Spaces:
Sleeping
Sleeping
| # from yaml import load | |
| from persist import persist, load_widget_state | |
| import streamlit as st | |
| from io import StringIO | |
| import tempfile | |
| from pathlib import Path | |
| import requests | |
| from huggingface_hub import hf_hub_download, upload_file | |
| import pandas as pd | |
| from huggingface_hub import create_repo | |
| import os | |
| from datetime import date | |
| from middleMan import parse_into_jinja_markdown as pj | |
| import requests | |
| def get_icd(): | |
| # Get ICD10 list | |
| token_endpoint = 'https://icdaccessmanagement.who.int/connect/token' | |
| client_id = '3bc9c811-7f2e-4dab-a2dc-940e47a38fef_a6108252-4503-4ff7-90ab-300fd27392aa' | |
| client_secret = 'xPj7mleWf1Bilu9f7P10UQmBPvL5F6Wgd8/rJhO1T04=' | |
| scope = 'icdapi_access' | |
| grant_type = 'client_credentials' | |
| # set data to post | |
| payload = {'client_id': client_id, | |
| 'client_secret': client_secret, | |
| 'scope': scope, | |
| 'grant_type': grant_type} | |
| # make request | |
| r = requests.post(token_endpoint, data=payload, verify=False).json() | |
| token = r['access_token'] | |
| # access ICD API | |
| uri = 'https://id.who.int/icd/release/10/2019/C00-C75' | |
| # HTTP header fields to set | |
| headers = {'Authorization': 'Bearer '+token, | |
| 'Accept': 'application/json', | |
| 'Accept-Language': 'en', | |
| 'API-Version': 'v2'} | |
| # make request | |
| r = requests.get(uri, headers=headers, verify=False) | |
| print("icd",r.json()) | |
| icd_map =[] | |
| for child in r.json()['child']: | |
| r_child = requests.get(child, headers=headers,verify=False).json() | |
| icd_map.append(r_child["code"]+" "+r_child["title"]["@value"]) | |
| return icd_map | |
| def get_treatment_mod(): | |
| url = "https://clinicaltables.nlm.nih.gov/loinc_answers?loinc_num=21964-2" | |
| r = requests.get(url).json() | |
| treatment_mod = [treatment['DisplayText'] for treatment in r] | |
| return treatment_mod | |
| def get_cached_data(): | |
| languages_df = pd.read_html("https://hf.co/languages")[0] | |
| languages_map = pd.Series(languages_df["Language"].values, index=languages_df["ISO code"]).to_dict() | |
| license_df = pd.read_html("https://huggingface.co/docs/hub/repositories-licenses")[0] | |
| license_map = pd.Series( | |
| license_df["License identifier (to use in repo card)"].values, index=license_df.Fullname | |
| ).to_dict() | |
| available_metrics = [x['id'] for x in requests.get('https://huggingface.co/api/metrics').json()] | |
| r = requests.get('https://huggingface.co/api/models-tags-by-type') | |
| tags_data = r.json() | |
| libraries = [x['id'] for x in tags_data['library']] | |
| tasks = [x['id'] for x in tags_data['pipeline_tag']] | |
| icd_map = get_icd() | |
| treatment_mod = get_treatment_mod() | |
| return languages_map, license_map, available_metrics, libraries, tasks, icd_map, treatment_mod | |
| def card_upload(card_info,repo_id,token): | |
| #commit_message=None, | |
| repo_type = "model" | |
| commit_description=None, | |
| revision=None | |
| create_pr=None | |
| with tempfile.TemporaryDirectory() as tmpdir: | |
| tmp_path = Path(tmpdir) / "README.md" | |
| tmp_path.write_text(str(card_info)) | |
| url = upload_file( | |
| path_or_fileobj=str(tmp_path), | |
| path_in_repo="README.md", | |
| repo_id=repo_id, | |
| token=token, | |
| repo_type=repo_type, | |
| # identical_ok=True, | |
| revision=revision | |
| ) | |
| return url | |
| def images_upload(images_list,repo_id,token): | |
| repo_type = "model" | |
| commit_description=None, | |
| revision=None | |
| create_pr=None | |
| for img in images_list: | |
| if img is not None: | |
| with tempfile.TemporaryDirectory() as tmpdir: | |
| tmp_path = Path(tmpdir) / "README.md" | |
| tmp_path.write_text(str(img)) | |
| url = upload_file( | |
| path_or_fileobj=str(tmp_path), | |
| path_in_repo="README.md", | |
| repo_id=repo_id, | |
| token=token, | |
| repo_type=repo_type, | |
| # identical_ok=True, | |
| revision=revision | |
| ) | |
| return url | |
| def validate(self, repo_type="model"): | |
| """Validates card against Hugging Face Hub's model card validation logic. | |
| Using this function requires access to the internet, so it is only called | |
| internally by `modelcards.ModelCard.push_to_hub`. | |
| Args: | |
| repo_type (`str`, *optional*): | |
| The type of Hugging Face repo to push to. Defaults to None, which will use | |
| use "model". Other options are "dataset" and "space". | |
| """ | |
| if repo_type is None: | |
| repo_type = "model" | |
| # TODO - compare against repo types constant in huggingface_hub if we move this object there. | |
| if repo_type not in ["model", "space", "dataset"]: | |
| raise RuntimeError( | |
| "Provided repo_type '{repo_type}' should be one of ['model', 'space'," | |
| " 'dataset']." | |
| ) | |
| body = { | |
| "repoType": repo_type, | |
| "content": str(self), | |
| } | |
| headers = {"Accept": "text/plain"} | |
| try: | |
| r = requests.post( | |
| "https://huggingface.co/api/validate-yaml", body, headers=headers | |
| ) | |
| r.raise_for_status() | |
| except requests.exceptions.HTTPError as exc: | |
| if r.status_code == 400: | |
| raise RuntimeError(r.text) | |
| else: | |
| raise exc | |
| ## Save uploaded [markdown] file to directory to be used by jinja parser function | |
| def save_uploadedfile(uploadedfile): | |
| with open(uploadedfile.name,"wb") as f: | |
| f.write(uploadedfile.getbuffer()) | |
| st.success("Saved File:{} to temp_uploaded_filed_Dir".format(uploadedfile.name)) | |
| return uploadedfile.name | |
| def main_page(): | |
| today=date.today() | |
| if "model_name" not in st.session_state: | |
| # Initialize session state. | |
| st.session_state.update({ | |
| # Model Basic Information | |
| "model_version": 0, | |
| "icd10": [], | |
| "treatment_modality": [], | |
| "prescription_levels": [], | |
| "additional_information": "", | |
| "motivation": "", | |
| "model_class":"", | |
| "creation_date": today, | |
| "architecture": "", | |
| "model_developers": "", | |
| "funded_by":"", | |
| "shared_by":"", | |
| "license": "", | |
| "finetuned_from": "", | |
| "research_paper": "", | |
| "git_repo": "", | |
| # Technical Specifications | |
| "nb_parameters": 5, | |
| "input_channels": [], | |
| "loss_function": "", | |
| "batch_size": 1, | |
| "patch_dimension": [], | |
| "architecture_filename":None, | |
| "libraries":[], | |
| "hardware": "", | |
| "inference_time": 10, | |
| "get_started_code": "", | |
| # Training Details | |
| "training_set_size":10, | |
| "validation_set_size":10, | |
| "age_fig_filename":"", | |
| "sex_fig_filename":"", | |
| "dataset_source": "", | |
| "acquisition_from": today, | |
| "acquisition_to": today, | |
| "markdown_upload": "" | |
| }) | |
| ## getting cache for each warnings | |
| languages_map, license_map, available_metrics, libraries, tasks, icd_map, treatment_mod = get_cached_data() | |
| ## form UI setting | |
| st.header("Model basic information (Dose prediction)") | |
| warning_placeholder = st.empty() | |
| st.text_input("Model Name", key=persist("model_name")) | |
| st.number_input("Version",key=persist("model_version"),step=0.1) | |
| st.text("Intended use:") | |
| left, right = st.columns([4,2]) | |
| left.multiselect("Treatment site ICD10",list(icd_map), help="Reference ICD10 WHO: https://icd.who.int/icdapi",key=persist("icd10")) | |
| right.multiselect("Treatment modality", list(treatment_mod), help="Reference LOINC Modality Radiation treatment: https://loinc.org/21964-2", key=persist("treatment_modality")) | |
| left, right = st.columns(2) | |
| nlines = int(left.number_input("Number of prescription levels", 0, 20, 1)) | |
| # cols = st.columns(ncol) | |
| for i in range(nlines): | |
| right.number_input(f"Prescription [Gy] # {i}", key=i) | |
| st.text_area("Additional information", placeholder = "Bilateral cases only", help="E.g. Bilateral cases only", key=persist('additional_information')) | |
| st.text_area("Motivation for development", key=persist('motivation')) | |
| st.text_area("Class", placeholder="RULE 11, FROM MDCG 2021-24", key=persist('model_class')) | |
| st.date_input("Creation date", key=persist('creation_date')) | |
| st.text_area("Type of architecture",value="UNet", key=persist('architecture')) | |
| st.text("Developed by:") | |
| left, middle, right = st.columns(3) | |
| left.text_input("Name", key=persist('dev_name')) | |
| middle.text_input("Institution", placeholder = "University/clinic/company", key=persist('dev_institution')) | |
| right.text_input("Email", key=persist('dev_email')) | |
| st.text_area("Funded by", key=persist('funded_by')) | |
| st.text_area("Shared by", key=persist('shared_by')) | |
| st.selectbox("License", [""] + list(license_map.values()), help="The license associated with this model.", key=persist("license")) | |
| st.text_area("Fine tuned from model", key=persist('finetuned_from')) | |
| st.text_area("Related Research Paper", help="Research paper related to this model.", key=persist("research_paper")) | |
| st.text_input("Related GitHub Repository", help="Link to a GitHub repository used in the development of this model", key=persist("git_repo")) | |
| # st.selectbox("Library Name", [""] + libraries, help="The name of the library this model came from (Ex. pytorch, timm, spacy, keras, etc.). This is usually automatically detected in model repos, so it is not required.", key=persist('library_name')) | |
| # st.text_input("Parent Model (URL)", help="If this model has another model as its base, please provide the URL link to the parent model", key=persist("Parent_Model_name")) | |
| # st.text_input("Datasets (comma separated)", help="The dataset(s) used to train this model. Use dataset id from https://hf.co/datasets.", key=persist("datasets")) | |
| # st.multiselect("Metrics", available_metrics, help="Metrics used in the training/evaluation of this model. Use metric id from https://hf.co/metrics.", key=persist("metrics")) | |
| # st.selectbox("Task", [""] + tasks, help="What task does this model aim to solve?", key=persist('task')) | |
| # st.text_input("Tags (comma separated)", help="Additional tags to add which will be filterable on https://hf.co/models. (Ex. image-classification, vision, resnet)", key=persist("tags")) | |
| # st.text_input("Author(s) (comma separated)", help="The authors who developed this model. If you trained this model, the author is you.", key=persist("the_authors")) | |
| # s | |
| # st.text_input("Carbon Emitted:", help="You can estimate carbon emissions using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700)", key=persist("Model_c02_emitted")) | |
| # st.header("Technical specifications") | |
| # st.header("Training data, methodology, and results") | |
| # st.header("Evaluation data, methodology, and results / commissioning") | |
| # st.header("Ethical use considerations") | |
| # warnings setting | |
| # languages=st.session_state.languages or None | |
| license=st.session_state.license or None | |
| task = None #st.session_state.task or None | |
| markdown_upload = st.session_state.markdown_upload | |
| #uploaded_model_card = st.session_state.uploaded_model | |
| # Handle any warnings... | |
| do_warn = False | |
| warning_msg = "Warning: The following fields are required but have not been filled in: " | |
| if not license: | |
| warning_msg += "\n- License" | |
| do_warn = True | |
| if do_warn: | |
| warning_placeholder.error(warning_msg) | |
| with st.sidebar: | |
| ###################################################### | |
| ### Uploading a model card from local drive | |
| ###################################################### | |
| st.markdown("## Upload Model Card") | |
| st.markdown("#### Model Card must be in markdown (.md) format.") | |
| # Read a single file | |
| uploaded_file = st.file_uploader("Choose a file", type = ['md'], help = 'Please choose a markdown (.md) file type to upload') | |
| if uploaded_file is not None: | |
| name_of_uploaded_file = save_uploadedfile(uploaded_file) | |
| st.session_state.markdown_upload = name_of_uploaded_file ## uploaded model card | |
| # elif st.session_state.task =='fill-mask' or 'translation' or 'token-classification' or ' sentence-similarity' or 'summarization' or 'question-answering' or 'text2text-generation' or 'text-classification' or 'text-generation' or 'conversational': | |
| # print("YO",st.session_state.task) | |
| # st.session_state.markdown_upload = "language_model_template1.md" ## language model template | |
| else:#if st.session_state.task: | |
| st.session_state.markdown_upload = "current_card.md" ## default non language model template | |
| print("st.session_state.markdown_upload",st.session_state.markdown_upload) | |
| ######################################### | |
| ### Uploading model card to HUB | |
| ######################################### | |
| out_markdown =open( st.session_state.markdown_upload, "r+" | |
| ).read() | |
| print_out_final = f"{out_markdown}" | |
| st.markdown("## Export Loaded Model Card to Hub") | |
| with st.form("Upload to π€ Hub"): | |
| st.markdown("Use a token with write access from [here](https://hf.co/settings/tokens)") | |
| token = st.text_input("Token", type='password') | |
| repo_id = st.text_input("Repo ID") | |
| submit = st.form_submit_button('Upload to π€ Hub', help='The current model card will be uploaded to a branch in the supplied repo ') | |
| if submit: | |
| if len(repo_id.split('/')) == 2: | |
| repo_url = create_repo(repo_id, exist_ok=True, token=token) | |
| new_url = card_upload(pj(),repo_id, token=token) | |
| # images_upload([st.session_state['architecture_filename'], st.session_state["age_fig_filename"], st.session_state["sex_fig_filename"]],repo_id, token=token) | |
| st.success(f"Pushed the card to the repo [here]({new_url})!") # note: was repo_url | |
| else: | |
| st.error("Repo ID invalid. It should be username/repo-name. For example: nateraw/food") | |
| ######################################### | |
| ### Download model card | |
| ######################################### | |
| st.markdown("## Download current Model Card") | |
| if st.session_state.model_name is None or st.session_state.model_name== ' ': | |
| downloaded_file_name = 'current_model_card.md' | |
| else: | |
| downloaded_file_name = st.session_state.model_name+'_'+'model_card.md' | |
| download_status = st.download_button(label = 'Download Model Card', data = pj(), file_name = downloaded_file_name, help = "The current model card will be downloaded as a markdown (.md) file") | |
| if download_status == True: | |
| st.success("Your current model card, successfully downloaded π€") | |
| def page_switcher(page): | |
| st.session_state.runpage = page | |
| def main(): | |
| st.header("About Model Cards") | |
| st.markdown(Path('about.md').read_text(), unsafe_allow_html=True) | |
| btn = st.button('Create a Model Card π',on_click=page_switcher,args=(main_page,)) | |
| if btn: | |
| st.experimental_rerun() # rerun is needed to clear the page | |
| if __name__ == '__main__': | |
| load_widget_state() | |
| if 'runpage' not in st.session_state : | |
| st.session_state.runpage = main | |
| st.session_state.runpage() | |