Spaces:
Sleeping
Sleeping
| from fastapi import FastAPI, HTTPException | |
| from pydantic import BaseModel | |
| from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline | |
| import torch | |
| class Guardrail: | |
| def __init__(self): | |
| tokenizer = AutoTokenizer.from_pretrained("ProtectAI/deberta-v3-base-prompt-injection") | |
| model = AutoModelForSequenceClassification.from_pretrained("ProtectAI/deberta-v3-base-prompt-injection") | |
| self.classifier = pipeline( | |
| "text-classification", | |
| model=model, | |
| tokenizer=tokenizer, | |
| truncation=True, | |
| max_length=512, | |
| device=torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
| ) | |
| def guard(self, prompt): | |
| return self.classifier(prompt) | |
| class TextPrompt(BaseModel): | |
| prompt: str | |
| app = FastAPI() | |
| guardrail = Guardrail() | |
| def classify_text(text_prompt: TextPrompt): | |
| try: | |
| result = guardrail.guard(text_prompt.prompt) | |
| return result | |
| except Exception as e: | |
| raise HTTPException(status_code=500, detail=str(e)) | |
| if __name__ == "__main__": | |
| import uvicorn | |
| uvicorn.run(app, host="0.0.0.0", port=8000) | |