Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -3,35 +3,28 @@ import os
|
|
| 3 |
import gradio as gr
|
| 4 |
from PIL import Image
|
| 5 |
from diffusers import (
|
| 6 |
-
|
| 7 |
StableDiffusionControlNetImg2ImgPipeline,
|
| 8 |
ControlNetModel,
|
| 9 |
-
DDIMScheduler,
|
| 10 |
-
DPMSolverMultistepScheduler,
|
| 11 |
-
DEISMultistepScheduler,
|
| 12 |
-
HeunDiscreteScheduler,
|
| 13 |
-
EulerDiscreteScheduler,
|
| 14 |
)
|
| 15 |
|
| 16 |
-
#
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
# Load the pipeline in float16 precision
|
| 22 |
-
pipe = StableDiffusionControlNetImg2ImgPipeline.from_pretrained(
|
| 23 |
"SG161222/Realistic_Vision_V2.0",
|
| 24 |
controlnet=controlnet,
|
| 25 |
safety_checker=None,
|
| 26 |
torch_dtype=torch.float16,
|
| 27 |
).to("cuda")
|
| 28 |
-
pipe.enable_xformers_memory_efficient_attention()
|
| 29 |
|
|
|
|
| 30 |
SAMPLER_MAP = {
|
| 31 |
"DPM++ Karras SDE": lambda config: DPMSolverMultistepScheduler.from_config(config, use_karras=True, algorithm_type="sde-dpmsolver++"),
|
| 32 |
"Euler": lambda config: EulerDiscreteScheduler.from_config(config),
|
| 33 |
}
|
| 34 |
|
|
|
|
| 35 |
def inference(
|
| 36 |
control_image: Image.Image,
|
| 37 |
prompt: str,
|
|
@@ -45,16 +38,15 @@ def inference(
|
|
| 45 |
if prompt is None or prompt == "":
|
| 46 |
raise gr.Error("Prompt is required")
|
| 47 |
|
| 48 |
-
# Generate
|
| 49 |
-
init_image =
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
control_image = control_image.resize((512, 512))
|
| 54 |
-
|
| 55 |
generator = torch.manual_seed(seed) if seed != -1 else torch.Generator()
|
| 56 |
-
|
| 57 |
-
out =
|
| 58 |
prompt=prompt,
|
| 59 |
negative_prompt=negative_prompt,
|
| 60 |
image=init_image,
|
|
|
|
| 3 |
import gradio as gr
|
| 4 |
from PIL import Image
|
| 5 |
from diffusers import (
|
| 6 |
+
DiffusionPipeline,
|
| 7 |
StableDiffusionControlNetImg2ImgPipeline,
|
| 8 |
ControlNetModel,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 9 |
)
|
| 10 |
|
| 11 |
+
# Initialize both pipelines
|
| 12 |
+
init_pipe = DiffusionPipeline.from_pretrained("SG161222/Realistic_Vision_V2.0", torch_dtype=torch.float16).to("cuda")
|
| 13 |
+
controlnet = ControlNetModel.from_pretrained("monster-labs/control_v1p_sd15_qrcode_monster", torch_dtype=torch.float16)
|
| 14 |
+
main_pipe = StableDiffusionControlNetImg2ImgPipeline.from_pretrained(
|
|
|
|
|
|
|
|
|
|
| 15 |
"SG161222/Realistic_Vision_V2.0",
|
| 16 |
controlnet=controlnet,
|
| 17 |
safety_checker=None,
|
| 18 |
torch_dtype=torch.float16,
|
| 19 |
).to("cuda")
|
|
|
|
| 20 |
|
| 21 |
+
# Sampler map
|
| 22 |
SAMPLER_MAP = {
|
| 23 |
"DPM++ Karras SDE": lambda config: DPMSolverMultistepScheduler.from_config(config, use_karras=True, algorithm_type="sde-dpmsolver++"),
|
| 24 |
"Euler": lambda config: EulerDiscreteScheduler.from_config(config),
|
| 25 |
}
|
| 26 |
|
| 27 |
+
# Inference function
|
| 28 |
def inference(
|
| 29 |
control_image: Image.Image,
|
| 30 |
prompt: str,
|
|
|
|
| 38 |
if prompt is None or prompt == "":
|
| 39 |
raise gr.Error("Prompt is required")
|
| 40 |
|
| 41 |
+
# Generate the initial image
|
| 42 |
+
init_image = init_pipe(prompt).images[0]
|
| 43 |
+
|
| 44 |
+
# Rest of your existing code
|
|
|
|
| 45 |
control_image = control_image.resize((512, 512))
|
| 46 |
+
main_pipe.scheduler = SAMPLER_MAP[sampler](main_pipe.scheduler.config)
|
| 47 |
generator = torch.manual_seed(seed) if seed != -1 else torch.Generator()
|
| 48 |
+
|
| 49 |
+
out = main_pipe(
|
| 50 |
prompt=prompt,
|
| 51 |
negative_prompt=negative_prompt,
|
| 52 |
image=init_image,
|