Spaces:
Running
Running
| import os, glob | |
| import json | |
| from datetime import datetime, timezone | |
| from dataclasses import dataclass | |
| from datasets import load_dataset, Dataset | |
| import pandas as pd | |
| import gradio as gr | |
| from huggingface_hub import HfApi, snapshot_download, ModelInfo, list_models | |
| from enum import Enum | |
| OWNER = "AIEnergyScore" | |
| COMPUTE_SPACE = f"{OWNER}/launch-computation-example" | |
| TOKEN = os.environ.get("DEBUG") | |
| API = HfApi(token=TOKEN) | |
| task_mappings = { | |
| 'automatic speech recognition': 'automatic-speech-recognition', | |
| 'Object Detection': 'object-detection', | |
| 'Text Classification': 'text-classification', | |
| 'Image to Text': 'image-to-text', | |
| 'Question Answering': 'question-answering', | |
| 'Text Generation': 'text-generation', | |
| 'Image Classification': 'image-classification', | |
| 'Sentence Similarity': 'sentence-similarity', | |
| 'Image Generation': 'image-generation', | |
| 'Summarization': 'summarization' | |
| } | |
| class ModelDetails: | |
| name: str | |
| display_name: str = "" | |
| symbol: str = "" # emoji | |
| def start_compute_space(): | |
| API.restart_space(COMPUTE_SPACE) | |
| gr.Info(f"Okay! {COMPUTE_SPACE} should be running now!") | |
| def get_model_size(model_info: ModelInfo): | |
| """Gets the model size from the configuration, or the model name if the configuration does not contain the information.""" | |
| try: | |
| model_size = round(model_info.safetensors["total"] / 1e9, 3) | |
| except (AttributeError, TypeError): | |
| return 0 # Unknown model sizes are indicated as 0, see NUMERIC_INTERVALS in app.py | |
| return model_size | |
| def add_docker_eval(zip_file): | |
| new_fid_list = zip_file.split("/") | |
| new_fid = new_fid_list[-1] | |
| if new_fid.endswith('.zip'): | |
| API.upload_file( | |
| path_or_fileobj=zip_file, | |
| repo_id="AIEnergyScore/tested_proprietary_models", | |
| path_in_repo='submitted_models/' + new_fid, | |
| repo_type="dataset", | |
| commit_message="Adding logs via submission Space.", | |
| token=TOKEN | |
| ) | |
| gr.Info('Uploaded logs to dataset! We will validate their validity and add them to the next version of the leaderboard.') | |
| else: | |
| gr.Info('You can only upload .zip files here!') | |
| def add_new_eval(repo_id: str, task: str): | |
| model_owner = repo_id.split("/")[0] | |
| model_name = repo_id.split("/")[1] | |
| current_time = datetime.now(timezone.utc).strftime("%Y-%m-%dT%H:%M:%SZ") | |
| requests = load_dataset("AIEnergyScore/requests_debug", split="test", token=TOKEN) | |
| requests_dset = requests.to_pandas() | |
| model_list = requests_dset[requests_dset['status'] == 'COMPLETED']['model'].tolist() | |
| task_models = list(API.list_models(filter=task_mappings[task])) | |
| task_model_names = [m.id for m in task_models] | |
| if repo_id in model_list: | |
| gr.Info('This model has already been run!') | |
| elif repo_id not in task_model_names: | |
| gr.Info("This model isn't compatible with the chosen task! Pick a different model-task combination") | |
| else: | |
| # Is the model info correctly filled? | |
| try: | |
| model_info = API.model_info(repo_id=repo_id) | |
| model_size = get_model_size(model_info=model_info) | |
| likes = model_info.likes | |
| except Exception: | |
| gr.Info("Could not find information for model %s" % (model_name)) | |
| model_size = None | |
| likes = None | |
| gr.Info("Adding request") | |
| request_dict = { | |
| "model": repo_id, | |
| "status": "PENDING", | |
| "submitted_time": pd.to_datetime(current_time), | |
| "task": task_mappings[task], | |
| "likes": likes, | |
| "params": model_size, | |
| "leaderboard_version": "v0", | |
| } | |
| print("Writing out request file to dataset") | |
| df_request_dict = pd.DataFrame([request_dict]) | |
| print(df_request_dict) | |
| df_final = pd.concat([requests_dset, df_request_dict], ignore_index=True) | |
| updated_dset = Dataset.from_pandas(df_final) | |
| updated_dset.push_to_hub("AIEnergyScore/requests_debug", split="test", token=TOKEN) | |
| gr.Info("Starting compute space at %s " % COMPUTE_SPACE) | |
| return start_compute_space() | |
| def print_existing_models(): | |
| requests = load_dataset("AIEnergyScore/requests_debug", split="test", token=TOKEN) | |
| requests_dset = requests.to_pandas() | |
| model_df = requests_dset[['model', 'status']] | |
| model_df = model_df[model_df['status'] == 'COMPLETED'] | |
| return model_df | |
| def highlight_cols(x): | |
| df = x.copy() | |
| df[df['status'] == 'COMPLETED'] = 'color: green' | |
| df[df['status'] == 'PENDING'] = 'color: orange' | |
| df[df['status'] == 'FAILED'] = 'color: red' | |
| return df | |
| # Applying the style function | |
| existing_models = print_existing_models() | |
| formatted_df = existing_models.style.apply(highlight_cols, axis=None) | |
| def get_leaderboard_models(): | |
| path = r'leaderboard_v0_data/energy' | |
| filenames = glob.glob(path + "/*.csv") | |
| data = [] | |
| for filename in filenames: | |
| data.append(pd.read_csv(filename)) | |
| leaderboard_data = pd.concat(data, ignore_index=True) | |
| return leaderboard_data[['model', 'task']] | |
| # A placeholder for get_zip_data_link() -- replace with your actual implementation if available. | |
| def get_zip_data_link(): | |
| return ( | |
| '<a href="https://example.com/download.zip" ' | |
| 'style="margin: 0 10px; text-decoration: none; font-weight: bold; font-size: 1.1em; ' | |
| 'color: black; font-family: \'Inter\', sans-serif;">Download Logs</a>' | |
| ) | |
| with gr.Blocks() as demo: | |
| # --- Header Links (at the very top) --- | |
| with gr.Row(): | |
| leaderboard_link = gr.HTML( | |
| '<a href="https://huggingface.co/spaces/AIEnergyScore/Leaderboard" ' | |
| 'style="margin: 0 10px; text-decoration: none; font-weight: bold; font-size: 1.1em; ' | |
| 'color: black; font-family: \'Inter\', sans-serif;">Leaderboard</a>' | |
| ) | |
| label_link = gr.HTML( | |
| '<a href="https://huggingface.co/spaces/AIEnergyScore/Label" ' | |
| 'style="margin: 0 10px; text-decoration: none; font-weight: bold; font-size: 1.1em; ' | |
| 'color: black; font-family: \'Inter\', sans-serif;">Label Generator</a>' | |
| ) | |
| faq_link = gr.HTML( | |
| '<a href="https://huggingface.github.io/AIEnergyScore/#faq" ' | |
| 'style="margin: 0 10px; text-decoration: none; font-weight: bold; font-size: 1.1em; ' | |
| 'color: black; font-family: \'Inter\', sans-serif;">FAQ</a>' | |
| ) | |
| documentation_link = gr.HTML( | |
| '<a href="https://huggingface.github.io/AIEnergyScore/#documentation" ' | |
| 'style="margin: 0 10px; text-decoration: none; font-weight: bold; font-size: 1.1em; ' | |
| 'color: black; font-family: \'Inter\', sans-serif;">Documentation</a>' | |
| ) | |
| # --- Logo (centered) --- | |
| gr.HTML(''' | |
| <div style="margin-top: 0px;"> | |
| <img src="https://huggingface.co/spaces/AIEnergyScore/Leaderboard/resolve/main/logo.png" | |
| alt="Logo" | |
| style="display: block; margin: 0 auto; max-width: 500px; height: auto;"> | |
| </div> | |
| ''') | |
| # --- Main UI --- | |
| gr.Markdown("# Submission Portal") | |
| gr.Markdown("### The goal of the AI Energy Score project is to develop an energy-based rating system for AI model deployment that will guide members of the community in choosing models for different tasks based on energy efficiency.") | |
| gr.Markdown("### If you want us to evaluate a model hosted on the 🤗 Hub, enter the model ID and choose the corresponding task from the dropdown list below, then click **Run Analysis** to launch the benchmarking process.") | |
| gr.Markdown("### If you've used the [Docker file](https://github.com/huggingface/AIEnergyScore/) to run your own evaluation, please submit the resulting log files at the bottom of the page.") | |
| gr.Markdown("### The [Project Leaderboard](https://huggingface.co/spaces/AIEnergyScore/Leaderboard) will be updated on a biannual basis (last updated in February 2025).") | |
| with gr.Row(): | |
| with gr.Column(): | |
| task = gr.Dropdown( | |
| choices=list(task_mappings.keys()), | |
| label="Choose a benchmark task", | |
| value='Text Generation', | |
| multiselect=False, | |
| interactive=True, | |
| ) | |
| with gr.Column(): | |
| model_name_textbox = gr.Textbox(label="Model name (user_name/model_name)") | |
| with gr.Row(): | |
| with gr.Column(): | |
| submit_button = gr.Button("Submit for Analysis") | |
| submission_result = gr.Markdown() | |
| submit_button.click( | |
| fn=add_new_eval, | |
| inputs=[model_name_textbox, task], | |
| outputs=submission_result, | |
| ) | |
| with gr.Row(): | |
| with gr.Column(): | |
| with gr.Accordion("Submit log files from a Docker run:", open=False): | |
| gr.Markdown("If you've already benchmarked your model using the [Docker file](https://github.com/huggingface/AIEnergyScore/) provided, please upload the **entire run log directory** (in .zip format) below:") | |
| agreement_checkbox = gr.Checkbox(label="""By checking the box below and submitting your energy score data, you confirm and agree to the following: | |
| - 1. Public Data Sharing: You consent to the public sharing of the energy performance data derived from your submission. No additional information related to this model including proprietary configurations will be disclosed. | |
| - 2. Data Integrity: You validate that the log files submitted are accurate, unaltered, and generated directly from testing your model as per the specified benchmarking procedures. | |
| - 3. Model Representation: You verify that the model tested and submitted is representative of the production-level version of the model, including its level of quantization and any other relevant characteristics impacting energy efficiency and performance.""") | |
| file_output = gr.File(visible=False) | |
| u = gr.UploadButton("Upload a zip file with logs", file_count="single", interactive=False) | |
| u.upload(add_docker_eval, u, file_output) | |
| def update_upload_button_interactive(checkbox_value): | |
| # When checkbox_value is True, disable should be False (i.e. the button becomes active) | |
| return gr.UploadButton.update(disabled=not checkbox_value) | |
| agreement_checkbox.change( | |
| fn=update_upload_button_interactive, | |
| inputs=[agreement_checkbox], | |
| outputs=[u] | |
| ) | |
| with gr.Row(): | |
| with gr.Column(): | |
| with gr.Accordion("Models that are in the latest leaderboard version:", open=False, visible=False): | |
| gr.Dataframe(get_leaderboard_models()) | |
| with gr.Accordion("Models that have been benchmarked recently:", open=False, visible=False): | |
| gr.Dataframe(formatted_df) | |
| demo.launch() |