Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,45 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from fastapi import FastAPI, HTTPException
|
| 2 |
+
from pydantic import BaseModel
|
| 3 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline
|
| 4 |
+
import torch
|
| 5 |
+
|
| 6 |
+
|
| 7 |
+
class Guardrail:
|
| 8 |
+
def __init__(self):
|
| 9 |
+
tokenizer = AutoTokenizer.from_pretrained("ProtectAI/deberta-v3-base-prompt-injection")
|
| 10 |
+
model = AutoModelForSequenceClassification.from_pretrained("ProtectAI/deberta-v3-base-prompt-injection")
|
| 11 |
+
|
| 12 |
+
self.classifier = pipeline(
|
| 13 |
+
"text-classification",
|
| 14 |
+
model=model,
|
| 15 |
+
tokenizer=tokenizer,
|
| 16 |
+
truncation=True,
|
| 17 |
+
max_length=512,
|
| 18 |
+
device=torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 19 |
+
)
|
| 20 |
+
|
| 21 |
+
def guard(self, prompt):
|
| 22 |
+
return self.classifier(prompt)
|
| 23 |
+
|
| 24 |
+
|
| 25 |
+
class TextPrompt(BaseModel):
|
| 26 |
+
prompt: str
|
| 27 |
+
|
| 28 |
+
|
| 29 |
+
app = FastAPI()
|
| 30 |
+
guardrail = Guardrail()
|
| 31 |
+
|
| 32 |
+
|
| 33 |
+
@app.post("/classify/")
|
| 34 |
+
def classify_text(text_prompt: TextPrompt):
|
| 35 |
+
try:
|
| 36 |
+
result = guardrail.guard(text_prompt.prompt)
|
| 37 |
+
return result
|
| 38 |
+
except Exception as e:
|
| 39 |
+
raise HTTPException(status_code=500, detail=str(e))
|
| 40 |
+
|
| 41 |
+
|
| 42 |
+
if __name__ == "__main__":
|
| 43 |
+
import uvicorn
|
| 44 |
+
|
| 45 |
+
uvicorn.run(app, host="0.0.0.0", port=8000)
|