File size: 18,015 Bytes
1832e16
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
import json
import random
from concurrent.futures import ThreadPoolExecutor
from datetime import datetime
import librosa
import pandas as pd
from audio import (
    assign_outputs_to_refs_by_corr,
    loudness_normalize,
    make_union_voiced_mask,
)
from config import *
from distortions import apply_adv_distortions, apply_distortions
from metrics import (
    compute_pm,
    compute_ps,
    diffusion_map_torch,
    pm_ci_components_full,
    ps_ci_components_full,
)
from models import embed_batch, load_model
from utils import *


def compute_mapss_measures(

        models,

        mixtures,

        *,

        systems=None,

        algos=None,

        experiment_id=None,

        layer=DEFAULT_LAYER,

        add_ci=DEFAULT_ADD_CI,

        alpha=DEFAULT_ALPHA,

        seed=42,

        on_missing="skip",

        verbose=False,

        max_gpus=None,

):
    gpu_distributor = GPUWorkDistributor(max_gpus)
    ngpu = get_gpu_count(max_gpus)

    if on_missing not in {"skip", "error"}:
        raise ValueError("on_missing must be 'skip' or 'error'.")

    torch.manual_seed(seed)
    random.seed(seed)
    np.random.seed(seed)
    if torch.cuda.is_available():
        torch.cuda.manual_seed_all(seed)

    canon_mix = canonicalize_mixtures(mixtures, systems=systems)

    mixture_entries = []
    for m in canon_mix:
        entries = []
        for i, refp in enumerate(m.refs):
            sid = m.speaker_ids[i]
            entries.append(
                {"id": sid, "ref": Path(refp), "mixture": m.mixture_id, "outs": {}}
            )
        mixture_entries.append(entries)

    for m, mix_entries in zip(canon_mix, mixture_entries):
        for algo, out_list in (m.systems or {}).items():
            mapping = assign_outputs_to_refs_by_corr(
                [e["ref"] for e in mix_entries], out_list
            )
            for idx, e in enumerate(mix_entries):
                j = mapping[idx]
                if j is not None:
                    e["outs"][algo] = out_list[j]

    if algos is None:
        algos_to_run = sorted(
            {algo for m in canon_mix for algo in (m.systems or {}).keys()}
        )
    else:
        algos_to_run = list(algos)

    exp_id = experiment_id or datetime.now().strftime("%Y%m%d_%H%M%S")
    exp_root = os.path.join(RESULTS_ROOT, f"experiment_{exp_id}")
    os.makedirs(exp_root, exist_ok=True)

    params = {
        "models": models,
        "layer": layer,
        "add_ci": add_ci,
        "alpha": alpha,
        "seed": seed,
        "batch_size": BATCH_SIZE,
        "ngpu": ngpu,
        "max_gpus": max_gpus,
    }

    with open(os.path.join(exp_root, "params.json"), "w") as f:
        json.dump(params, f, indent=2)

    canon_struct = [
        {
            "mixture_id": m.mixture_id,
            "references": [str(p) for p in m.refs],
            "systems": {
                a: [str(p) for p in outs] for a, outs in (m.systems or {}).items()
            },
            "speaker_ids": m.speaker_ids,
        }
        for m in canon_mix
    ]

    with open(os.path.join(exp_root, "manifest_canonical.json"), "w") as f:
        json.dump(canon_struct, f, indent=2)

    print(f"Starting experiment {exp_id} with {ngpu} GPUs")
    print(f"Results will be saved to: {exp_root}")

    clear_gpu_memory()
    get_gpu_memory_info(verbose)

    flat_entries = [e for mix in mixture_entries for e in mix]
    all_refs = {}

    if verbose:
        print("Loading reference signals...")
    for e in flat_entries:
        wav, _ = librosa.load(str(e["ref"]), sr=SR)
        all_refs[e["id"]] = torch.from_numpy(loudness_normalize(wav))

    if verbose:
        print("Computing voiced masks...")

    win = int(ENERGY_WIN_MS * SR / 1000)
    hop = int(ENERGY_HOP_MS * SR / 1000)
    voiced_mask_mix = []

    for i, mix in enumerate(mixture_entries):
        if verbose:
            print(f"  Computing mask for mixture {i + 1}/{len(mixture_entries)}")

        if ngpu > 0:
            with torch.cuda.device(0):
                refs_for_mix = [all_refs[e["id"]].cuda() for e in mix]
                mask = make_union_voiced_mask(refs_for_mix, win, hop)
                voiced_mask_mix.append(mask.cpu())
                # Explicitly delete GPU tensors
                for ref in refs_for_mix:
                    del ref
                torch.cuda.empty_cache()
        else:
            refs_for_mix = [all_refs[e["id"]].cpu() for e in mix]
            mask = make_union_voiced_mask(refs_for_mix, win, hop)
            voiced_mask_mix.append(mask.cpu())

    ordered_speakers = [e["id"] for e in flat_entries]

    for algo_idx, algo in enumerate(algos_to_run):
        if verbose:
            print(f"\nProcessing Algorithm {algo_idx + 1}/{len(algos_to_run)}: {algo}")

        algo_dir = os.path.join(exp_root, algo)
        os.makedirs(algo_dir, exist_ok=True)

        all_outs = {}
        missing = []

        for mix_idx, mix in enumerate(mixture_entries):
            for e in mix:
                assigned_path = e.get("outs", {}).get(algo)
                if assigned_path is None:
                    missing.append((e["mixture"], e["id"]))
                    continue

                wav, _ = librosa.load(str(assigned_path), sr=SR)
                all_outs[e["id"]] = torch.from_numpy(loudness_normalize(wav))

        if missing:
            msg = f"[{algo}] missing outputs for {len(missing)} speaker(s)"
            if on_missing == "error":
                raise FileNotFoundError(msg)
            else:
                if verbose:
                    warnings.warn(msg + " Skipping those speakers.")

        if not all_outs:
            if verbose:
                warnings.warn(f"[{algo}] No outputs provided. Skipping algorithm.")
            continue

        ps_ts = {m: {s: [] for s in ordered_speakers} for m in models}
        pm_ts = {m: {s: [] for s in ordered_speakers} for m in models}
        ps_bias_ts = {m: {s: [] for s in ordered_speakers} for m in models}
        ps_prob_ts = {m: {s: [] for s in ordered_speakers} for m in models}
        pm_bias_ts = {m: {s: [] for s in ordered_speakers} for m in models}
        pm_prob_ts = {m: {s: [] for s in ordered_speakers} for m in models}

        for model_idx, mname in enumerate(models):
            if verbose:
                print(f"  Processing Model {model_idx + 1}/{len(models)}: {mname}")

            for metric_type in ["PS", "PM"]:
                clear_gpu_memory()
                gc.collect()

                model_wrapper, layer_eff = load_model(mname, layer, max_gpus)
                get_gpu_memory_info(verbose)

                embs_by_mix = {}
                labels_by_mix = {}

                for k, mix in enumerate(mixture_entries):
                    speakers_this_mix = [e for e in mix if e["id"] in all_outs]
                    if not speakers_this_mix:
                        continue

                    if verbose:
                        print(
                            f"Processing mixture {k + 1}/{len(mixture_entries)} for {metric_type}"
                        )

                    all_signals_mix = []
                    all_masks_mix = []
                    all_labels_mix = []

                    for e in speakers_this_mix:
                        s = e["id"]

                        if metric_type == "PS":
                            dists = [
                                loudness_normalize(d)
                                for d in apply_distortions(all_refs[s].numpy(), "all")
                            ]
                        else:
                            dists = [
                                loudness_normalize(d)
                                for d in apply_adv_distortions(
                                    all_refs[s].numpy(), "all"
                                )
                            ]

                        sigs = [all_refs[s].numpy(), all_outs[s].numpy()] + dists
                        lbls = ["ref", "out"] + [f"d{i}" for i in range(len(dists))]

                        masks = [voiced_mask_mix[k]] * len(sigs)
                        all_signals_mix.extend(sigs)
                        all_masks_mix.extend(masks)
                        all_labels_mix.extend([f"{s}-{l}" for l in lbls])

                    try:
                        # Process in smaller batches
                        batch_size = min(2, BATCH_SIZE)
                        embeddings_list = []

                        for i in range(0, len(all_signals_mix), batch_size):
                            batch_sigs = all_signals_mix[i:i + batch_size]
                            batch_masks = all_masks_mix[i:i + batch_size]

                            batch_embs = embed_batch(
                                batch_sigs,
                                batch_masks,
                                model_wrapper,
                                layer_eff,
                                use_mlm=False,
                            )

                            if batch_embs.numel() > 0:
                                embeddings_list.append(batch_embs.cpu())

                            torch.cuda.empty_cache()

                        if embeddings_list:
                            embeddings = torch.cat(embeddings_list, dim=0)
                            embs_by_mix[k] = embeddings
                            labels_by_mix[k] = all_labels_mix

                    except Exception as ex:
                        if verbose:
                            print(f"      ERROR processing mixture {k + 1}: {ex}")
                        continue
                    finally:
                        # Always clean up after processing a mixture
                        del all_signals_mix, all_masks_mix
                        if 'embeddings_list' in locals():
                            del embeddings_list
                        clear_gpu_memory()
                        gc.collect()

                if verbose:
                    print(f"    Computing {metric_type} scores for {mname}...")

                # Process mixtures with their stored embeddings and labels
                with ThreadPoolExecutor(
                        max_workers=min(2, ngpu if ngpu > 0 else 1)
                ) as executor:
                    for k in range(len(mixture_entries)):
                        if k not in embs_by_mix:
                            continue

                        E, L, D = embs_by_mix[k].shape
                        if L == 0:
                            if verbose:
                                print(f"        WARNING: mixture {k + 1} produced 0 frames after masking; skipping.")
                            continue

                        # Get the labels for this mixture
                        labels_for_mix = labels_by_mix[k]

                        def process_frame(f, embeddings_mix, labels_mix):
                            try:
                                frame_emb = embeddings_mix[:, f, :].detach().cpu().numpy()

                                if add_ci:
                                    coords_d, coords_c, eigvals, k_sub_gauss = (
                                        gpu_distributor.execute_on_gpu(
                                            diffusion_map_torch,
                                            frame_emb,
                                            labels_mix,
                                            alpha=alpha,
                                            eig_solver="full",
                                            return_eigs=True,
                                            return_complement=True,
                                            return_cval=add_ci,
                                        )
                                    )
                                else:
                                    coords_d = gpu_distributor.execute_on_gpu(
                                        diffusion_map_torch,
                                        frame_emb,
                                        labels_mix,
                                        alpha=alpha,
                                        eig_solver="full",
                                        return_eigs=False,
                                        return_complement=False,
                                        return_cval=False,
                                    )
                                    coords_c = None
                                    eigvals = None
                                    k_sub_gauss = 1

                                if metric_type == "PS":
                                    score = compute_ps(
                                        coords_d, labels_mix, max_gpus
                                    )
                                    bias = prob = None
                                    if add_ci:
                                        bias, prob = ps_ci_components_full(
                                            coords_d,
                                            coords_c,
                                            eigvals,
                                            labels_mix,
                                            delta=DEFAULT_DELTA_CI,
                                        )
                                    return f, "PS", score, bias, prob
                                else:
                                    score = compute_pm(
                                        coords_d, labels_mix, "gamma", max_gpus
                                    )
                                    bias = prob = None
                                    if add_ci:
                                        bias, prob = pm_ci_components_full(
                                            coords_d,
                                            coords_c,
                                            eigvals,
                                            labels_mix,
                                            delta=DEFAULT_DELTA_CI,
                                            K=k_sub_gauss,
                                        )
                                    return f, "PM", score, bias, prob

                            except Exception as ex:
                                if verbose:
                                    print(f"        ERROR frame {f + 1}: {ex}")
                                return None

                        futures = [
                            executor.submit(process_frame, f, embs_by_mix[k], labels_for_mix)
                            for f in range(L)
                        ]
                        for fut in futures:
                            result = fut.result()
                            if result is None:
                                continue

                            f, metric, score, bias, prob = result

                            if metric == "PS":
                                for sp in score:
                                    ps_ts[mname][sp].append(score[sp])
                                    if add_ci and bias is not None:
                                        ps_bias_ts[mname][sp].append(bias[sp])
                                        ps_prob_ts[mname][sp].append(prob[sp])
                            else:
                                for sp in score:
                                    pm_ts[mname][sp].append(score[sp])
                                    if add_ci and bias is not None:
                                        pm_bias_ts[mname][sp].append(bias[sp])
                                        pm_prob_ts[mname][sp].append(prob[sp])

                    # Clean up after processing all mixtures for this metric
                    del embs_by_mix, labels_by_mix
                    clear_gpu_memory()
                    gc.collect()

                del model_wrapper
                clear_gpu_memory()
                gc.collect()

        if verbose:
            print(f"  Saving results for {algo}...")

        for m in models:

            def _pad(vec, n):
                return vec + [np.nan] * (n - len(vec))

            max_len = 0
            for s in ordered_speakers:
                max_len = max(max_len, len(ps_ts[m][s]), len(pm_ts[m][s]))

            pd.DataFrame(
                {s: _pad(ps_ts[m][s], max_len) for s in ordered_speakers}
            ).to_csv(os.path.join(algo_dir, f"ps_scores_{m}.csv"), index=False)

            pd.DataFrame(
                {s: _pad(pm_ts[m][s], max_len) for s in ordered_speakers}
            ).to_csv(os.path.join(algo_dir, f"pm_scores_{m}.csv"), index=False)

            if add_ci:
                ci_cols = {}
                for s in ordered_speakers:
                    ci_cols[f"{s}_ps_bias"] = _pad(ps_bias_ts[m][s], max_len)
                    ci_cols[f"{s}_ps_prob"] = _pad(ps_prob_ts[m][s], max_len)
                    ci_cols[f"{s}_pm_bias"] = _pad(pm_bias_ts[m][s], max_len)
                    ci_cols[f"{s}_pm_prob"] = _pad(pm_prob_ts[m][s], max_len)
                pd.DataFrame(ci_cols).to_csv(
                    os.path.join(algo_dir, f"ci_{m}.csv"), index=False
                )

        del all_outs
        clear_gpu_memory()
        gc.collect()

    print(f"\nEXPERIMENT COMPLETED")
    print(f"Results saved to: {exp_root}")

    del all_refs, voiced_mask_mix

    # Import and call the cleanup function
    from models import cleanup_all_models
    cleanup_all_models()

    clear_gpu_memory()
    get_gpu_memory_info(verbose)
    gc.collect()

    return exp_root