Spaces:
Running
Running
merging dfs
Browse files
app.py
CHANGED
|
@@ -3,13 +3,15 @@ import pandas as pd
|
|
| 3 |
from huggingface_hub import list_models
|
| 4 |
import plotly.express as px
|
| 5 |
|
| 6 |
-
def get_plots(
|
| 7 |
#TO DO : hover text with energy efficiency number, parameters
|
| 8 |
-
task_df= pd.read_csv(
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
|
|
|
|
|
|
| 13 |
#fig.update_traces(mode="markers+lines", hovertemplate=None)
|
| 14 |
fig.update_layout(hovermode="y")
|
| 15 |
return fig
|
|
@@ -20,10 +22,6 @@ def get_model_names(task_data):
|
|
| 20 |
model_names = task_df[['model']]
|
| 21 |
return model_names
|
| 22 |
|
| 23 |
-
def get_params(param_data):
|
| 24 |
-
param_df= pd.read_csv(param_data)
|
| 25 |
-
model_params = {}
|
| 26 |
-
|
| 27 |
|
| 28 |
demo = gr.Blocks()
|
| 29 |
|
|
@@ -37,36 +35,36 @@ with demo:
|
|
| 37 |
with gr.TabItem("Text Generation 💬"):
|
| 38 |
with gr.Row():
|
| 39 |
with gr.Column():
|
| 40 |
-
plot = gr.Plot(get_plots('
|
| 41 |
with gr.Column():
|
| 42 |
-
table = gr.Dataframe(get_model_names('
|
| 43 |
|
| 44 |
with gr.TabItem("Image Generation 📷"):
|
| 45 |
with gr.Row():
|
| 46 |
with gr.Column():
|
| 47 |
-
plot = gr.Plot(get_plots('
|
| 48 |
with gr.Column():
|
| 49 |
-
table = gr.Dataframe(get_model_names('
|
| 50 |
|
| 51 |
with gr.TabItem("Text Classification 🎭"):
|
| 52 |
with gr.Row():
|
| 53 |
with gr.Column():
|
| 54 |
-
plot = gr.Plot(get_plots('
|
| 55 |
with gr.Column():
|
| 56 |
-
table = gr.Dataframe(get_model_names('
|
| 57 |
|
| 58 |
with gr.TabItem("Image Classification 🖼️"):
|
| 59 |
with gr.Row():
|
| 60 |
with gr.Column():
|
| 61 |
-
plot = gr.Plot(get_plots('
|
| 62 |
with gr.Column():
|
| 63 |
-
table = gr.Dataframe(get_model_names('
|
| 64 |
|
| 65 |
with gr.TabItem("Extractive QA ❔"):
|
| 66 |
with gr.Row():
|
| 67 |
with gr.Column():
|
| 68 |
-
plot = gr.Plot(get_plots('
|
| 69 |
with gr.Column():
|
| 70 |
-
table = gr.Dataframe(get_model_names('
|
| 71 |
|
| 72 |
demo.launch()
|
|
|
|
| 3 |
from huggingface_hub import list_models
|
| 4 |
import plotly.express as px
|
| 5 |
|
| 6 |
+
def get_plots(task):
|
| 7 |
#TO DO : hover text with energy efficiency number, parameters
|
| 8 |
+
task_df= pd.read_csv('data/energy/'+task)
|
| 9 |
+
params_df = pd.read_csv('data/params/'+task)
|
| 10 |
+
all_df = pd.merge(task_df, params_df, on='Link'))
|
| 11 |
+
all_df['Total GPU Energy (Wh)'] = all_df['total_gpu_energy']*1000
|
| 12 |
+
all_df = task_df.sort_values(by=['Total GPU Energy (Wh)'])
|
| 13 |
+
all_df['energy_star'] = pd.cut(all_df['Total GPU Energy (Wh)'], 3, labels=["⭐⭐⭐", "⭐⭐", "⭐"])
|
| 14 |
+
fig = px.scatter(all_df, x="model", y='Total GPU Energy (Wh)', height= 500, width= 800, color = 'energy_star', color_discrete_map={"⭐": 'red', "⭐⭐": "yellow", "⭐⭐⭐": "green"})
|
| 15 |
#fig.update_traces(mode="markers+lines", hovertemplate=None)
|
| 16 |
fig.update_layout(hovermode="y")
|
| 17 |
return fig
|
|
|
|
| 22 |
model_names = task_df[['model']]
|
| 23 |
return model_names
|
| 24 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 25 |
|
| 26 |
demo = gr.Blocks()
|
| 27 |
|
|
|
|
| 35 |
with gr.TabItem("Text Generation 💬"):
|
| 36 |
with gr.Row():
|
| 37 |
with gr.Column():
|
| 38 |
+
plot = gr.Plot(get_plots('text_generation.csv'))
|
| 39 |
with gr.Column():
|
| 40 |
+
table = gr.Dataframe(get_model_names('text_generation.csv'))
|
| 41 |
|
| 42 |
with gr.TabItem("Image Generation 📷"):
|
| 43 |
with gr.Row():
|
| 44 |
with gr.Column():
|
| 45 |
+
plot = gr.Plot(get_plots('image_generation.csv'))
|
| 46 |
with gr.Column():
|
| 47 |
+
table = gr.Dataframe(get_model_names('image_generation.csv'))
|
| 48 |
|
| 49 |
with gr.TabItem("Text Classification 🎭"):
|
| 50 |
with gr.Row():
|
| 51 |
with gr.Column():
|
| 52 |
+
plot = gr.Plot(get_plots('text_classification.csv'))
|
| 53 |
with gr.Column():
|
| 54 |
+
table = gr.Dataframe(get_model_names('text_classification.csv'))
|
| 55 |
|
| 56 |
with gr.TabItem("Image Classification 🖼️"):
|
| 57 |
with gr.Row():
|
| 58 |
with gr.Column():
|
| 59 |
+
plot = gr.Plot(get_plots('image_classification.csv'))
|
| 60 |
with gr.Column():
|
| 61 |
+
table = gr.Dataframe(get_model_names('image_classification.csv'))
|
| 62 |
|
| 63 |
with gr.TabItem("Extractive QA ❔"):
|
| 64 |
with gr.Row():
|
| 65 |
with gr.Column():
|
| 66 |
+
plot = gr.Plot(get_plots('question_answering.csv'))
|
| 67 |
with gr.Column():
|
| 68 |
+
table = gr.Dataframe(get_model_names('question_answering.csv'))
|
| 69 |
|
| 70 |
demo.launch()
|