File size: 12,191 Bytes
1832e16
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
import queue
import threading
import gc

import torch
import torch.nn.functional as F
from transformers import (
    HubertModel,
    Wav2Vec2FeatureExtractor,
    Wav2Vec2Model,
    WavLMModel,
    ASTModel,
    AutoFeatureExtractor,
)

from config import BATCH_SIZE, ENERGY_HOP_MS, ENERGY_WIN_MS, SR
from utils import get_gpu_count


class BalancedDualGPUModel:

    def __init__(self, model_name, layer, max_gpus=None):
        self.layer = layer
        self.models = []
        self.extractors = []
        self.devices = []
        ngpu = get_gpu_count(max_gpus)

        for gpu_id in range(min(ngpu, 2)):
            device = f"cuda:{gpu_id}"
            self.devices.append(device)
            ckpt, cls, _ = get_model_config(layer)[model_name]
            if cls is ASTModel:
                extractor = AutoFeatureExtractor.from_pretrained(ckpt)
            else:
                extractor = Wav2Vec2FeatureExtractor.from_pretrained(ckpt)

            attn_impl = "eager" if cls in (WavLMModel, ASTModel) else "sdpa"
            model = cls.from_pretrained(
                ckpt,
                output_hidden_states=True,
                use_safetensors=True,
                torch_dtype=torch.float16,
                low_cpu_mem_usage=True,
                attn_implementation=attn_impl
            )
            model.eval()
            model = model.to(device)

            for param in model.parameters():
                param.requires_grad = False

            self.extractors.append(extractor)
            self.models.append(model)

        self.gpu_queues = [queue.Queue() for _ in range(len(self.devices))]
        self.result_queue = queue.Queue()
        self.workers = []
        for i in range(len(self.devices)):
            worker = threading.Thread(target=self._gpu_worker, args=(i,))
            worker.daemon = True
            worker.start()
            self.workers.append(worker)

    def _gpu_worker(self, gpu_id):
        device = self.devices[gpu_id]
        model = self.models[gpu_id]
        extractor = self.extractors[gpu_id]
        while True:
            task = self.gpu_queues[gpu_id].get()
            if task is None:
                break
            signals, masks, use_mlm, task_id = task
            try:
                inputs = extractor(
                    signals, sampling_rate=SR, return_tensors="pt", padding=True
                )
                input_values = inputs.input_values.to(device, non_blocking=True)

                torch.cuda.empty_cache()

                orig_mode = model.training
                model.train() if use_mlm else model.eval()
                with torch.no_grad():
                    with torch.amp.autocast(device_type='cuda', dtype=torch.float16):
                        hs = model(
                            input_values, output_hidden_states=True
                        ).hidden_states[self.layer]
                model.train(orig_mode)

                B, T, D = hs.shape
                keep = []
                for b in range(B):
                    mask_b = masks[b].float().unsqueeze(0).unsqueeze(0).to(device)
                    mask_t = F.interpolate(mask_b, size=T, mode="nearest")[0, 0].bool()
                    keep.append(hs[b][mask_t].cpu())

                # Aggressive cleanup
                del hs, input_values, inputs
                torch.cuda.empty_cache()

                if keep:
                    L_max = max(x.shape[0] for x in keep)
                    keep_padded = [
                        F.pad(x, (0, 0, 0, L_max - x.shape[0])) for x in keep
                    ]
                    result = torch.stack(keep_padded, dim=0)
                else:
                    result = torch.empty(0, 0, 0)
                self.result_queue.put((task_id, result))
            except Exception as e:
                self.result_queue.put((task_id, e))
            finally:
                # Always clear cache after processing
                torch.cuda.empty_cache()

    def process_batch(self, signals, masks, use_mlm=False):
        if not signals:
            return torch.empty(0, 0, 0)
        batch_size = len(signals)
        split = (batch_size + len(self.devices) - 1) // len(self.devices)
        results = {}
        task_id = 0
        for i in range(0, batch_size, split):
            end = min(i + split, batch_size)
            gpu_id = (i // split) % len(self.devices)
            self.gpu_queues[gpu_id].put(
                (signals[i:end], masks[i:end], use_mlm, task_id)
            )
            task_id += 1
        for _ in range(task_id):
            tid, result = self.result_queue.get()
            if isinstance(result, Exception):
                raise result
            results[tid] = result
        parts = [results[i] for i in range(task_id) if results[i].numel() > 0]
        return torch.cat(parts, dim=0) if parts else torch.empty(0, 0, 0)

    def cleanup(self):
        """Explicit cleanup method"""
        for q in self.gpu_queues:
            q.put(None)
        for w in self.workers:
            w.join(timeout=5.0)
        for model in self.models:
            del model
        for extractor in self.extractors:
            del extractor
        self.models.clear()
        self.extractors.clear()
        torch.cuda.empty_cache()
        gc.collect()

    def __del__(self):
        self.cleanup()


# NO CACHE - we need to clean up models properly between runs
def get_model_config(layer):
    return {
        "raw": (None, None, None),
        "wavlm": ("microsoft/wavlm-large", WavLMModel, layer),
        "wav2vec2": ("facebook/wav2vec2-large-lv60", Wav2Vec2Model, layer),
        "hubert": ("facebook/hubert-large-ll60k", HubertModel, layer),
        "wavlm_base": ("microsoft/wavlm-base", WavLMModel, layer),
        "wav2vec2_base": ("facebook/wav2vec2-base", Wav2Vec2Model, layer),
        "hubert_base": ("facebook/hubert-base-ls960", HubertModel, layer),
        "wav2vec2_xlsr": ("facebook/wav2vec2-large-xlsr-53", Wav2Vec2Model, layer),
        "ast": ("MIT/ast-finetuned-audioset-10-10-0.4593", ASTModel, layer),
    }


# Store loaded models globally to properly manage them
_loaded_models = {}


def load_model(name, layer, max_gpus=None):
    global _loaded_models

    # Clean up any previously loaded models first
    if _loaded_models:
        for key, model_data in _loaded_models.items():
            if isinstance(model_data, tuple) and len(model_data) == 2:
                if isinstance(model_data[0], BalancedDualGPUModel):
                    model_data[0].cleanup()
                elif isinstance(model_data[0], tuple):
                    # Single GPU model
                    _, model = model_data[0]
                    del model
        _loaded_models.clear()
        torch.cuda.empty_cache()
        gc.collect()

    if name.lower() in {"raw", "waveform"}:
        return "raw", layer

    ngpu = get_gpu_count(max_gpus)
    if ngpu > 1:
        model = BalancedDualGPUModel(name, layer, max_gpus)
        _loaded_models[name] = (model, layer)
        return model, layer
    else:
        ckpt, cls, layer_eff = get_model_config(layer)[name]
        if cls is ASTModel:
            extractor = AutoFeatureExtractor.from_pretrained(ckpt)
        else:
            extractor = Wav2Vec2FeatureExtractor.from_pretrained(ckpt)

        device = "cuda:0" if torch.cuda.is_available() else "cpu"
        attn_impl = "eager" if cls in (WavLMModel, ASTModel) else "sdpa"
        model = cls.from_pretrained(
            ckpt,
            output_hidden_states=True,
            use_safetensors=True,
            torch_dtype=torch.float16,
            low_cpu_mem_usage=True,
            attn_implementation=attn_impl
        )
        model.eval()
        model = model.to(device)

        for param in model.parameters():
            param.requires_grad = False

        model_tuple = ((extractor, model), layer_eff)
        _loaded_models[name] = model_tuple
        return (extractor, model), layer_eff


def cleanup_all_models():
    """Call this at the end of each experiment to ensure complete cleanup"""
    global _loaded_models
    if _loaded_models:
        for key, model_data in _loaded_models.items():
            if isinstance(model_data, tuple) and len(model_data) == 2:
                if isinstance(model_data[0], BalancedDualGPUModel):
                    model_data[0].cleanup()
                elif isinstance(model_data[0], tuple):
                    # Single GPU model
                    _, model = model_data[0]
                    del model
        _loaded_models.clear()
    torch.cuda.empty_cache()
    gc.collect()


def embed_batch_raw(signals, masks_audio):
    win = int(ENERGY_WIN_MS * SR / 1000)
    hop = int(ENERGY_HOP_MS * SR / 1000)
    reps, L_max = [], 0
    for sig_np, mask_np in zip(signals, masks_audio):
        x = torch.as_tensor(sig_np[:-1], dtype=torch.float32)
        frames = x.unfold(0, win, hop)
        mask = torch.as_tensor(mask_np[: len(frames)], dtype=torch.bool)
        keep = frames[mask] if mask.any() else frames[:1]
        reps.append(keep)
        L_max = max(L_max, keep.size(0))
    reps = [F.pad(r, (0, 0, 0, L_max - r.size(0))) for r in reps]
    return torch.stack(reps, dim=0)


def embed_batch_single_gpu(

        signals, masks_audio, extractor, model, layer, use_mlm=False

):
    if not signals:
        return torch.empty(0, 0, 0)
    device = next(model.parameters()).device

    max_batch = 2
    all_keeps = []

    for i in range(0, len(signals), max_batch):
        batch_signals = signals[i:i + max_batch]
        batch_masks = masks_audio[i:i + max_batch]

        inputs = extractor(batch_signals, sampling_rate=SR, return_tensors="pt", padding=True)
        input_values = inputs.input_values.to(device, non_blocking=True)

        orig_mode = model.training
        model.train() if use_mlm else model.eval()

        with torch.no_grad():
            with torch.amp.autocast(device_type='cuda', dtype=torch.float16):
                hs = model(input_values, output_hidden_states=True).hidden_states[layer]
        model.train(orig_mode)

        B, T, D = hs.shape
        for b in range(B):
            mask_b = batch_masks[b].float().unsqueeze(0).unsqueeze(0).to(device)
            mask_t = F.interpolate(mask_b, size=T, mode="nearest")[0, 0].bool()
            all_keeps.append(hs[b][mask_t].cpu())

        # Aggressive cleanup
        del hs, input_values, inputs
        torch.cuda.empty_cache()

    if all_keeps:
        L_max = max(x.shape[0] for x in all_keeps)
        keep_padded = [F.pad(x, (0, 0, 0, L_max - x.shape[0])) for x in all_keeps]
        result = torch.stack(keep_padded, dim=0)
        # Clean up intermediate lists
        del all_keeps, keep_padded
        return result
    else:
        return torch.empty(0, 0, 0)


def embed_batch(signals, masks_audio, model_wrapper, layer, use_mlm=False):
    if model_wrapper == "raw":
        return embed_batch_raw(signals, masks_audio)
    if isinstance(model_wrapper, BalancedDualGPUModel):
        all_embeddings = []
        batch_size = min(BATCH_SIZE, 2)
        for i in range(0, len(signals), batch_size):
            batch_emb = model_wrapper.process_batch(
                signals[i: i + batch_size], masks_audio[i: i + batch_size], use_mlm
            )
            if batch_emb.numel() > 0:
                all_embeddings.append(batch_emb)
            # Clear cache after each batch
            torch.cuda.empty_cache()

        if all_embeddings:
            result = torch.cat(all_embeddings, dim=0)
            del all_embeddings
            return result
        else:
            return torch.empty(0, 0, 0)
    else:
        extractor, model = model_wrapper
        return embed_batch_single_gpu(
            signals, masks_audio, extractor, model, layer, use_mlm=use_mlm
        )