Spaces:
Sleeping
Sleeping
| import streamlit as st | |
| import pandas as pd | |
| from persist import persist, load_widget_state | |
| import numpy as np | |
| import matplotlib.pyplot as plt | |
| global variable_output | |
| def main(): | |
| cs_body() | |
| def convert_csv(): | |
| d = {'col1': [], 'col2': []} | |
| df = pd.DataFrame(data=d, columns=['Age', 'Sex']) | |
| return df.to_csv().encode("utf-8") | |
| def cs_body(): | |
| st.header('Training Data and Methodology') | |
| st.write("Provide an overview of the Training Data and Training Procedure for this model") | |
| st.markdown('##### Training dataset') | |
| left, right = st.columns(2) | |
| left.number_input("Training set size",value=100) | |
| right.number_input("Validation set size",value=20) | |
| st.text("Demographical and clinical characteristics") | |
| left, right = st.columns(2)#, vertical_alignment ="center") | |
| left.download_button("Download Template", data=convert_csv(), file_name='file.csv') | |
| demo = right.file_uploader("Load template",type=['csv']) | |
| if demo is not None: | |
| left, right = st.columns(2)#, vertical_alignment ="center") | |
| fig, ax = plt.subplots() | |
| ax.set_title("Age distribution") | |
| ax.hist(np.random.normal(loc=40,scale=4.0,size=500)) | |
| age = left.pyplot(fig) | |
| fig, ax = plt.subplots() | |
| ax.pie([45,55],labels=["Men","Women"]) | |
| right.pyplot(fig) | |
| st.text_input("Source",placeholder="Brats challenge/ Clinic ...") | |
| st.text("Acquisition date") | |
| left, right = st.columns(2) | |
| left.date_input("From") | |
| right.date_input("To") | |
| if __name__ == '__main__': | |
| load_widget_state() | |
| main() |