Spaces:
Sleeping
Sleeping
File size: 7,371 Bytes
1832e16 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 |
import gc
import threading
import warnings
from dataclasses import dataclass
from pathlib import Path
import numpy as np
import torch
try:
from scipy.optimize import linear_sum_assignment as _lsa
except Exception:
_lsa = None
warnings.filterwarnings("ignore", message="Some weights of Wav2Vec2Model")
def get_gpu_count(max_gpus=None):
ngpu = torch.cuda.device_count()
if max_gpus is not None:
ngpu = min(ngpu, max_gpus)
return ngpu
def clear_gpu_memory():
"""Enhanced GPU memory clearing"""
if torch.cuda.is_available():
for i in range(torch.cuda.device_count()):
with torch.cuda.device(i):
torch.cuda.empty_cache()
torch.cuda.synchronize()
gc.collect()
torch.cuda.empty_cache()
def get_gpu_memory_info(verbose=False):
if not verbose:
return
for i in range(torch.cuda.device_count()):
try:
free_b, total_b = torch.cuda.mem_get_info(i) # type: ignore[attr-defined]
free_gb = free_b / 1024**3
total_gb = total_b / 1024**3
except Exception:
total_gb = torch.cuda.get_device_properties(i).total_memory / 1024**3
free_gb = total_gb - (torch.cuda.memory_reserved(i) / 1024**3)
mem_allocated = torch.cuda.memory_allocated(i) / 1024**3
print(f"GPU {i}: {mem_allocated:.2f}GB allocated, {free_gb:.2f}GB free / {total_gb:.2f}GB total")
def write_wav_16bit(path, x, sr=16000):
path = Path(path)
path.parent.mkdir(parents=True, exist_ok=True)
try:
import soundfile as sf
sf.write(str(path), x.astype(np.float32), sr)
except Exception:
from scipy.io.wavfile import write
write(str(path), sr, (np.clip(x, -1, 1) * 32767).astype(np.int16))
def safe_corr_np(a, b):
L = min(len(a), len(b))
if L <= 1:
return 0.0
a = a[:L].astype(np.float64)
b = b[:L].astype(np.float64)
a -= a.mean()
b -= b.mean()
da = a.std()
db = b.std()
if da <= 1e-12 or db <= 1e-12:
return 0.0
r = float((a * b).mean() / (da * db))
return max(-1.0, min(1.0, r))
def hungarian(cost):
try:
if _lsa is not None:
return _lsa(cost)
raise RuntimeError("scipy.optimize.linear_sum_assignment unavailable")
except Exception:
used = set()
rows, cols = [], []
for i in range(cost.shape[0]):
j = int(
np.argmin(
[
cost[i, k] if k not in used else 1e12
for k in range(cost.shape[1])
]
)
)
used.add(j)
rows.append(i)
cols.append(j)
return np.asarray(rows), np.asarray(cols)
class GPUWorkDistributor:
def __init__(self, max_gpus=None):
ngpu = get_gpu_count(max_gpus)
self.gpu_locks = [threading.Lock() for _ in range(max(1, min(ngpu, 2)))]
self.gpu_load = [0 for _ in range(max(1, min(ngpu, 2)))]
self.ngpu = ngpu
def get_least_loaded_gpu(self):
return int(np.argmin(self.gpu_load))
def execute_on_gpu(self, func, *args, **kwargs):
if self.ngpu == 0:
kwargs.pop("device", None)
return func(*args, **kwargs)
gid = self.get_least_loaded_gpu()
with self.gpu_locks[gid]:
self.gpu_load[gid] += 1
try:
with torch.cuda.device(gid):
kwargs["device"] = f"cuda:{gid}"
result = func(*args, **kwargs)
# Clear cache after execution
torch.cuda.empty_cache()
return result
finally:
self.gpu_load[gid] -= 1
@dataclass
class Mixture:
mixture_id: str
refs: list[Path]
systems: dict[str, list[Path]]
speaker_ids: list[str]
def canonicalize_mixtures(mixtures, systems=None):
canon = []
if not mixtures:
return canon
def as_paths(seq):
return [p if isinstance(p, Path) else Path(str(p)) for p in seq]
def speaker_id_from_ref(ref_path, idx, mixture_id):
stem = (ref_path.stem or "").strip()
if not stem:
stem = f"spk{idx:02d}"
return f"{mixture_id}__{stem}"
if isinstance(mixtures[0], dict):
for m in mixtures:
mid = str(m.get("mixture_id") or m.get("id") or "").strip()
if not mid:
raise ValueError("Each mixture must include 'mixture_id'.")
refs = as_paths(m.get("references", []))
if not refs:
raise ValueError(f"Mixture {mid}: 'references' must be non-empty.")
sysmap = {}
if isinstance(m.get("systems"), dict):
for algo, outs in m["systems"].items():
sysmap[str(algo)] = as_paths(outs)
spk_ids = [speaker_id_from_ref(r, i, mid) for i, r in enumerate(refs)]
canon.append(Mixture(mid, refs, sysmap, spk_ids))
return canon
if isinstance(mixtures[0], list):
for i, group in enumerate(mixtures):
mid = f"mix_{i:03d}"
refs, spk_ids = [], []
for d in group:
if not isinstance(d, dict) or "ref" not in d or "id" not in d:
raise ValueError(
"Legacy mixtures expect dicts with 'id' and 'ref'."
)
rp = Path(d["ref"])
refs.append(rp)
spk_ids.append(f"{mid}__{str(d['id']).strip()}")
sysmap = {}
if systems:
for algo, per_mix in systems.items():
if mid in per_mix:
sysmap[algo] = as_paths(per_mix[mid])
canon.append(Mixture(mid, refs, sysmap, spk_ids))
return canon
raise ValueError("Unsupported 'mixtures' format.")
def random_misalign(sig, sr, max_ms, mode="single", rng=None):
import random
if rng is None:
rng = random
max_samples = int(sr * max_ms / 1000)
if max_samples == 0:
return sig
shift = (
rng.randint(-max_samples, max_samples) if mode == "range" else int(max_samples)
)
if shift == 0:
return sig
if isinstance(sig, torch.Tensor):
z = torch.zeros(abs(shift), dtype=sig.dtype, device=sig.device)
return (
torch.cat([z, sig[:-shift]]) if shift > 0 else torch.cat([sig[-shift:], z])
)
else:
z = np.zeros(abs(shift), dtype=sig.dtype)
return (
np.concatenate([z, sig[:-shift]])
if shift > 0
else np.concatenate([sig[-shift:], z])
)
def safe_cov_torch(X):
Xc = X - X.mean(dim=0, keepdim=True)
cov = Xc.T @ Xc / (Xc.shape[0] - 1)
if torch.linalg.matrix_rank(cov) < cov.shape[0]:
cov += torch.eye(cov.shape[0], device=cov.device) * 1e-6
return cov
def mahalanobis_torch(x, mu, inv):
diff = x - mu
diff_T = diff.transpose(-1, -2) if diff.ndim >= 2 else diff
return torch.sqrt(diff @ inv @ diff_T + 1e-6) |