0, maximum=1.0, step=0.01, value=0.9, label="Strength")
|
| 119 |
guidance_scale = gr.Slider(minimum=0.0, maximum=50.0, step=0.25, value=7.5, label="Guidance Scale")
|
| 120 |
sampler = gr.Dropdown(choices=list(SAMPLER_MAP.keys()), value="Euler")
|
| 121 |
-
|
|
|
|
|
|
|
|
|
|
| 122 |
run_btn = gr.Button("Run")
|
| 123 |
with gr.Column():
|
| 124 |
-
result_image = gr.Image(label="Illusion Diffusion Output", elem_id="output")
|
| 125 |
with gr.Group(elem_id="share-btn-container", visible=False) as share_group:
|
| 126 |
community_icon = gr.HTML(community_icon_html)
|
| 127 |
loading_icon = gr.HTML(loading_icon_html)
|
| 128 |
share_button = gr.Button("Share to community", elem_id="share-btn")
|
| 129 |
|
| 130 |
history = show_gallery_history()
|
| 131 |
-
|
| 132 |
run_btn.click(
|
| 133 |
inference,
|
| 134 |
-
inputs=[control_image, prompt, negative_prompt, guidance_scale, controlnet_conditioning_scale, seed, sampler],
|
| 135 |
outputs=[result_image, share_group]
|
| 136 |
).then(
|
| 137 |
fn=fetch_gallery_history, inputs=[prompt, result_image], outputs=history, queue=False
|
|
|
|
| 8 |
StableDiffusionControlNetPipeline,
|
| 9 |
ControlNetModel,
|
| 10 |
StableDiffusionLatentUpscalePipeline,
|
| 11 |
+
StableDiffusionImg2ImgPipeline,
|
| 12 |
+
StableDiffusionControlNetImg2ImgPipeline,
|
| 13 |
DPMSolverMultistepScheduler, # <-- Added import
|
| 14 |
EulerDiscreteScheduler # <-- Added import
|
| 15 |
)
|
|
|
|
| 20 |
BASE_MODEL = "SG161222/Realistic_Vision_V5.1_noVAE"
|
| 21 |
|
| 22 |
# Initialize both pipelines
|
| 23 |
+
vae = AutoencoderKL.from_pretrained("stabilityai/sd-vae-ft-mse", torch_dtype=torch.float16)
|
| 24 |
#init_pipe = DiffusionPipeline.from_pretrained("SG161222/Realistic_Vision_V5.1_noVAE", torch_dtype=torch.float16)
|
| 25 |
+
controlnet = ControlNetModel.from_pretrained("monster-labs/control_v1p_sd15_qrcode_monster", torch_dtype=torch.float16)#, torch_dtype=torch.float16)
|
| 26 |
main_pipe = StableDiffusionControlNetPipeline.from_pretrained(
|
| 27 |
BASE_MODEL,
|
| 28 |
controlnet=controlnet,
|
| 29 |
vae=vae,
|
| 30 |
safety_checker=None,
|
| 31 |
+
torch_dtype=torch.float16,
|
| 32 |
).to("cuda")
|
| 33 |
+
#main_pipe.unet = torch.compile(main_pipe.unet, mode="reduce-overhead", fullgraph=True)
|
| 34 |
+
#main_pipe.unet.to(memory_format=torch.channels_last)
|
| 35 |
+
#main_pipe.unet = torch.compile(main_pipe.unet, mode="reduce-overhead", fullgraph=True)
|
| 36 |
#model_id = "stabilityai/sd-x2-latent-upscaler"
|
| 37 |
+
image_pipe = StableDiffusionControlNetImg2ImgPipeline.from_pretrained(BASE_MODEL, unet=main_pipe.unet, vae=vae, controlnet=controlnet, safety_checker=None, torch_dtype=torch.float16).to("cuda")
|
| 38 |
+
#image_pipe.unet = torch.compile(image_pipe.unet, mode="reduce-overhead", fullgraph=True)
|
| 39 |
#upscaler = StableDiffusionLatentUpscalePipeline.from_pretrained(model_id, torch_dtype=torch.float16)
|
| 40 |
#upscaler.to("cuda")
|
| 41 |
|
|
|
|
| 62 |
|
| 63 |
return img
|
| 64 |
|
| 65 |
+
def common_upscale(samples, width, height, upscale_method, crop=False):
|
| 66 |
+
if crop == "center":
|
| 67 |
+
old_width = samples.shape[3]
|
| 68 |
+
old_height = samples.shape[2]
|
| 69 |
+
old_aspect = old_width / old_height
|
| 70 |
+
new_aspect = width / height
|
| 71 |
+
x = 0
|
| 72 |
+
y = 0
|
| 73 |
+
if old_aspect > new_aspect:
|
| 74 |
+
x = round((old_width - old_width * (new_aspect / old_aspect)) / 2)
|
| 75 |
+
elif old_aspect < new_aspect:
|
| 76 |
+
y = round((old_height - old_height * (old_aspect / new_aspect)) / 2)
|
| 77 |
+
s = samples[:,:,y:old_height-y,x:old_width-x]
|
| 78 |
+
else:
|
| 79 |
+
s = samples
|
| 80 |
+
|
| 81 |
+
return torch.nn.functional.interpolate(s, size=(height, width), mode=upscale_method)
|
| 82 |
+
|
| 83 |
+
def upscale(samples, upscale_method, scale_by):
|
| 84 |
+
#s = samples.copy()
|
| 85 |
+
width = round(samples["images"].shape[3] * scale_by)
|
| 86 |
+
height = round(samples["images"].shape[2] * scale_by)
|
| 87 |
+
s = common_upscale(samples["images"], width, height, upscale_method, "disabled")
|
| 88 |
+
return (s)
|
| 89 |
+
|
| 90 |
# Inference function
|
| 91 |
def inference(
|
| 92 |
control_image: Image.Image,
|
|
|
|
| 94 |
negative_prompt: str,
|
| 95 |
guidance_scale: float = 8.0,
|
| 96 |
controlnet_conditioning_scale: float = 1,
|
| 97 |
+
control_guidance_start: float = 1,
|
| 98 |
+
control_guidance_end: float = 1,
|
| 99 |
+
upscaler_strength: float = 0.5,
|
| 100 |
seed: int = -1,
|
| 101 |
sampler = "DPM++ Karras SDE",
|
| 102 |
progress = gr.Progress(track_tqdm=True)
|
|
|
|
| 108 |
#init_image = init_pipe(prompt).images[0]
|
| 109 |
|
| 110 |
# Rest of your existing code
|
| 111 |
+
control_image_small = center_crop_resize(control_image)
|
| 112 |
main_pipe.scheduler = SAMPLER_MAP[sampler](main_pipe.scheduler.config)
|
| 113 |
generator = torch.manual_seed(seed) if seed != -1 else torch.Generator()
|
| 114 |
|
| 115 |
out = main_pipe(
|
| 116 |
prompt=prompt,
|
| 117 |
negative_prompt=negative_prompt,
|
| 118 |
+
image=control_image_small,
|
|
|
|
| 119 |
guidance_scale=float(guidance_scale),
|
| 120 |
controlnet_conditioning_scale=float(controlnet_conditioning_scale),
|
| 121 |
generator=generator,
|
| 122 |
+
control_guidance_start=float(control_guidance_start),
|
| 123 |
+
control_guidance_end=float(control_guidance_end),
|
| 124 |
+
num_inference_steps=15,
|
| 125 |
+
output_type="latent"
|
| 126 |
+
)
|
| 127 |
+
control_image_large = center_crop_resize(control_image, (1024, 1024))
|
| 128 |
+
upscaled_latents = upscale(out, "nearest-exact", 2)
|
| 129 |
+
out_image = image_pipe(
|
| 130 |
+
prompt=prompt,
|
| 131 |
+
negative_prompt=negative_prompt,
|
| 132 |
+
control_image=control_image_large,
|
| 133 |
+
image=upscaled_latents,
|
| 134 |
+
guidance_scale=float(guidance_scale),
|
| 135 |
+
generator=generator,
|
| 136 |
+
num_inference_steps=20,
|
| 137 |
+
strength=upscaler_strength,
|
| 138 |
+
control_guidance_start=float(control_guidance_start),
|
| 139 |
+
control_guidance_end=float(control_guidance_end),
|
| 140 |
+
controlnet_conditioning_scale=float(controlnet_conditioning_scale)
|
| 141 |
+
)
|
| 142 |
+
return out_image["images"][0], gr.update(visible=True)
|
| 143 |
+
|
| 144 |
+
#return out
|
| 145 |
|
| 146 |
with gr.Blocks(css=css) as app:
|
| 147 |
gr.Markdown(
|
| 148 |
'''
|
| 149 |
+
<center><h1>Illusion Diffusion HQ π</h1></span>
|
| 150 |
+
<span font-size:16px;">Generate stunning high quality illusion artwork with Stable Diffusion</span>
|
| 151 |
</center>
|
| 152 |
|
| 153 |
A space by AP [Follow me on Twitter](https://twitter.com/angrypenguinPNG)
|
| 154 |
|
| 155 |
This project works by using [Monster Labs QR Control Net](https://huggingface.co/monster-labs/control_v1p_sd15_qrcode_monster).
|
| 156 |
+
Given a prompt and your pattern, we use a QR code conditioned controlnet to create a stunning illusion! Credit to: [MrUgleh](https://twitter.com/MrUgleh) for discovering the workflow :)
|
|
|
|
| 157 |
'''
|
| 158 |
)
|
| 159 |
|
| 160 |
with gr.Row():
|
| 161 |
with gr.Column():
|
| 162 |
control_image = gr.Image(label="Input Illusion", type="pil", elem_id="control_image")
|
| 163 |
+
controlnet_conditioning_scale = gr.Slider(minimum=0.0, maximum=5.0, step=0.01, value=0.8, label="Illusion strength", elem_id="illusion_strength", info="ControlNet conditioning scale")
|
| 164 |
+
gr.Examples(examples=["checkers.png", "checkers_mid.jpg", "pattern.png", "ultra_checkers.png", "spiral.jpeg", "funky.jpeg" ], inputs=control_image)
|
| 165 |
prompt = gr.Textbox(label="Prompt", elem_id="prompt")
|
| 166 |
negative_prompt = gr.Textbox(label="Negative Prompt", value="low quality", elem_id="negative_prompt")
|
| 167 |
with gr.Accordion(label="Advanced Options", open=False):
|
|
|
|
| 168 |
guidance_scale = gr.Slider(minimum=0.0, maximum=50.0, step=0.25, value=7.5, label="Guidance Scale")
|
| 169 |
sampler = gr.Dropdown(choices=list(SAMPLER_MAP.keys()), value="Euler")
|
| 170 |
+
control_start = gr.Slider(minimum=0.0, maximum=1.0, step=0.1, value=0, label="Start of ControlNet")
|
| 171 |
+
control_end = gr.Slider(minimum=0.0, maximum=1.0, step=0.1, value=1, label="End of ControlNet")
|
| 172 |
+
strength = gr.Slider(minimum=0.0, maximum=1.0, step=0.1, value=1, label="Strength of the upscaler")
|
| 173 |
+
seed = gr.Slider(minimum=-1, maximum=9999999999, step=1, value=-1, label="Seed", info="-1 means random seed", randomize=True)
|
| 174 |
run_btn = gr.Button("Run")
|
| 175 |
with gr.Column():
|
| 176 |
+
result_image = gr.Image(label="Illusion Diffusion Output", interactive=False, elem_id="output")
|
| 177 |
with gr.Group(elem_id="share-btn-container", visible=False) as share_group:
|
| 178 |
community_icon = gr.HTML(community_icon_html)
|
| 179 |
loading_icon = gr.HTML(loading_icon_html)
|
| 180 |
share_button = gr.Button("Share to community", elem_id="share-btn")
|
| 181 |
|
| 182 |
history = show_gallery_history()
|
| 183 |
+
|
| 184 |
run_btn.click(
|
| 185 |
inference,
|
| 186 |
+
inputs=[control_image, prompt, negative_prompt, guidance_scale, controlnet_conditioning_scale, control_start, control_end, strength, seed, sampler],
|
| 187 |
outputs=[result_image, share_group]
|
| 188 |
).then(
|
| 189 |
fn=fetch_gallery_history, inputs=[prompt, result_image], outputs=history, queue=False
|
checkers_mid.jpg
ADDED
|
funky.jpeg
ADDED
|
ultra_checkers.png
ADDED
|